Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Synthesis and Reactivity of Vinylallenes

Author(s): María M. Afonso* and J. Antonio Palenzuela*

Volume 23, Issue 27, 2019

Page: [3004 - 3026] Pages: 23

DOI: 10.2174/1385272823666191119113119

Price: $65

Abstract

Vinylallenes have been synthesized and used as reagents for many years. However, the number of reviews covering the advances in the chemistry of vinylallenes are scarce. Most of the information lies in general reviews about allenes or in reviews dedicated to specific areas of research. Today, vinylallenes are used in the synthesis due to the special characteristics of this moiety, a diene with a non-conjugated double bond and the capacity to generate axial chirality. In this review, the most relevant publications involving vinylallenes, published in the last fifteen years, are compiled. The review includes new or improved synthetic methods and the reactivity of vinylallenes prepared by classical or new methods. The reactions of vinylallenes have been classified as Nazarovtype processes, cycloaddition reactions, and reactions in which vinylallenes are key intermediates, usually non-isolated but essential for the process to occur. Other types of reactivity are also included.

Keywords: Vinylallenes, synthesis, reactivity, Nazarov reaction, cycloadditions, penta-1, 2, 4-trienes.

Graphical Abstract

[1]
Coffman, D.D.; Carothers, W.H. Acetylene polymers and their derivatives. XIII. The action of chlorine on divinylacetylene. J. Am. Chem. Soc., 1933, 55, 2040-2047.
[http://dx.doi.org/10.1021/ja01332a041]
[2]
Oroshnik, W.; Mebane, A.D.; Karmas, G. Synthesis of polyenes. III. Prototropic rearrangements in/3-ionols and related compounds. J. Am. Chem. Soc., 1953, 75, 1050-1058.
[http://dx.doi.org/10.1021/ja01101a013]
[3]
Hoffmann-Röder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2004, 43(10), 1196-1216.
[http://dx.doi.org/10.1002/anie.200300628] [PMID: 14991780]
[4]
Okamura, W.H.; Curtin, M.L. Pericyclization of vinylallenes in organic synthesis: on the intramolecular Diels-Alder reaction. Synlett, 1990, 1, 1-9.
[http://dx.doi.org/10.1055/s-1990-20973]
[5]
Okamura, W.H. Pericyclic reactions of vinylallenes: from calciferols to retinoids and drimanes. Acc. Chem. Res., 1983, 16, 81-88.
[http://dx.doi.org/10.1021/ar00087a002]
[6]
Krause, N.; Hashmi, A.S.K. Modern Allene Chemistry; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2004, Vol. 1-2, .
[http://dx.doi.org/10.1002/9783527619573]
[7]
Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev., 2005, 105(7), 2829-2872.
[http://dx.doi.org/10.1021/cr020024j] [PMID: 16011326]
[8]
Brummond, K.M.; De-Forrest, J.E. Synthesizing allenes today (1982–2006). Synthesis, 2007, 6, 795-818.
[http://dx.doi.org/10.1055/s-2007-965963]
[9]
López, F.; Mascareñas, J.L. [4+2] and [4+3] catalytic cycloadditions of allenes. Chem. Soc. Rev., 2014, 43(9), 2904-2915.
[http://dx.doi.org/10.1039/C4CS00024B] [PMID: 24643377]
[10]
Ogasawara, M. Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron Asymmetry, 2009, 20, 259-271.
[http://dx.doi.org/10.1016/j.tetasy.2008.11.039]
[11]
Yu, S.; Ma, S. How easy are the syntheses of allenes? Chem. Commun. (Camb.), 2011, 47(19), 5384-5418.
[http://dx.doi.org/10.1039/c0cc05640e] [PMID: 21409186]
[12]
Murakami, M.; Kadowaki, S.; Matsuda, T. Molybdenum-catalyzed ring-closing metathesis of allenynes. Org. Lett., 2005, 7(18), 3953-3956.
[http://dx.doi.org/10.1021/ol0514348] [PMID: 16119940]
[13]
Kim, K.H.; Ok, T.; Lee, K.; Lee, H-S.; Chang, K.T.; Ihee, H.; Sohn, J-H. Quantitative catalyst-substrate association relationships between metathesis molybdenum or ruthenium carbene complexes and their substrates. J. Am. Chem. Soc., 2010, 132(34), 12027-12033.
[http://dx.doi.org/10.1021/ja104193s] [PMID: 20698535]
[14]
Xi, Z.; Zhang, W-X.; Song, Z.; Zheng, W.; Kong, F.; Takahashi, T. Preparation of vinyl allenes from 1-lithio-1,3-dienyl phosphine oxides and aldehydes by the Wittig-Horner reaction. J. Org. Chem., 2005, 70(22), 8785-8789.
[http://dx.doi.org/10.1021/jo051178c] [PMID: 16238310]
[15]
Song, J-N.; Fang, Z.; Liu, Y.; Li, R.; Xu, L.; Barry, B-D.; Liu, Q.; Bi, X.; Liao, P. Fe(III)-catalyzed intermolecular C(sp2)-C(sp3) dehydration coupling reaction of ketene dithioacetals and propargyl alcohols: synthesis of novel gem-dialkylthiopenten-4-ynes and further conversion into methyl pent-4-ynoates. Synlett, 2011, (17), 2551-2554.
