Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Catalytic Applications of Saccharin and its Derivatives in Organic Synthesis

Author(s): Bubun Banerjee*, Vaishali Bhardwaj, Amninder Kaur, Gurpreet Kaur and Arvind Singh

Volume 23, Issue 28, 2019

Page: [3191 - 3205] Pages: 15

DOI: 10.2174/1385272823666191121144758

Abstract

Saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide) is a very mild, cheap, commercially available, water soluble, environmentally benign and edible Brønsted acidic substance. Recently, with other utilities, saccharin and its derivatives were employed as catalysts for various organic transformations. In this review, catalytic applicability of saccharin and its derivatives under various reaction conditions is summarized.

Keywords: Green and sustainable synthesis, metal-free organo-catalysis, saccharin, saccharin sulfonic acid, sodium saccharin, DMAPsaccharin, tetrazole-amino-saccharin.

Graphical Abstract

[1]
Evans, C.S.; Davis, L.O. Recent advances in organocatalyzed domino C–C bond-forming reactions. Molecules, 2017, 23(1), 33.
[http://dx.doi.org/10.3390/molecules23010033] [PMID: 29295474]
[2]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: an overview. Curr. Organocatal., 2016, 3, 93-124.
[http://dx.doi.org/10.2174/2213337202666150812230830]
[3]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem. Eng., 2014, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[4]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem. Eng., 2014, 2, 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[5]
Brahmachari, G.; Banerjee, B. Facile and chemically sustainable one-pot synthesis of a wide array of fused O- and N-heterocycles catalyzed by trisodium citrate dihydrate under ambient conditions. Asian J. Org. Chem., 2016, 5, 271-286.
[http://dx.doi.org/10.1002/ajoc.201500465]
[6]
Brahmachari, G.; Banerjee, B. Room temperature metal-free synthesis of aryl/heteroaryl-substituted bis(6-aminouracil-5-yl) methanes using sulfamic acid (NH2SO3H) as an efficient and eco-friendly organo-Catalyst. Curr. Organocatal., 2016, 3, 125-132.
[http://dx.doi.org/10.2174/2213337202666150812231130]
[7]
Larsen, J.C. Artificial sweeteners: a brief review of their safety issues. Nutrafoods, 2012, 11, 3-9.
[http://dx.doi.org/10.1007/s13749-012-0003-5]
[8]
Gençer, N.; Demir, D.; Sonmez, F.; Kucukislamoglu, M. New saccharin derivatives as tyrosinase inhibitors. Bioorg. Med. Chem., 2012, 20(9), 2811-2821.
[http://dx.doi.org/10.1016/j.bmc.2012.03.033] [PMID: 22494841]
[9]
Jakopin, Z.; Dolenc, M. Preparation of saccharin derivatives of amino acids as potential peptidomimetic building blocks. Synth. Commun., 2008, 38, 3422-3438.
[http://dx.doi.org/10.1080/00397910802149105]
[10]
Jakopin, Z.; Dolenc, M. Microwave-assisted preparation of N-alkylated saccharins and their reactions with potassium t-butoxide. Synth. Commun., 2010, 40, 2464-2474.
[http://dx.doi.org/10.1080/00397910903267905]
[11]
Bhandari, N.; Gaonkar, S.L. A facile synthesis of N-substituted 2,5-dimethylpyrroles with saccharin as a green catalyst. Chem. Heterocycl. Compd., 2015, 51, 320-323.
[http://dx.doi.org/10.1007/s10593-015-1701-x]
[12]
Ueda, T.; Konishi, H.; Manabe, K. Palladium-catalyzed reductive carbonylation of aryl halides with N-formylsaccharin as a CO source. Angew. Chem. Int. Ed. Engl., 2013, 52(33), 8611-8615.
[http://dx.doi.org/10.1002/anie.201303926] [PMID: 23824917]
[13]
Du, H.; Shen, Q.; Feng, L.; Fei, L.; Zhou, X.; Li, Z.; Chen, K.; Jiang, K. Structure-reactivity relationships of N-hydroxysaccharin analogues as organocatalysts for aerobic oxidation. Comput. Theor. Chem., 2017, 1115, 223-228.