[http://dx.doi.org/10.1055/s-0030-1260333]
[16]
Fang, Z.; Yuan, H.; Liu, Y.; Tong, Z.; Li, H.; Yang, J.; Barry, B-D.; Liu, J.; Liao, P.; Zhang, J.; Liu, Q.; Bi, X. gem-Dialkylthio vinylallenes: alkylthio-regulated reactivity and application in the divergent synthesis of pyrroles and thiophenes. Chem. Commun. (Camb.), 2012, 48(70), 8802-8804.
[http://dx.doi.org/10.1039/c2cc33857b] [PMID: 22836930]
[17]
Li, Q.; Wang, Y.; Fang, Z.; Liao, P.; Barry, B-D.; Che, G.; Bi, X. Iron(III)-catalyzed dehydration C(sp2)–C(sp2) coupling of tertiary propargyl alcohols and α-Oxo ketene dithioacetals: a new route to gem-bis(alkylthio)-substituted vinylallenes. Synthesis, 2013, 45, 609-614.
[http://dx.doi.org/10.1055/s-0032-1316855]
[18]
Dabrowski, J.A.; Haeffner, F.; Hoveyda, A.H. Combining NHC-Cu and Brønsted base catalysis: enantioselective allylic substitution/conjugate additions with alkynylaluminum reagents and stereospecific isomerization of the products to trisubstituted allenes. Angew. Chem. Int. Ed. Engl., 2013, 52(30), 7694-7699.
[http://dx.doi.org/10.1002/anie.201303501] [PMID: 23864395]
[19]
Sasaki, M.; Kondo, Y.; Kawahata, M.; Yamaguchi, K.; Takeda, K. Enantioselective synthesis of siloxyallenes from alkynoylsilanes by reduction and a Brook rearrangement and their subsequent trapping in a [4+2] cycloaddition. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6375-6378.
[http://dx.doi.org/10.1002/anie.201102430] [PMID: 21630406]
[20]
Sasaki, M.; Kondo, Y.; Moto-ishi, T.; Kawahata, M.; Yamaguchi, K.; Takeda, K. Enantioselective synthesis of allenylenol silyl ethers via chiral lithium amide mediated reduction of ynenoyl silanes and their Diels-Alder reactions. Org. Lett., 2015, 17(5), 1280-1283.
[http://dx.doi.org/10.1021/acs.orglett.5b00261] [PMID: 25689472]
[21]
Ando, M.; Sasaki, M.; Miyashita, I.; Takeda, K. Formation of 2-cyano-2-siloxyvinylallenes via cyanide-induced brook rearrangement in γ-bromo-α, β, γ, δ-unsaturated acylsilanes. J. Org. Chem., 2015, 80(1), 247-255.
[http://dx.doi.org/10.1021/jo502323v] [PMID: 25436988]
[22]
Kimura, T.; Kobayashi, G.; Ishigaki, M.; Inumaru, M.; Sakurada, J.; Satoh, T. Coupling reaction of magnesium alkylidene carbenoids with α-sulfonylallyllithiums: an efficient route to multi-substituted vinylallenes. Synthesis, 2012, 44, 3623-3632.
[http://dx.doi.org/10.1055/s-0032-1317507]
[23]
Ogasawara, M.; Nagano, T.; Hayashi, T. A new route to methyl (R, E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction. J. Org. Chem., 2005, 70(14), 5764-5767.
[http://dx.doi.org/10.1021/jo050684z] [PMID: 15989370]
[24]
Ogasawara, M.; Fan, L.; Ge, Y.; Takahashi, T. Palladium-catalyzed preparation of vinylallenes from 2-bromo-1,3,5-trienes via an alkylidene-π-allylpalladium-mediated formal SN2” pathway. Org. Lett., 2006, 8(23), 5409-5412.
[http://dx.doi.org/10.1021/ol062309e] [PMID: 17078730]
[25]
Ma, Z.; Zeng, R.; Yu, Y.; Ma, S. Highly stereoselective synthesis of 6-perfluoroalkyl-6-fluoroalka-2,3,5-(Z)-trienols through carbometallation-elimination of 5-perfluoroalkylsubstituted 4(E)-alken-2-ynols with Grignard reagents. Tetrahedron Lett., 2009, 50, 6472-6475.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.003]
[26]
Pu, X.; Ready, J.M. Direct and stereospecific synthesis of allenes via reduction of propargylic alcohols with Cp2Zr(H)Cl. J. Am. Chem. Soc., 2008, 130(33), 10874-10875.
[http://dx.doi.org/10.1021/ja8035527] [PMID: 18652467]
[27]
Strain, H.H.; Svec, W.A.; Aitzetmüller, K.; Grandolfo, M.C.; Katz, J.J.; Kjosen, H.; Norgard, S.; Liaaen-Jensen, S.; Haxo, F.T.; Wegfahrt, P.; Rapoport, H. The structure of peridinin, the characteristic dinoflagellate carotenoid. J. Am. Chem. Soc., 1971, 93, 1823-1825.
[http://dx.doi.org/10.1021/ja00736a065]
[28]
Johansen, J.E.; Borch, G.; Liaaen-Jensen, S. Chirality of peridinin and dinoxanthin. Photochemistry, 1980, 19, 441-444.
[http://dx.doi.org/10.1016/0031-9422(80)83197-9]
[29]
Olpp, T.; Brückner, R. Total synthesis of the light-harvesting carotenoid peridinin. Angew. Chem. Int. Ed. Engl., 2006, 45(24), 4023-4027.
[http://dx.doi.org/10.1002/anie.200600502] [PMID: 16683293]
[30]
Furuichi, N.; Hara, H.; Osaki, T.; Nakano, M.; Mori, H.; Katsumura, S. Stereocontrolled total synthesis of a polyfunctional carotenoid, peridinin. J. Org. Chem., 2004, 69(23), 7949-7959.
[http://dx.doi.org/10.1021/jo048852v] [PMID: 15527275]
[31]
Vaz, B.; Domínguez, M.; Alvarez, R.; de Lera, A.R. Total synthesis of peridinin and related C37-norcarotenoid butenolides. Chemistry, 2007, 13(4), 1273-1290.
[http://dx.doi.org/10.1002/chem.200600959] [PMID: 17066395]
[32]
Nakamura, H.; Tashiro, S.; Kamakura, T. Synthesis of ene-allenes via palladium-catalyzed hydride-transfer reaction of propargylic amines under mild conditions. Tetrahedron Lett., 2005, 46, 8333-8336.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.169]
[33]
Lo, V.K-Y.; Zhou, C-Y.; Wong, M-K.; Che, C-M. Silver(I)-mediated highly enantioselective synthesis of axially chiral allenes under thermal and microwave-assisted conditions. Chem. Commun. (Camb.), 2010, 46(2), 213-215.
[http://dx.doi.org/10.1039/B914516H] [PMID: 20024329]
[34]
Lo, V.K-Y.; Chan, Y-M.; Zhou, D.; Toy, P.H.; Che, C-M. Highly enantioselective synthesis using prolinol as a chiral auxiliary: silver-mediated synthesis of axially chiral vinylallenes and subsequent (hetero)-Diels-Alder reactions. Org. Lett., 2019, 21(19), 7717-7721.
[http://dx.doi.org/10.1021/acs.orglett.9b02514] [PMID: 31553194]
[35]
Sasaki, F.; Endo, T.; Noguchi, M.; Kawai, K.; Nakano, T. Stereospecific synthesis of a family of novel (E)-2-aryl-1-silylalka-1,4-dienes or (E)-4-aryl-5-silylpenta-1,2,4-trienes via a cross-coupling of (Z)-silyl(stannyl)ethenes with allyl halides or propargyl bromide. Appl. Organomet. Chem., 2008, 22, 128-138.
[http://dx.doi.org/10.1002/aoc.1360]
[36]
Williams, D.R.; Shah, A.A. Regioselective formation of 1,1-disubstituted allenylsilanes via cross-coupling reactions of 3-tri-n-butylstannyl-1-trimethylsilyl-1-propyne. Chem. Commun. (Camb.), 2010, 46(24), 4297-4299.
[http://dx.doi.org/10.1039/c0cc00679c] [PMID: 20485806]
[37]
Zhao, J.; Yu, Y.; Ma, S. Ligand effects on the Pd-catalyzed cross-coupling reaction of 3-iodoalk-2-enoates with propargyl/1,2-allenylic metallic species: an efficient regiodivergent synthesis of 2,4,5-trienoates. Chemistry, 2010, 16(1), 74-80.
[http://dx.doi.org/10.1002/chem.200901287] [PMID: 19921717]
[38]
Molander, G.A.; Sommers, E.M.; Baker, S.R. Palladium (0)-catalyzed synthesis of chiral ene-allenes using alkenyl trifluoroborates. J. Org. Chem., 2006, 71(4), 1563-1568.
[http://dx.doi.org/10.1021/jo052201x] [PMID: 16468806]
[39]
Ye, J.; Ma, S. Palladium-catalyzed cyclization reactions of allenes in the presence of unsaturated carbon-carbon bonds. Acc. Chem. Res., 2014, 47(4), 989-1000.
[http://dx.doi.org/10.1021/ar4002069] [PMID: 24479609]
[40]
Ma, S.; Gu, Z.; Deng, Y. From allene to allene: a palladium-catalyzed approach to β-allenyl butenolides and their application to the synthesis of polysubstituted benzene derivatives. Chem. Commun. (Camb.), 2006, (1), 94-96.
[http://dx.doi.org/10.1039/B513371H] [PMID: 16353104]
[41]
Shu, W.; Ma, S. Palladium-catalyzed synthesis of 1,3,4-alkatrien-2-yldihydrofurans from2,3-allenylacetylacetates and propargylic carbonates and their applicationto synthesize polysubstituted dihydrofurylcyclopentenones. Tetrahedron, 2010, 66, 2869-2874.
[http://dx.doi.org/10.1016/j.tet.2010.02.030]
[42]
Ye, J.; Li, S.; Ma, S. Gorlos-Phos: addressing the stereoselectivity in palladium-catalyzed exo-mode cyclization of allenes with a nucleophilic functionality. Org. Biomol. Chem., 2013, 11(32), 5370-5373.