[http://dx.doi.org/10.1016/j.comptc.2017.06.025]
[14]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[15]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multi-component synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[16]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3, 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[17]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23, 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]
[18]
Rane, R.A.; Bangalore, P.; Borhade, S.D.; Khandare, P.K. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4-oxadiazole derivatives as antimicrobial and anti-tubercular agents. Eur. J. Med. Chem., 2013, 70, 49-58.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.039] [PMID: 24140916]
[19]
Kumar, P.R.; Raju, S.; Goud, P.S.; Sailaja, M.; Sarma, M.R.; Reddy, G.O.; Kumar, M.P.; Reddy, V.V.; Suresh, T.; Hegde, P. Synthesis and biological evaluation of thiophene [3,2-b] pyrrole derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem., 2004, 12(5), 1221-1230.
[http://dx.doi.org/10.1016/j.bmc.2003.11.003] [PMID: 14980634]
[20]
Battilocchio, C.; Poce, G.; Alfonso, S.; Porretta, G.C.; Consalvi, S.; Sautebin, L.; Pace, S.; Rossi, A.; Ghelardini, C.; Di Cesare Mannelli, L.; Schenone, S.; Giordani, A.; Di Francesco, L.; Patrignani, P.; Biava, M. A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg. Med. Chem., 2013, 21(13), 3695-3701.
[http://dx.doi.org/10.1016/j.bmc.2013.04.031] [PMID: 23680444]
[21]
Bandyopadhyay, D.; Mukherjee, S.; Granados, J.C.; Short, J.D.; Banik, B.K. Ultrasound-assisted bismuth nitrate-induced green synthesis of novel pyrrole derivatives and their biological evaluation as anticancer agents. Eur. J. Med. Chem., 2012, 50, 209-215.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.055] [PMID: 22341658]
[22]
Joshi, S.D.; Vagdevi, H.M.; Vaidya, V.P.; Gadaginamath, G.S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial and antitubercular agents. Eur. J. Med. Chem., 2008, 43(9), 1989-1996.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.016] [PMID: 18207286]
[23]
Chen, J.; Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W. An approach to the Paal-Knorr pyrroles synthesis catalyzed by Sc(OTf)3 under solvent-free conditions. Tetrahedron Lett., 2006, 47, 5383-5387.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.085]
[24]
Rahmatpour, A. Polystyrene-supported GaCl3 as a highly efficient and recyclable heterogeneous Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles. J. Organomet. Chem., 2012, 712, 15-19.
[http://dx.doi.org/10.1016/j.jorganchem.2012.03.025]
[25]
Darabi, H.R.; Poorheravi, M.R.; Aghapoor, K.; Mirzaee, A.; Mohsenzadeh, F.; Asadollahnejad, N.; Taherzadeh, H.; Balavar, Y. Silica-supported antimony(III) chloride as a mild and reusable catalyst for the Paal–Knorr pyrrole synthesis. Environ. Chem. Lett., 2012, 10, 5-12.
[http://dx.doi.org/10.1007/s10311-011-0321-7]
[26]
Balakrishna, A.; Aguiar, A.; Sobral, P.J.M.; Wani, M.Y.; Almeida-e-Silva, J.; Sobral, A.J.F.N. Paal-Knorr synthesis of pyrroles: from conventional to green synthesis. Catal. Rev., 2018, 61(1), 10-19.
[http://dx.doi.org/10.1080/01614940.2018.1529932]
[27]
Uthrie, J.P. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brflnsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Can. J. Chem., 1978, 56, 2342-2354.
[http://dx.doi.org/10.1139/v78-385]
[28]
Ramesh, S.; Bhat, Y.S.; Prakash, B.S.J. Microwave-activated p-TSA dealuminated montmorillonite- A new material with improved catalytic activity. Clay Miner., 2012, 47, 231-242.
[http://dx.doi.org/10.1180/claymin.2012.047.2.06]
[29]
Bunrit, A.; Dahlstrand, C.; Olsson, S.K.; Srifa, P.; Huang, G.; Orthaber, A.; Sjöberg, P.J.R.; Biswas, S.; Himo, F.; Samec, J.S.M. Brønsted acid-catalyzed intramolecular nucleophilic substitution of the hydroxyl group in stereogenic alcohols with chirality transfer. J. Am. Chem. Soc., 2015, 137(14), 4646-4649.