[http://dx.doi.org/10.1039/c3ob40983j] [PMID: 23846319]
[43]
Shu, W.; Jia, G.; Ma, S. Palladium-catalyzed regioselective cyclopropanating allenylation of (2,3-butadienyl) malonates with propargylic carbonates and their application to synthesize cyclopentenones. Org. Lett., 2009, 11(1), 117-120.
[http://dx.doi.org/10.1021/ol802465k] [PMID: 19053848]
[44]
Jiang, H.; Liu, X.; Zhou, L. First synthesis of 1-chlorovinyl allenes via palladium-catalyzed allenylation of alkynoates with propargyl alcohols. Chemistry, 2008, 14(36), 11305-11309.
[http://dx.doi.org/10.1002/chem.200801843] [PMID: 19021185]
[45]
Üçüncü, M.; Karakuş, E.; Kuş, M.; Akpınar, G.E.; Aksın-Artok, Ö.; Krause, N.; Karaca, S.; Elmacı, N.; Artok, L. Rhodium- and palladium-catalyzed 1,5-substitution reactions of 2-en-4-yne acetates and carbonates with organoboronic acids. J. Org. Chem., 2011, 76(15), 5959-5971.
[http://dx.doi.org/10.1021/jo200201r] [PMID: 21662974]
[46]
Ziyanak, F.; Kus, M.; Alkan-Karadeniz, L.; Artok, L. Palladium-catalysed reactions of conjugated enyne oxiranes with organoborons: a diastereoselective method of the synthesis of 2,4,5-trienol derivatives. Tetrahedron, 2018, 74, 3652-3662.
[http://dx.doi.org/10.1016/j.tet.2018.05.030]
[47]
Taç, D.; Artok, L. Palladium-catalyzed coupling of 2-en-4-yne carbonates with terminal alkynes. Tetrahedron Lett., 2018, 59, 895-898.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.062]
[48]
Akpınar, G.E.; Kuş, M.; Uçüncü, M.; Karakuş, E.; Artok, L. Palladium-catalyzed alkoxycarbonylation of (Z)-2-en-4-yn carbonates leading to 2,3,5-trienoates. Org. Lett., 2011, 13(4), 748-751.
[http://dx.doi.org/10.1021/ol102989q] [PMID: 21218801]
[49]
Karagöz, E.S.; Kuş, M.; Akpınar, G.E.; Artok, L. Regio- and stereoselective synthesis of 2,3,5-trienoates by palladium-catalyzed alkoxycarbonylation of conjugated enyne carbonates. J. Org. Chem., 2014, 79(19), 9222-9230.
[http://dx.doi.org/10.1021/jo5014993] [PMID: 25188027]
[50]
Kuş, M.; Artok, L.; Aygün, M. Palladium-catalyzed alkoxycarbonylation of conjugated enyne oxiranes: a diastereoselective method for the synthesis of 7-hydroxy-2,3,5-trienoates. J. Org. Chem., 2015, 80(11), 5494-5506.
[http://dx.doi.org/10.1021/acs.joc.5b00382] [PMID: 25912857]
[51]
Taç, D.; Aytaç, I.A.; Karatavuk, A.O.; Kuş, M.; Ziyanak, F.; Artok, L. Iron-promoted 1,5-substitution (SN2”) reactions of enyne acetates and oxiranes with Grignard reagents. Asian J. Org. Chem., 2017, 6, 1415-1420.
[http://dx.doi.org/10.1002/ajoc.201700225]
[52]
Ben-Valid, S.; Quntar, A.A.A.; Srebnik, M. Novel vinyl phosphonates and vinyl boronates by halogenation, allylation, and propargylation of α-boryl- and α-phosphonozirconacyclopentenes. J. Org. Chem., 2005, 70(9), 3554-3559.
[http://dx.doi.org/10.1021/jo047913m] [PMID: 15844990]
[53]
Yang, M.; Yokokawa, N.; Ohmiya, H.; Sawamura, M. Synthesis of conjugated allenes through copper-catalyzed γ-selective and stereospecific coupling between propargylic phosphates and aryl- or alkenylboronates. Org. Lett., 2012, 14(3), 816-819.
[http://dx.doi.org/10.1021/ol2033465] [PMID: 22256782]
[54]
Chen, Z-S.; Duan, X-H.; Wu, L-Y.; Ali, S.; Ji, K-G.; Zhou, P-X.; Liu, X-Y.; Liang, Y-M. Palladium-catalyzed coupling of propargylic carbonates with N-tosylhydrazones: highly selective synthesis of substituted propargylic N-sulfonylhydrazones and vinylallenes. Chemistry, 2011, 17(25), 6918-6921.
[http://dx.doi.org/10.1002/chem.201100248] [PMID: 21567498]
[55]
Mundal, D.A.; Lutz, K.E.; Thomson, R.J. A direct synthesis of allenes by a traceless Petasis reaction. J. Am. Chem. Soc., 2012, 134(13), 5782-5785.
[http://dx.doi.org/10.1021/ja301489n] [PMID: 22452672]
[56]
Diagne, A.B.; Li, S.; Perkowski, G.A.; Mrksich, M.; Thomson, R.J. SAMDI mass spectrometry-enabled high-throughput optimization of a traceless Petasis reaction. ACS Comb. Sci., 2015, 17(11), 658-662.
[http://dx.doi.org/10.1021/acscombsci.5b00131] [PMID: 26521847]
[57]
Jiang, Y.; Diagne, A.B.; Thomson, R.J.; Schaus, S.E. Enantioselective synthesis of allenes by catalytic traceless Petasis reactions. J. Am. Chem. Soc., 2017, 139(5), 1998-2005.
[http://dx.doi.org/10.1021/jacs.6b11937] [PMID: 28121128]
[58]
Lehrich, F.; Hopf, H.; Grunenberg, J. The preparation and structures of several cross-conjugated allenes (“allenic dendralenes”). Eur. J. Org. Chem., 2011, (14), 2705-2718.
[http://dx.doi.org/10.1002/ejoc.201001508]
[59]
Cergol, K.M.; Newton, C.G.; Lawrence, A.L.; Willis, A.C.; Paddon-Row, M.N.; Sherburn, M.S. 1,1-Divinylallene. Angew. Chem. Int. Ed. Engl., 2011, 50(44), 10425-10428.
[http://dx.doi.org/10.1002/anie.201105541] [PMID: 21919178]
[60]
Elgindy, C.; Ward, J.S.; Sherburn, M.S. Tetravinylallene. Angew. Chem. Int. Ed. Engl., 2019, 58(41), 14573-14577.
[http://dx.doi.org/10.1002/anie.201908496] [PMID: 31418531]
[61]
Deng, Y.; Bartholomeyzik, T.; Persson, A.K.; Sun, J.; Bäckvall, J-E. Palladium-catalyzed oxidative arylating carbocyclization of allenynes. Angew. Chem. Int. Ed. Engl., 2012, 51(11), 2703-2707.
[http://dx.doi.org/10.1002/anie.201107592] [PMID: 22287117]
[62]
Deng, Y.; Bartholomeyzik, T.; Bäckvall, J-E. Control of selectivity in palladium-catalyzed oxidative carbocyclization/borylation of allenynes. Angew. Chem. Int. Ed. Engl., 2013, 52(24), 6283-6287.
[http://dx.doi.org/10.1002/anie.201301167] [PMID: 23686783]
[63]
Bartholomeyzik, T.; Pendrill, R.; Lihammar, R.; Jiang, T.; Widmalm, G.; Bäckvall, J-E. Kinetics and mechanism of the palladium-catalyzed oxidative arylating carbocyclization of allenynes. J. Am. Chem. Soc., 2018, 140(1), 298-309.
[http://dx.doi.org/10.1021/jacs.7b10267] [PMID: 29155573]
[64]
Hayashi, T.; Tokunaga, N.; Inoue, K. Rhodium-catalyzed asymmetric 1,6-addition of aryltitanates to enynones giving axially chiral allenes. Org. Lett., 2004, 6(2), 305-307.
[http://dx.doi.org/10.1021/ol036309f] [PMID: 14723554]
[65]
Malona, J.A.; Cariou, K.; Frontier, A.J. Nazarov cyclization initiated by peracid oxidation: the total synthesis of (+/-)-rocaglamide. J. Am. Chem. Soc., 2009, 131(22), 7560-7561.
[http://dx.doi.org/10.1021/ja9029736] [PMID: 19445456]
[66]
Spencer, W.T., III; Levin, M.D.; Frontier, A.J. Oxidation-initiated Nazarov cyclization of vinyl alkoxyallenes. Org. Lett., 2011, 13(3), 414-417.
[http://dx.doi.org/10.1021/ol1027255] [PMID: 21155592]
[67]
Wu, Y-K.; West, F.G. Brønsted acid-mediated Nazarov cyclization of vinylallenes. J. Org. Chem., 2010, 75(15), 5410-5413.
[http://dx.doi.org/10.1021/jo101112t] [PMID: 20670041]
[68]
Lee, J.H.; Toste, F.D. Gold(I)-catalyzed synthesis of functionalized cyclopentadienes. Angew. Chem. Int. Ed. Engl., 2007, 46(6), 912-914.
[http://dx.doi.org/10.1002/anie.200604006] [PMID: 17167806]
[69]
Funami, H.; Kusama, H.; Iwasawa, N. Preparation of substituted cyclopentadienes through platinum(II)-catalyzed cyclization of 1,2,4-trienes. Angew. Chem. Int. Ed. Engl., 2007, 46(6), 909-911.
[http://dx.doi.org/10.1002/anie.200603986] [PMID: 17177221]
[70]
Bhunia, S.; Liu, R-S. Gold-catalyzed 1,3-addition of a sp3-hybridized C-H bond to alkenylcarbenoid intermediate. J. Am. Chem. Soc., 2008, 130(49), 16488-16489.
[http://dx.doi.org/10.1021/ja807384a] [PMID: 19554723]
[71]
Lemière, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A-L.; Fensterbank, L.; Malacria, M. Tandem gold(I)-catalyzed cyclization/electrophilic cyclopropanation of vinyl allenes. Org. Lett., 2007, 9(11), 2207-2209.
[http://dx.doi.org/10.1021/ol070788r] [PMID: 17455944]
[72]
Lemière, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A-L.; Fensterbank, L.; Malacria, M. Generation and trapping of cyclopentenylidene gold species: four pathways to polycyclic compounds. J. Am. Chem. Soc., 2009, 131(8), 2993-3006.