[http://dx.doi.org/10.1021/jacs.5b02013] [PMID: 25803790]
[30]
Evangelista, R.A.; Chen, F-T.A.; Guttman, A. Reductive amination of N-linked oligosaccharides using organic acid catalysts. J. Chromatogr. A, 1996, 745, 273-280.
[http://dx.doi.org/10.1016/0021-9673(96)00266-X]
[31]
Benoit, R.L.; Boulet, D.; Fréchett, M. Solvent effect on the solution, ionization, and structure of aminosulfonic acids. Can. J. Chem., 1988, 66, 3038-3043.
[http://dx.doi.org/10.1139/v88-470]
[32]
Biginelli, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Gazz. Chim. Ital., 1889, 19, 212.
[33]
Suresh, J.; Sandhu, S. Past, present and future of the Biginelli reaction: a critical perspective. ARKIVOC, 2012, 1, 66-133.
[34]
Kamal, A.; Krishnaji, T.; Azhar, M.A. Copper(II) tetrafluoroborate as a mild and efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Catal. Commun., 2007, 8, 1929-1933.
[http://dx.doi.org/10.1016/j.catcom.2007.03.009]
[35]
Kumar, A.; Maurya, R.A. An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett., 2007, 48, 4569-4571.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.130]
[36]
Ahmad, B.; Khan, R.A. Habibullah, Keshai, M. An improved synthesis of Biginelli-type compounds via phase-transfer catalysis. Tetrahedron Lett., 2009, 50, 2889-2892.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.177]
[37]
Lai, J.; Sharma, M.; Gupta, S.; Parashar, P.; Sahu, P.; Agarwal, D.D. Hydrotalcite: a novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions. J. Mol. Catal. Chem., 2012, 352, 31-37.
[http://dx.doi.org/10.1016/j.molcata.2011.09.009]
[38]
Zhang, Y.; Wang, B.; Zhang, X.; Huang, J.; Liu, C. An efficient synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Brønsted acidic ionic liquid under solvent-free conditions. Molecules, 2015, 20(3), 3811-3820.
[http://dx.doi.org/10.3390/molecules20033811] [PMID: 25730389]
[39]
Ghahremanzadeh, R.; Shakibaei, G.I.; Bazgir, A. An efficient one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives. Synlett, 2008, 8, 1129-1132.
[40]
Mohamadpour, F.; Maghsoodlou, M.T.; Heydari, R.; Lashkari, M. Saccharin: A green, economical and efficient catalyst for the one-pot, multi-component synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and substituted dihydro-2-oxypyrrole. J. Iran. Chem. Soc., 2016, 13, 1549-1560.
[http://dx.doi.org/10.1007/s13738-016-0871-5]
[41]
Khaligh, N.G.; Mihankhah, T.; Johan, M.R.; Ching, J.J. Saccharin: an efficient organocatalyst for the one-pot synthesis of 4-amidocinnolines under metal and halogen-free conditions. Monatsh. Chem., 2018, 149, 1083-1087.
[http://dx.doi.org/10.1007/s00706-018-2174-2]
[42]
Senadi, G.C.; Gore, B.S.; Hu, W.P.; Wang, J.J. BF3-etherate-promoted cascade reaction of 2-alkynylanilines with nitriles: one-pot assembly of 4-amido-cinnolines. Org. Lett., 2016, 18(12), 2890-2893.
[http://dx.doi.org/10.1021/acs.orglett.6b01207] [PMID: 27266479]
[43]
Lindsley, C.W.; Zhao, Z.; Leister, W.H.; Robinson, R.G.; Barnett, S.F.; Defeo-Jones, D.; Jones, R.E.; Hartman, G.D.; Huff, J.R.; Huber, H.E.; Duggan, M.E. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(3), 761-764.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.011] [PMID: 15664853]
[44]
Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P.M.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(4), 815-820.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.025] [PMID: 16309903]
[45]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45(25), 5604-5606.
[http://dx.doi.org/10.1021/jm020310n] [PMID: 12459027]
[46]
Kim, Y.B.; Kim, Y.H.; Park, J.Y.; Kim, S.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg. Med. Chem. Lett., 2004, 14(2), 541-544.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.086] [PMID: 14698199]
[47]
Loriga, M.; Piras, S.; Sanna, P.; Paglietti, G. Quinoxaline chemistry. Part 7. 2-[aminobenzoates]- and 2-[aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity. Farmaco, 1997, 52(3), 157-166.