[http://dx.doi.org/10.1021/ja808872u] [PMID: 19209868]
[73]
Gandon, V.; Lemière, G.; Hours, A.; Fensterbank, L.; Malacria, M. The role of bent acyclic allene gold complexes in axis-to-center chirality transfers. Angew. Chem. Int. Ed. Engl., 2008, 47(39), 7534-7538.
[http://dx.doi.org/10.1002/anie.200802332] [PMID: 18677731]
[74]
Mokar, B.D.; Jadhav, P.D.; Pandit, Y.B.; Liu, R-S. Gold-catalyzed (4 + 2)-annulations between α-alkyl alkenylgold carbenes and benzisoxazoles with reactive alkyl groups. Chem. Sci. (Camb.), 2018, 9(19), 4488-4492.
[http://dx.doi.org/10.1039/C8SC00986D] [PMID: 30079175]
[75]
Chen, C-N.; Liu, R-S. Gold-catalyzed [4+2] annulations of dienes with nitrosoarenes as 4 π donors: Nitroso-Povarov reactions. Angew. Chem. Int. Ed. Engl., 2019, 58(29), 9831-9835.
[http://dx.doi.org/10.1002/anie.201903615] [PMID: 31121079]
[76]
Souto, J.A.; López, C.S.; Faza, O.N.; Alvarez, R.; de Lera, A.R. 2-Alkylidenesulfol-3-enes by (regio- and) stereoselective cheletropic addition of SO2 to (di)vinylallenes. Org. Lett., 2005, 7(8), 1565-1568.
[http://dx.doi.org/10.1021/ol050240p] [PMID: 15816753]
[77]
Regás, D.; Ruiz, J.M.; Afonso, M.M.; Palenzuela, J.A. Hetero diels-alder reaction of vinyl allenes and aldehydes. An experimental and computational study. J. Org. Chem., 2006, 71(24), 9153-9164.
[http://dx.doi.org/10.1021/jo061582r] [PMID: 17109541]
[78]
Ruiz, J.M.; Regás, D.; Afonso, M.M.; Palenzuela, J.A. Study of an unexpected rearrangement of the α-phenyl pyrane derivatives prepared via hetero-diels-Alder reaction of acyclic vinyl allenes and aldehydes. J. Org. Chem., 2008, 73(18), 7246-7254.
[http://dx.doi.org/10.1021/jo8010107] [PMID: 18707174]
[79]
Regás, D.; Afonso, M.M.; Palenzuela, J.A. Intramolecular hetero-diels-Alder reaction of vinylallenes and imines: synthesis of 9-methyl-1,2,3,4,5,6,7, 8-octahydroacridine. Synthesis, 2004, 5, 757-760.
[80]
Regás, D.; Afonso, M.M.; Palenzuela, J.A. Pyridines and pyridine derivatives from vinyl allenes and imines. Tetrahedron, 2012, 68, 9345-9349.
[http://dx.doi.org/10.1016/j.tet.2012.09.057]
[81]
Mokar, B.D.; Liu, J.; Liu, R-S. Brønsted acids enable three molecular rearrangements of one 3-alkylidene-2h-1,2-oxazine molecule into distinct heterocyles. Org. Lett., 2018, 20(4), 1038-1041.
[http://dx.doi.org/10.1021/acs.orglett.7b03985] [PMID: 29388779]
[82]
Liu, L.; Liu, S.; Jiang, L.; Chen, X.; Guo, L.; Che, Y. Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org. Lett., 2008, 10(7), 1397-1400.
[http://dx.doi.org/10.1021/ol800136t] [PMID: 18314997]
[83]
Suzuki, T.; Kobayashi, S. Concise approach to pupukeanane skeleton: synthetic study of chloropupukeananin. Org. Lett., 2010, 12(13), 2920-2923.
[http://dx.doi.org/10.1021/ol100935w] [PMID: 20540515]
[84]
Suzuki, T.; Miyajima, Y.; Suzuki, K.; Iwakiri, K.; Koshimizu, M.; Hirai, G.; Sodeoka, M.; Kobayashi, S. Unexpected diels-Alder/carbonyl-ene cascade toward the biomimetic synthesis of chloropupukeananin. Org. Lett., 2013, 15(7), 1748-1751.
[http://dx.doi.org/10.1021/ol400549q] [PMID: 23530662]
[85]
Yu, M.; Snider, B.B. Diels-Alder reaction of maldoxin with an isopropenylallene. Tetrahedron, 2011, 67(49), 9473-9478.
[http://dx.doi.org/10.1016/j.tet.2011.09.117] [PMID: 22518065]
[86]
Suzuki, T.; Watanabe, S.; Kobayashi, S.; Tanino, K. Enantioselective total synthesis of (+)-iso-a82775c, a proposed biosynthetic precursor of chloropupukeananin. Org. Lett., 2017, 19(4), 922-925.
[http://dx.doi.org/10.1021/acs.orglett.7b00085] [PMID: 28128567]
[87]
Zafrani, Y.; Gottlieb, H.E.; Sprecher, M.; Braverman, S. Sequential intermediates in the base-catalyzed conversion of bis (π-conjugated propargyl) sulfones to 1,3-dihydrobenzo- and naphtho[c]thiophene-2,2-dioxides. J. Org. Chem., 2005, 70(24), 10166-10168.
[http://dx.doi.org/10.1021/jo051692i] [PMID: 16292864]
[88]
Shen, R.; Huang, X. Pd-catalyzed sequential reactions via allene intermediate for the synthesis of polycyclic frameworks containing 2,3-dihydrofuran units. Org. Lett., 2008, 10(15), 3283-3286.
[http://dx.doi.org/10.1021/ol801139b] [PMID: 18613693]
[89]
Shen, R.; Huang, X.; Chen, L. A facile and efficient synthesis of dihydroisobenzofuran derivatives via tandem palladium-catalyzed coupling, propargyl-allenyl rearrangement, [4+2] cycloaddition and aromatization reaction. Adv. Synth. Catal., 2008, 350, 2865-2870.
[http://dx.doi.org/10.1002/adsc.200800470]
[90]
Shen, R.; Chen, L.; Huang, X. Facile synthesis of polycyclic fluorene derivatives via a palladium-catalyzed coupling, propargyl-allenyl isomerization and Schmittel cyclization sequence. Adv. Synth. Catal., 2009, 351, 2833-2838.
[http://dx.doi.org/10.1002/adsc.200900600]
[91]
Zhou, H.; Zhu, D.; Xie, Y.; Huang, H.; Wang, K. Ga(OTf) 3-promoted sequential reactions via sulfur-assisted propargyl-allenyl isomerizations and intramolecular [4 + 2] cycloaddition for the synthesis of 1,3-dihydrobenzo[c]thiophenes. J. Org. Chem., 2010, 75(8), 2706-2709.
[http://dx.doi.org/10.1021/jo902681u] [PMID: 20297837]
[92]
Zhou, H.; Xie, Y.; Ren, L.; Su, R. Sulfur-assisted five-cascade sequential reactions for the convenient and efficient synthesis of allyl thiophen-2-yl acetates, propionates, and ketones. Org. Lett., 2010, 12(2), 356-359.
[http://dx.doi.org/10.1021/ol902690h] [PMID: 20000478]
[93]
Zhou, H.; Xing, Y.; Yao, J.; Chen, J. Sulfur-assisted propargyl-allenyl isomerizations and electrocyclizations for the convenient and efficient synthesis of polyfunctionalized benzenes and naphthalenes. Org. Lett., 2010, 12(16), 3674-3677.
[http://dx.doi.org/10.1021/ol101479d] [PMID: 20704413]
[94]
Zhou, H.; Xing, Y.; Yao, J.; Lu, Y. Heteroatom as a promotor: synthesis of polyfunctionalized benzenes and naphthalenes. J. Org. Chem., 2011, 76(11), 4582-4590.
[http://dx.doi.org/10.1021/jo2004555] [PMID: 21557630]
[95]
Zhao, G.; Zhang, Q.; Zhou, H. Propargyl-allenyl isomerizations and electrocyclizations for the functionalization of phosphonium salts: one-pot synthesis of polysubstituted vinylbenzenes and naphthalenes. Adv. Synth. Catal., 2013, 355, 3492-3496.
[http://dx.doi.org/10.1002/adsc.201300573]
[96]
González, I.; Pla-Quintana, A.; Roglans, A.; Dachs, A.; Solà, M.; Parella, T.; Farjas, J.; Roura, P.; Lloveras, V.; Vidal-Gancedo, J. Ene reactions between two alkynes? Doors open to thermally induced cycloisomerization of macrocyclic triynes and enediynes. Chem. Commun. (Camb.), 2010, 46(17), 2944-2946.
[http://dx.doi.org/10.1039/b926497c] [PMID: 20386831]
[97]
Robinson, J.M.; Sakai, T.; Okano, K.; Kitawaki, T.; Danheiser, R.L. Formal [2 + 2 + 2] cycloaddition strategy based on an intramolecular propargylic ene reaction/Diels-Alder cycloaddition cascade. J. Am. Chem. Soc., 2010, 132(32), 11039-11041.
[http://dx.doi.org/10.1021/ja1053829] [PMID: 20698669]
[98]
Sasaki, M.; Hamzik, P.J.; Ikemoto, H.; Bartko, S.G.; Danheiser, R.L. Formal bimolecular [2 + 2 + 2] cycloaddition strategy for the synthesis of pyridines: intramolecular propargylic Ene reaction/Aza Diels-Alder reaction cascades. Org. Lett., 2018, 20(19), 6244-6249.
[http://dx.doi.org/10.1021/acs.orglett.8b02728] [PMID: 30247929]
[99]
Sakai, T.; Danheiser, R.L. Cyano diels-Alder and cyano ene reactions. Applications in a formal [2 + 2 + 2] cycloaddition strategy for the synthesis of pyridines. J. Am. Chem. Soc., 2010, 132(38), 13203-13205.
[http://dx.doi.org/10.1021/ja106901u] [PMID: 20815385]
[100]
Hamzik, P.J.; Goutierre, A-S.; Sakai, T.; Danheiser, R.L. Aza diels-Alder reactions of nitriles, n,n-dimethylhydrazones, and oximino ethers. application in formal [2 + 2 + 2] cycloadditions for the synthesis of pyridines. J. Org. Chem., 2017, 82(24), 12975-12991.