[PMID: 9212450]
[48]
Raw, S.A.; Wilfred, C.D.; Taylor, R.J.K. Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. Org. Biomol. Chem., 2004, 2(5), 788-796.
[http://dx.doi.org/10.1039/b315689c] [PMID: 14985820]
[49]
Venkatesh, C.; Singh, B.; Mahata, P.K.; Ila, H.; Junjappa, H. Heteroannulation of nitroketene N, S-arylaminoacetals with POCl3: a novel highly regioselective synthesis of unsymmetrical 2, 3-substituted quinoxalines. Org. Lett., 2005, 7(11), 2169-2172.
[http://dx.doi.org/10.1021/ol0505095] [PMID: 15901161]
[50]
More, S.V.; Sastry, M.N.V.; Yao, C.F. Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: a simple, proficient and green approach for the synthesis of quinoxalines. Green Chem., 2006, 8, 91-95.
[http://dx.doi.org/10.1039/B510677J]
[51]
Heravi, M.M.; Taheri, S.; Bakhtiari, K.; Oskooie, H.A. On Water: a practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4·5H2O. Catal. Commun., 2007, 8, 211-214.
[http://dx.doi.org/10.1016/j.catcom.2006.06.013]
[52]
Bhosale, R.S.; Sarda, S.R.; Ardhapure, S.S.; Jadhav, W.N.; Bhusare, S.R.; Pawar, R.P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst. Tetrahedron Lett., 2005, 46, 7183-7186.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.080]
[53]
Raw, S.A.; Wilfred, C.D.; Taylor, R.J.K. Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. Chem. Commun. (Camb.), 2003, 2003(18), 2286-2287.
[http://dx.doi.org/10.1039/b307177b] [PMID: 14518877]
[54]
Huang, T.; Wang, R.; Shi, L.; Lu, X. Montmorillonite K-10: an efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Catal. Commun., 2008, 9, 1143-1147.
[http://dx.doi.org/10.1016/j.catcom.2007.10.024]
[55]
Heravi, M.M.; Bakhtiari, K.; Bamoharram, F.F.; Tehrani, M.H. Wells-Dawson type heteropolyacid catalyzed synthesis of quinoxaline derivatives at room temperature. Monatsh. Chem., 2007, 138, 465-467.
[http://dx.doi.org/10.1007/s00706-007-0594-5]
[56]
Lassagne, F.; Chevallier, F.; Mongin, F. Saccharin as an organocatalyst for quinoxalines and pyrido[2,3-b] pyrazines synthesis. Synth. Commun., 2013, 44, 141-149.
[http://dx.doi.org/10.1080/00397911.2013.795596]
[57]
Shirini, F.; Zolfigol, M.A.; Abedini, M. Chemoselective trimethylsilylation of alcohols catalyzed by saccharin sulfonic acid. Monatsh. Chem., 2009, 140, 61-64.
[http://dx.doi.org/10.1007/s00706-008-0004-7]
[58]
Shirini, F.; Mamaghani, M.; Mostashari-Rad, T.; Abedini, M. Saccharin sulfonic acid as an efficient catalyst for the preparation and deprotection of 1,1-diacetates. Bull. Korean Chem. Soc., 2010, 31, 2399-2401.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2399]
[59]
Shirini, F.; Zolfigol, M.A.; Abedini, M. Saccharin sulfonic acid catalyzed N-Boc protection of amines and formation of tert-butyl ethers from alcohols. J. Iran. Chem. Soc., 2010, 7, 603-607.
[http://dx.doi.org/10.1007/BF03246047]
[60]
Varala, R.; Nuvula, S.; Adapa, S.R. Molecular iodine-catalyzed facile procedure for N-Boc protection of amines. J. Org. Chem., 2006, 71(21), 8283-8286.
[http://dx.doi.org/10.1021/jo0612473] [PMID: 17025327]
[61]
Bartoli, G.; Bosco, M.; Locatelli, M.; Marcantoni, E.; Massaccesi, M.; Melchiorre, P.; Sambri, L. A Lewis acid-mediated protocol for the protection of aryl amines as their Boc-derivatives. Synlett, 2004, 10, 1794-1798.
[http://dx.doi.org/10.1055/s-2004-829059]
[62]
Reddy, M.S.; Narender, M.; Nageswar, Y.V.D.; Rama Rao, K. N-Boc protection of amines with di-tert-butyldicarbonate in water under neutral conditions in the presence of β-cyclodextrin. Synlett, 2006, 2006, 1110-1112.
[http://dx.doi.org/10.1055/s-2006-939689]
[63]
Das, B.; Venkateswarlu, K.; Krishnaiah, M.; Holla, H. A highly chemoselective Boc protection of amines using sulfonic-acid-functionalized silica as an efficient heterogeneous recyclable catalyst. Tetrahedron Lett., 2006, 47, 7551-7556.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.093]
[64]
Shirini, F.; Zolfigol, M.A.; Abedini, M. Saccharin sulfonic acid: an efficient and recyclable catalyst for acetylation of alcohols, phenols, and amines. Monatsh. Chem., 2009, 140, 1495-1498.
[http://dx.doi.org/10.1007/s00706-009-0214-7]
[65]
Alleti, R.; Perambuduru, M.; Samantha, S.; Reddy, V.P. Gadolinium triflate: an efficient and convenient catalyst for acetylation of alcohols and amines. J. Mol. Catal. Chem., 2005, 226, 57-59.
[http://dx.doi.org/10.1016/j.molcata.2004.09.024]
[66]
Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J. Org. Chem., 1996, 61(14), 4560-4567.
[http://dx.doi.org/10.1021/jo952237x] [PMID: 11667380]
[67]
Chauhan, K.K.; Frost, C.G.; Love, I.; Waite, D. Indium triflate: an efficient catalyst for acylation reactions. Synlett, 1999, 11, 1743-1744.
[http://dx.doi.org/10.1055/s-1999-2941]
[68]
Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Highly efficient and versatile acylation of alcohols with Bi(OTf)3 as catalyst. Angew. Chem. Int. Ed. Engl., 2000, 39(16), 2877-2879.
[http://dx.doi.org/10.1002/1521-3773(20000818)39:16<2877:AID-ANIE2877>3.0.CO;2-V] [PMID: 11027995]
[69]
Saravanan, P.; Singh, V.K. An efficient method for acylation reactions. Tetrahedron Lett., 1999, 40, 2611-2614.
[http://dx.doi.org/10.1016/S0040-4039(99)00229-4]
[70]
Lu, N.; Chang, W-H.; Tu, W-H.; Li, C-K. A salt made of 4-N, N-dimethylaminopyridine (DMAP) and saccharin as an efficient recyclable acylation catalyst: a new bridge between heterogeneous and homogeneous catalysis. Chem. Commun. (Camb.), 2011, 47(25), 7227-7229.
[http://dx.doi.org/10.1039/c1cc11556a] [PMID: 21623435]
[71]
Shen, A.Y.; Tsai, C.T.; Chen, C.L. Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl-2-naphthols. Eur. J. Med. Chem., 1999, 34, 877-882.
[http://dx.doi.org/10.1016/S0223-5234(99)00204-4]
[72]
Selvam, N.P.; Perumal, P.T. A new synthesis of acetamido phenols promoted by Ce(SO4)2. Tetrahedron Lett., 2006, 47, 7481-7483.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.038]
[73]
Kantevari, S.; Vuppalapati, S.V.N.; Nagarapu, L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkylnaphthols under solvent free conditions. Catal. Commun., 2007, 8, 1857-1862.
[http://dx.doi.org/10.1016/j.catcom.2007.02.022]
[74]
Shaterian, H.R.; Yarahmadi, H.; Ghashang, M. Silica supported perchloric acid (HClO4-SiO2): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkylnaphthols. Tetrahedron, 2008, 64, 1263-1269.
[http://dx.doi.org/10.1016/j.tet.2007.11.070]
[75]
Su, W.K.; Tang, W.Y.; Li, J.J. Strontium(II) triflatecatalysed condensation of β-naphthol, aldehyde and urea or amides: a facile synthesis of amidoalkylnaphthols. J. Chem. Res., 2008, 2008, 123-128.
[http://dx.doi.org/10.3184/030823408X298508]
[76]
Wang, M.; Liang, Y. Solvent-free, one-pot synthesis of amidoalkylnaphthols by a copper p-toluenesulfonate catalyzed multicomponent reaction. Monatsh. Chem., 2011, 142, 153-157.
[http://dx.doi.org/10.1007/s00706-010-0429-7]
[77]
Khazaei, A.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Zare, A.; Parhami, A.; Khalafi-Nezhad, A. Trityl chloride as an efficient organic catalyst for the synthesis of 1-amidoalkyl-2-naphtols in neutral media at room temperature. Appl. Catal. A Gen., 2010, 386, 179-187.
[http://dx.doi.org/10.1016/j.apcata.2010.07.057]
[78]
Kumar, A.; Rao, M.S.; Ahmad, I.; Khungar, B. A simple and facile synthesis of amidoalkylnaphthols catalyzed by Yb(OTf)3 in ionic liquids. Can. J. Chem., 2009, 87, 714-719.
[http://dx.doi.org/10.1139/V09-049]
[79]
Zhang, P.; Zhang, Z.H. Preparation of amidoalkylnaphthols by a three-component reaction catalyzed by 2,4,6-trichloro-1,3,5-triazine under solvent-free conditions. Monatsh. Chem., 2009, 140, 199-203.
[http://dx.doi.org/10.1007/s00706-008-0059-5]
[80]
Zare, A.; Kaveh, H.; Merajoddin, M.; Moosavi-Zare, A.R.; Hasaninejad, A.; Zolfigol, M.A. Saccharin sulfonic acid (SASA) as a highly efficient catalyst for the condensation of 2-naphthol with arylaldehydes and amides (thioamides or alkyl carbamates) under green, mild, and solvent-free conditions. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188, 573-584.
[http://dx.doi.org/10.1080/10426507.2012.692131]
[81]
Mulakayala, N.; Murthy, P.V.N.S.; Rambabu, D.; Aeluri, M.; Adepu, R.; Krishna, G.R.; Reddy, C.M.; Prasad, K.R.S.; Chaitanya, M.; Kumar, C.S.; Rao, M.V.B.; Pal, M. Catalysis by molecular iodine: a rapid synthesis of 1,8-dioxo-octahydroxanthenes and their evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(6), 2186-2191.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.126] [PMID: 22365759]
[82]
Das, B.; Thirupathi, P.; Reddy, K.R.; Ravikanth, B.; Nagarapu, L. An efficient synthesis of 1,8-dioxo-octahydroxanthenes using heterogeneous catalysts. Catal. Commun., 2007, 8, 535-538.
[http://dx.doi.org/10.1016/j.catcom.2006.02.023]
[83]
Karthikeyan, G.; Pandurangan, A. Heteropolyacid (H3PW12O40) supported MCM-41: an efficient solid acid catalyst for the green synthesis of xanthenedione derivatives. J. Mol. Catal. Chem., 2009, 311, 36-45.
[http://dx.doi.org/10.1016/j.molcata.2009.06.020]
[84]
Mohammadpoor-Baltork, I.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Tavakoli, H.R. Highly efficient and green synthesis of 14-aryl(alkyl)-14H-dibenzo[a, j]xanthene and 1,8-dioxooctahydroxanthene derivatives catalyzed by reusable zirconyltriflate [ZrO(OTf)2] under solvent-free conditions. Chin. Chem. Lett., 2011, 22, 9-12.
[http://dx.doi.org/10.1016/j.cclet.2010.09.003]
[85]
Zhang, Z-H.; Tao, X-Y. 2,4,6-Trichloro-1,3,5-triazine promoted synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Aust. J. Chem., 2008, 61, 77-79.
[http://dx.doi.org/10.1071/CH07274]
[86]
Bigdeli, M. Clean synthesis of 1,8-dioxooctahydroxanthenes promoted by DABCO-bromine in aqueous media. Chin. Chem. Lett., 2010, 21, 1180-1182.
[http://dx.doi.org/10.1016/j.cclet.2010.05.018]
[87]
Kantevari, S.; Bantu, R.; Nagarapu, L. TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1, 8-dioxo-octahydroxanthene derivatives. ARKIVOC, 2006, 16, 136-148.
[88]
Zhang, Z-H.; Liu, Y-H. Antimony trichloride/SiO2 promoted synthesis of 9-ary-3, 4, 5, 6, 7, 9-hexahydroxanthene-1, 8-diones. Catal. Commun., 2008, 9, 1715-1719.
[http://dx.doi.org/10.1016/j.catcom.2008.01.031]
[89]
Mulakayala, N.; Kumar, G.P.; Rambabu, D.; Aeluri, M.; Rao, M.V.B.; Pal, M. A greener synthesis of 1,8-dioxo-octahydroxanthene derivatives under ultrasound. Tetrahedron Lett., 2012, 53, 6923-6926.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.024]
[90]
Banerjee, B.; Brahmachari, G. Ammonium chloride catalysed one-pot multicomponent synthesis of 1, 8-dioxo-octahydroxanthenes and N-aryl-1, 8-dioxodecahydroacridines under solvent free conditions. J. Chem. Res., 2014, 38, 745-750.
[http://dx.doi.org/10.3184/174751914X14177132210020]
[91]
Zarea, A.; Mokhlesib, M.; Hasaninejadc, A.; Zadeha, T.H. Solvent-free synthesis of 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dibenzo[a, j]xanthenes using saccharin sulfonic acid as an efficient and green catalyst. E-J. Chem., 2012, 9, 1854-1863.
[http://dx.doi.org/10.1155/2012/596862]
[92]
Padmaja, A.; Rajasekhar, C.; Muralikrishna, A.; Padmavathi, V. Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur. J. Med. Chem., 2011, 46(10), 5034-5038.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.010] [PMID: 21864949]
[93]
Santos, M.M.M.; Faria, N.; Iley, J.; Coles, S.J.; Hursthouse, M.B.; Martins, M.L.; Moreira, R. Reaction of naphthoquinones with substituted nitromethanes. Facile synthesis and antifungal activity of naphtho[2,3-d]isoxazole-4,9-diones. Bioorg. Med. Chem. Lett., 2010, 20(1), 193-195.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.137] [PMID: 19926280]
[94]
Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 44(11), 4557-4566.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.024] [PMID: 19631423]
[95]
Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H.H.; Cirrincione, G. Synthesis and antitumor activity of 2,5-bis(3′-indolyl)-furans and 3,5-bis(3′-indolyl)-isoxazoles, nortopsentin analogues. Bioorg. Med. Chem., 2010, 18(12), 4524-4529.
[http://dx.doi.org/10.1016/j.bmc.2010.04.061] [PMID: 20472437]
[96]
Balalaie, S.; Sharifi, A.; Ahangarian, B. Solid phase synthesis of isoxazole and pyrazolederivatives under microwave irradiation. Indian J. Heterocycl. Chem., 2000, 10, 149-150.
[97]
Kan Unk, O. H.; Adachi, I.; Kido, R.; Hirose, K. Isoxazoles. XVIII. Synthesis and pharmacological properties of 5-aminoalkyl- and 3-aminoalkylisoxazoles and related derivatives. J. Med. Chem., 1967, 10(3), 411-418.
[http://dx.doi.org/10.1021/jm00315a028] [PMID: 22185144]
[98]
Kiyani, H.; Ghorbani, F. Sodium saccharin as a clean and efficient catalyst for the synthesis of 4-arylidene-3-methylisoxazol-5(4H)-ones via one-pot three-component reaction in aqueous medium. Heteroletters, 2013, 3, 359-369.
[99]
Moghaddam, F.M.; Koozehgiri, G.R.; Dekaminy, M.G. Solvent-free efficient synthesis of symmetrical isocyanurates by a combination catalyst: sodium saccharin and tetrabutylammonium iodide. Monatsh. Chem., 2004, 135, 849-851.
[http://dx.doi.org/10.1007/s00706-002-0137-7]
[100]
Moradi, L.; Sadegh, A. Sodium saccharin as an effective catalyst for rapid one-pot pseudo-five component synthesis of dihydropyrano[2,3-g]chromenes under microwave irradiation. Acta Chim. Slov., 2017, 64(2), 506-512.
[http://dx.doi.org/10.17344/acsi.2017.3417] [PMID: 28621396]
[101]
Frija, L.M.T.; Kuznetsov, M.L.; Rocha, B.G.M.; Cabral, L.; Cristiano, M.L.S.; Kopylovich, M.N.; Pombeiro, A.J.L. Organocatalyzed oxidation of benzyl alcohols by a tetrazole-amino-saccharin: a combined experimental and theoretical (DFT) study. Mol. Catal., 2017, 442, 57-65.
[http://dx.doi.org/10.1016/j.mcat.2017.09.003]

© 2025 Bentham Science Publishers | Privacy Policy