[http://dx.doi.org/10.1021/acs.joc.7b02503] [PMID: 29193963]
[101]
Parsons, P.J.; Jones, D.R.; Padgham, A.C.; Allen, L.A.; Penkett, C.S.; Green, R.A.; White, A.J. A new approach for the synthesis of highly substituted aromatic rings: the alkyne-mediated approach. Chemistry, 2016, 22(12), 3981-3984.
[http://dx.doi.org/10.1002/chem.201504421] [PMID: 26748429]
[102]
Lee, P.H.; Lee, K. Intermolecular tandem Pd-catalyzed cross-coupling/[4+4] and [4+2] cycloadditions: a one-pot, five-component assembly of bicyclo[6.4.0]dodecanes. Angew. Chem. Int. Ed. Engl., 2005, 44(21), 3253-3256.
[http://dx.doi.org/10.1002/anie.200461957] [PMID: 15844102]
[103]
Lee, P.H.; Lee, K.; Kang, Y. In situ generation of vinyl allenes and its applications to one-pot assembly of cyclohexene, cyclooctadiene, 3,7-nonadienone, and bicycle [6.4.0] dodecene derivatives with palladium-catalyzed multicomponent reactions. J. Am. Chem. Soc., 2006, 128(4), 1139-1146.
[http://dx.doi.org/10.1021/ja054144v] [PMID: 16433529]
[104]
Li, X.; Zhang, M.; Shu, D.; Robichaux, P.J.; Huang, S.; Tang, W. Rhodium-catalyzed ring expansion of cyclopropanes to seven-membered rings by 1,5 C-C bond migration. Angew. Chem. Int. Ed. Engl., 2011, 50(44), 10421-10424.
[http://dx.doi.org/10.1002/anie.201104861] [PMID: 21910200]
[105]
Huang, S.; Li, X.; Lin, C.L.; Guzei, I.A.; Tang, W. Rhodium-catalyzed 1,3-acyloxy migration and subsequent intramolecular [4+2] cycloaddition of vinylallene and unactivated alkyne. Chem. Commun. (Camb.), 2012, 48(16), 2204-2206.
[http://dx.doi.org/10.1039/c2cc17406e] [PMID: 22252254]
[106]
Gidlöf, R.; Johansson, M.; Sterner, O. Tandem Pd-catalyzed carbonylation and intramolecular vinyl allene diels-Alder reaction toward galiellalactone analogues. Org. Lett., 2010, 12(22), 5100-5103.
[http://dx.doi.org/10.1021/ol101989m] [PMID: 20979411]
[107]
Escobar, Z.; Johansson, M.; Bjartell, A.; Hellsten, R.; Sterner, O. Synthesis of biotinylated galiellalactone analogues. Int. J. Org. Chem. (Irvine), 2014, 4, 225-235.
[http://dx.doi.org/10.4236/ijoc.2014.44026]
[108]
Tian, Z-Y.; Cui, Q.; Liu, C-H.; Yu, Z-X. Rhodium-catalyzed [4+2+1] cycloaddition of in situ generated Ene/Yne-Ene-allenes and CO. Angew. Chem. Int. Ed. Engl., 2018, 57(47), 15544-15548.
[http://dx.doi.org/10.1002/anie.201805908] [PMID: 30102822]
[109]
Murakami, M.; Ashida, S.; Matsuda, T. Dramatic effects of boryl substituents on thermal ring-closing reaction of vinylallenes. J. Am. Chem. Soc., 2004, 126(35), 10838-10839.
[http://dx.doi.org/10.1021/ja046429y] [PMID: 15339157]
[110]
Ma, S.; Gu, Z. Sequential rearrangement of 1,2,4Z,7-tetraenes involving [1,5]-hydrogen migration and electrocyclization: an efficient synthesis of eight-membered cyclic compounds. J. Am. Chem. Soc., 2006, 128(15), 4942-4943.
[http://dx.doi.org/10.1021/ja057985a] [PMID: 16608314]
[111]
Gu, Z.; Ma, S. Studies on thermal reactivity of β-(1,2-allenyl) butenolides and 2-allyl-3-allenylcyclohex-2-enones. Chemistry, 2008, 14(8), 2453-2464.
[http://dx.doi.org/10.1002/chem.200701171] [PMID: 18213559]
[112]
Huang, Y.; Torker, S.; Li, X.; Del Pozo, J.; Hoveyda, A.H. Racemic vinylallenes in catalytic enantioselective multicomponent processes: rapid generation of complexity through 1,6-conjugate additions. Angew. Chem. Int. Ed. Engl., 2019, 58(9), 2685-2691.
[http://dx.doi.org/10.1002/anie.201812535] [PMID: 30653802]
[113]
Yu, Q.; Ma, S. Lewis acid-catalyzed unexpected selective C-C bond cleavage: an efficient and mild construction of cyclopentenes. Chem. Commun. (Camb.), 2012, 48(96), 11784-11786.
[http://dx.doi.org/10.1039/c2cc36672j] [PMID: 23111631]
[114]
Liu, Y.; Barry, B-D.; Yu, H.; Liu, J.; Liao, P.; Bi, X. Regiospecific 6-endo-annulation of in situ generated 3,4-dienamides/acids: synthesis of δ-lactams and δ-lactones. Org. Lett., 2013, 15(11), 2608-2611.
[http://dx.doi.org/10.1021/ol4007772] [PMID: 23668368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy