Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advances in the Detection, Mechanism and Therapy of Chronic Kidney Disease

Author(s): Yu Dong, Xiaosheng Qu*, Gang Wu, Xiangdong Luo, Botao Tang, Fangfang Wu, Lanlan Fan, Sooranna Dev* and Taisheng Liang*

Volume 25, Issue 40, 2019

Page: [4235 - 4250] Pages: 16

DOI: 10.2174/1381612825666191119094354

Price: $65

Abstract

Chronic Kidney Disease (CKD) is characterized by the gradual loss of renal mass and functions. It has become a global health problem, with hundreds of millions of people being affected. Both its incidence and prevalence are increasing over time. More than $20,000 are spent on each patient per year. The economic burden on the patients, as well as the society, is heavy and their life quality worsen over time. However, there are still limited effective therapeutic strategies for CKD. Patients mainly rely on dialysis and renal transplantation, which cannot prevent all the complications of CKD. Great efforts are needed in understanding the nature of CKD progression as well as developing effective therapeutic methods, including pharmacological agents. This paper reviews three aspects in the research of CKD that may show great interests to those who devote to bioanalysis, biomedicine and drug development, including important endogenous biomarkers quantification, mechanisms underlying CKD progression and current status of CKD therapy.

Keywords: Chronic kidney disease, biosensors, progression mechanism, dietary modification, gut microbiota intervention, pharmacological agents.

[1]
Akchurin OM. Chronic kidney disease and dietary measures to improve outcomes. Pediatr Clin North Am 2019; 66(1): 247-67.
[http://dx.doi.org/10.1016/j.pcl.2018.09.007] [PMID: 30454747]
[2]
Levin A, Stevens P, Bilous B, et al. Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 2013; (Suppl.)1-150.
[3]
Murabito S, Hallmark BF. Complications of kidney disease. Nurs Clin North Am 2018; 53(4): 579-88.
[http://dx.doi.org/10.1016/j.cnur.2018.07.010] [PMID: 30388983]
[4]
Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One 2016; 11(7) e0158765
[http://dx.doi.org/10.1371/journal.pone.0158765] [PMID: 27383068]
[5]
GBD 2015 DALYs and HALE Collaborators, 2016. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study. Lancet 2015; 388(10053): 1603-58.
[6]
World Health Organization. 2016. Mortality and global health estimates: Causes of death; Projections for 2015-2030; Projection of death rates. . Avaialble at:. http://apps.who.int/gho/data/node.main.PROJRATEWORLD?lang=en
[7]
GBD 2016 Causes of Death Collaborators, 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the global burden of disease study. Lancet 2016; 390: 1151-210.
[8]
Ng JK, Li PK. Chronic kidney disease epidemic: how do we deal with it? Nephrology (Carlton) 2018; 23(Suppl. 4): 116-20.
[http://dx.doi.org/10.1111/nep.13464] [PMID: 30298662]
[9]
Wang V, Vilme H, Maciejewski ML, Boulware LE. The economic burden of chronic kidney disease and end-stage renal disease. Semin Nephrol 2016; 36(4): 319-30.
[http://dx.doi.org/10.1016/j.semnephrol.2016.05.008] [PMID: 27475662]
[10]
Lamb EJ, Stevens PE. Estimating and measuring glomerular filtration rate: methods of measurement and markers for estimation. Curr Opin Nephrol Hypertens 2014; 23(3): 258-66.
[http://dx.doi.org/10.1097/01.mnh.0000444813.72626.88] [PMID: 24670402]
[11]
Seegmiller JC, Eckfeldt JH, Lieske JC. Challenges in measuring glomerular filtration rate: a clinical laboratory perspective. Adv Chronic Kidney Dis 2018; 25(1): 84-92.
[http://dx.doi.org/10.1053/j.ackd.2017.10.006] [PMID: 29499892]
[12]
Gao B, Li Y, Zhang Z. Preparation and recognition performance of creatinine-imprinted material prepared with novel surface-imprinting technique. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(23): 2077-86.
[http://dx.doi.org/10.1016/j.jchromb.2010.06.007] [PMID: 20591753]
[13]
Jaffe M. A new reaction of creatinine in normal generated urine with picric acid and its precipitation products. Physiologische Chemie 1886; 10: 391-400.
[14]
Folin O, Morris J. On the determination of creatinine and creatine in urine. J Biol Chem 1914; 17: 469-73.
[15]
Rahn KH, Heidenreich S, Brückner D. How to assess glomerular function and damage in humans. J Hypertens 1999; 17(3): 309-17.
[http://dx.doi.org/10.1097/00004872-199917030-00002] [PMID: 10100067]
[16]
Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney disease: improving global outcomes (KDIGO). Kidney Int 2005; 67(6): 2089-100.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00365.x] [PMID: 15882252]
[17]
Sharma AC, Jana T, Kesavamoorthy R, et al. A general photonic crystal sensing motif: creatinine in bodily fluids. J Am Chem Soc 2004; 126(9): 2971-7.
[http://dx.doi.org/10.1021/ja038187s] [PMID: 14995215]
[18]
Mathews PM, Levy E. Cystatin C in aging and in alzheimer’s disease. Ageing Res Rev 2016; 32: 38-50.
[http://dx.doi.org/10.1016/j.arr.2016.06.003] [PMID: 27333827]
[19]
Löfberg H, Grubb AO. Quantitation of gamma-trace in human biological fluids: indications for production in the central nervous system. Scand J Clin Lab Invest 1979; 39(7): 619-26.
[http://dx.doi.org/10.3109/00365517909108866] [PMID: 119302]
[20]
Pergande M, Jung K. Sandwich enzyme immunoassay of cystatin C in serum with commercially available antibodies. Clin Chem 1993; 39(9): 1885-90.
[PMID: 8375065]
[21]
González-Antuña A, Rodríguez-González P, Ohlendorf R, Henrion A, Delatour V, García Alonso JI. Determination of Cystatin C in human serum by isotope dilution mass spectrometry using mass overlapping peptides. J Proteomics 2015; 112: 141-55.
[http://dx.doi.org/10.1016/j.jprot.2014.09.005] [PMID: 25230103]
[22]
Bernard AM, Moreau D, Lauwerys RR. Latex immunoassay of retinol-binding protein. Clin Chem 1982; 28(5): 1167-71.
[PMID: 6176366]
[23]
Bernard AM, Vyskocil A, Lauwerys RR. Determination of beta 2-microglobulin in human urine and serum by latex immunoassay. Clin Chem 1981; 27(6): 832-7.
[PMID: 6165500]
[24]
Bernard AM, Lauwerys RR. Continuous-flow system for automation of latex immunoassay by particle counting. Clin Chem 1983; 29(6): 1007-11.
[PMID: 6342848]
[25]
Kyhse-Andersen J, Schmidt C, Nordin G, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 1994; 40(10): 1921-6.
[PMID: 7923773]
[26]
Newman DJ, Thakkar H, Edwards RG, et al. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 1995; 47(1): 312-8.
[http://dx.doi.org/10.1038/ki.1995.40] [PMID: 7731163]
[27]
Erlandsen EJ, Randers E, Kristensen JH. Evaluation of the dade behring N latex cystatin C assay on the dade behring nephelometer II system. Scand J Clin Lab Invest 1999; 59(1): 1-8.
[http://dx.doi.org/10.1080/00365519950185940] [PMID: 10206092]
[28]
Finney H, Newman DJ, Gruber W, Merle P, Price CP. Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the behring nephelometer systems (BNA, BN II). Clin Chem 1997; 43(6 Pt 1): 1016-22.
[PMID: 9191555]
[29]
Mussap M, Ruzzante N, Varagnolo M, Plebani M. Quantitative automated particle-enhanced immunonephelometric assay for the routinary measurement of human cystatin C. Clin Chem Lab Med 1998; 36(11): 859-65.
[http://dx.doi.org/10.1515/CCLM.1998.151] [PMID: 9877092]
[30]
Chamuah N, Saikia A, Joseph AM, et al. Blu-ray DVD as SERS substrate for reliable detection of albumin, creatinine and urea in urine. Sens Actuators B Chem 2019; 285(15): 108-15.
[http://dx.doi.org/10.1016/j.snb.2019.01.031]
[31]
Zhang H, Li G, Li S, et al. Boron nitride/gold nanocomposites for crystal violet and creatinine detection by surface-enhanced raman spectroscopy. Appl Surf Sci 2018; 457(1): 684-94.
[http://dx.doi.org/10.1016/j.apsusc.2018.06.295]
[32]
Ghader A, Ara MHM, Mohajer S, et al. Investigation of nonlinear optical behavior of creatinine for measuring its concentration in blood plasma. Optik (Stuttg) 2018; 158: 231-6.
[http://dx.doi.org/10.1016/j.ijleo.2017.12.063]
[33]
Krishnegowda A, Padmarajaiah N, Anantharaman S, et al. Spectrophotometric assay of creatinine in human serum sample. Arab J Chem 2017; 10(Suppl.): s2018-24.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.030]
[34]
Zahoor N, Danilenko U, Vesper HW. A fully automated high-throughput liquid chromatography tandem mass spectrometry method for measuring creatinine in urine. Clin Mass Spectrom 2019; 11: 1-7.
[http://dx.doi.org/10.1016/j.clinms.2018.11.002]
[35]
Bernstone L, Jayanti A, Keevil B. A simplified, rapid LC-MS/MS assay for serum and salivary creatinine. Clin Mass Spectrom 2019; 11: 21-6.
[http://dx.doi.org/10.1016/j.clinms.2018.11.004]
[36]
Andriguetti NB, Lisboa LL, Hahn SR, Pagnussat LR, Antunes MV, Linden R. Simultaneous determination of vancomycin and creatinine in plasma applied to volumetric absorptive microsampling devices using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2019; 165(20): 315-24.
[http://dx.doi.org/10.1016/j.jpba.2018.12.023] [PMID: 30579232]
[37]
Jurdáková H, Górová R, Addová G, Šalingová A, Ostrovský I. FIA-MS/MS determination of creatinine in urine samples undergoing butylation. Anal Biochem 2018; 549(15): 113-8.
[http://dx.doi.org/10.1016/j.ab.2018.03.018] [PMID: 29567404]
[38]
Hanff E, Lützow M, Kayacelebi AA, et al. Simultaneous GC-ECNICI-MS measurement of nitrite, nitrate and creatinine in human urine and plasma in clinical settings. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1047(15): 207-14.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.034] [PMID: 27052124]
[39]
Ristiniemi N, Qin QP, Lindström V, Grubb A, Pettersson K. Quantification of cystatin C by time-resolved fluorometry-based immunoassays. J Immunol Methods 2012; 378(1-2): 56-61.
[http://dx.doi.org/10.1016/j.jim.2012.02.004] [PMID: 22349125]
[40]
Al-Musaimi OIY, Fayyad MK, Mishal AK. Novel liquid chromatographic determination of cystatin C in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877(8-9): 747-50.
[http://dx.doi.org/10.1016/j.jchromb.2009.02.009] [PMID: 19233747]
[41]
Tyrefors N, Michelsen P, Grubb A. Two new types of assays to determine protein concentrations in biological fluids using mass spectrometry of intact proteins with cystatin C in spinal fluid as an example. Scand J Clin Lab Invest 2014; 74(6): 546-54.
[http://dx.doi.org/10.3109/00365513.2014.917697] [PMID: 25010448]
[42]
Lin H, Li L, Lei C, et al. Immune-independent and label-free fluorescent assay for cystatin C detection based on protein-stabilized Au nanoclusters. Biosens Bioelectron 2013; 41(15): 256-61.
[http://dx.doi.org/10.1016/j.bios.2012.08.030] [PMID: 23017686]
[43]
Pundir CS, Kumar P, Jaiwal R. Biosensing methods for determination of creatinine: a review. Biosens Bioelectron 2019; 126: 707-24.
[http://dx.doi.org/10.1016/j.bios.2018.11.031] [PMID: 30551062]
[44]
Guo MD, Guo HX. Voltammetric behaviour study of creatinine at phosphomolybdic-polypyrrole film modified electrode. J Electroanal Chem (Lausanne Switz) 2005; 585: 28-34.
[http://dx.doi.org/10.1016/j.jelechem.2005.07.007]
[45]
Chen JC, Kumar AS, Chung HH, et al. An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sens Actuat B 2006; 115: 473-80.
[http://dx.doi.org/10.1016/j.snb.2005.10.015]
[46]
Kumar N, Ananthi A, Mathiyarasu J, et al. Enzymeless creatinine estimation using poly(3,4- ethylenedioxythiophene)-b-cyclodextrin. J Electroanal Chem (Lausanne Switz) 2011; 661: 303-8.
[http://dx.doi.org/10.1016/j.jelechem.2011.08.001]
[47]
Elmosallamy MAF. New potentiometric sensors for creatinine. Anal Chim Acta 2006; 564: 253-7.
[http://dx.doi.org/10.1016/j.aca.2006.01.103]
[48]
Kozitsina AN, Shalygina ZV, Dedeneva SS, et al. Catalytic systems based on the organic nickel (II) complexes in chronoamperometric determination of urea and creatinine. Russ Chem Bull 2009; 58: 1119-25.
[http://dx.doi.org/10.1007/s11172-009-0145-9]
[49]
Hanif S, John P, Gao W, Saqib M, Qi L, Xu G. Chemiluminescence of creatinine/H2O2/Co(2+) and its application for selective creatinine detection. Biosens Bioelectron 2016; 75: 347-51.
[http://dx.doi.org/10.1016/j.bios.2015.08.053] [PMID: 26339931]
[50]
Meyerhoff M, Rechnitz GA. An activated enzyme electrode for creatinine. Anal Chim Acta 1976; 85(2): 277-85.
[http://dx.doi.org/10.1016/S0003-2670(01)84692-4] [PMID: 962160]
[51]
Mascini M, Palleschi G. Determination of creatinine in clinical samples with a creatininase reactor and an ammonia probe. Anal Chim Acta 1982; 136: 69-76.
[http://dx.doi.org/10.1016/S0003-2670(01)95364-4]
[52]
Mascini M, Fortunati S, Moscone D, et al. Ammonia abatement in an enzymatic flow system for the determination of creatinine in blood sera and urine. Anal Chim Acta 1985; 171: 175-84.
[http://dx.doi.org/10.1016/S0003-2670(00)84194-X]
[53]
Collison ME, Meyerhoff ME. Continuous-flow enzymatic determination of creatinine with improved on-line removal of endogenous ammonia. Anal Chim Acta 1987; 200: 61-72.
[http://dx.doi.org/10.1016/S0003-2670(00)83758-7]
[54]
Osaka T, Komaba S, Amano A. Highly sensitive microbiosensor for creatinine based on the combination of inactive polypyrrole with polyion complexes. J Electrochem Soc 1998; 145: 406-8.
[http://dx.doi.org/10.1149/1.1838277]
[55]
Osaka T, Komaba S, Amano A, et al. Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine. Sens Actuat B 2000; 65: 58-63.
[http://dx.doi.org/10.1016/S0925-4005(99)00423-2]
[56]
Magalhães JMCS, Machado AASC. Array of potentiometric sensors for the analysis of creatinine in urine samples. Analyst (Lond) 2002; 127(8): 1069-75.
[http://dx.doi.org/10.1039/B201173E] [PMID: 12195948]
[57]
Suzuki H, Matsugi Y. Microfabricated flow system for ammonia and creatinine with an air-gap structure. Sens Actuat B 2004; 98: 101-11.
[http://dx.doi.org/10.1016/j.snb.2003.08.018]
[58]
Tiwari A, Dhakate SR. Chitosan-SiO2-multiwall carbon nanotubes nanocomposite: a novel matrix for the immobilization of creatine amidinohydrolase. Int J Biol Macromol 2009; 44(5): 408-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.03.002] [PMID: 19428474]
[59]
Tiwari A, Shukla SK. Chitosan-g-polyaniline: a creatine amidinohydrolase immobilization matrix for creatine biosensor. Express Polym Lett 2009; 3: 553-9.
[http://dx.doi.org/10.3144/expresspolymlett.2009.69]
[60]
Trojanowicz M, Lewenstam A, Vel-Krawczyk TK, et al. Flow injection amperometric detection of ammonia using a polypyrrole-modified electrode and its application in urea and creatinine biosensors. Electroanalysis 1996; 9: 233-43.
[http://dx.doi.org/10.1002/elan.1140080307]
[61]
Guilbault GG, Coulet PR. Creatinine-selective enzyme electrodes. Anal Chim Acta 1983; 152: 223-8.
[http://dx.doi.org/10.1016/S0003-2670(00)84911-9]
[62]
Kihara K, Yasukawa E. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase. Anal Chim Acta 1986; 183: 75-80.
[http://dx.doi.org/10.1016/0003-2670(86)80076-9]
[63]
Battilotti M, Colapicchioni C, Giannini I, et al. Characterization of biosensors based on membranes containing a conducting polymer. Anal Chim Acta 1989; 221: 157-61.
[http://dx.doi.org/10.1016/S0003-2670(00)81949-2]
[64]
Campanella L, Sammartino MP, Tomassetti M. Suitable potentiometric enzyme sensors for urea and creatinine. Analyst (Lond) 1990; 115(6): 827-30.
[http://dx.doi.org/10.1039/an9901500827] [PMID: 2393088]
[65]
Campanella L, Mazzei F, Sammartino MP, et al. New enzyme sensors for urea and creatinine analysis. Bioelectrochem Bioenerg 1990; 23: 195-202.
[http://dx.doi.org/10.1016/0302-4598(90)85008-6]
[66]
Razumas V, Kanapieniene J, Nylander T, et al. Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Anal Chim Acta 1994; 289: 155-62.
[http://dx.doi.org/10.1016/0003-2670(94)80098-7]
[67]
Jurkiewicz M, Alegret S, Almirall J, García M, Fàbregas E. Development of a biparametric bioanalyser for creatinine and urea. Validation of the determination of biochemical parameters associated with hemodialysis. Analyst (Lond) 1998; 123(6): 1321-7.
[http://dx.doi.org/10.1039/a801672k] [PMID: 9764511]
[68]
Ho WO, Krause S, McNeil CJ, et al. Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Anal Chem 1999; 71(10): 1940-6.
[http://dx.doi.org/10.1021/ac981367d] [PMID: 10361494]
[69]
Soldatkin AP, Montoriol J, Sant W, et al. Development of potentiometric creatinine-sensitive biosensor based on ISFET and creatinine deiminase immobilised in PVA/SbQ photopolymeric membrane. Mater Sci Eng C 2002; 21: 75-9.
[http://dx.doi.org/10.1016/S0928-4931(02)00062-0]
[70]
Soldatkin AP, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N. Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane. Talanta 2002; 58(2): 351-7.
[http://dx.doi.org/10.1016/S0039-9140(02)00283-7] [PMID: 18968760]
[71]
Radomska A, Bodenszac E, Gła BS, Koncki R. Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis. Talanta 2004; 64(3): 603-8.
[http://dx.doi.org/10.1016/j.talanta.2004.03.033] [PMID: 18969648]
[72]
Radomska A, Koncki R, Pyrzynska K, et al. Bioanalytical system for control of hemodialysis treatment based on potentiometric biosensors for urea and creatinine. Anal Chim Acta 2004; 523: 193-200.
[http://dx.doi.org/10.1016/j.aca.2004.06.048]
[73]
Suzuki H, Matsugi Y. Integrated microfluidic system for the simultaneous determination of ammonia, creatinine, and urea. Sens Actuat B 2005; 108: 700-7.
[http://dx.doi.org/10.1016/j.snb.2004.12.032]
[74]
Sant W, Pourciel-Gouzy ML, Launay J, et al. Development of a creatinine-sensitive sensor for medical analysis. Sens Actuat B 2004; 103: 260-4.
[http://dx.doi.org/10.1016/j.snb.2004.04.104]
[75]
Grabowska I, Sajnoga M, Juchniewicz M, et al. Microfluidic system with electrochemical and optical detection. Microelectron Eng 2007; 84: 1741-3.
[http://dx.doi.org/10.1016/j.mee.2007.01.248]
[76]
Gutiérrez M, Alegret S, del Valle M. Bioelectronic tongue for the simultaneous determination of urea, creatinine and alkaline ions in clinical samples. Biosens Bioelectron 2008; 23(6): 795-802.
[http://dx.doi.org/10.1016/j.bios.2007.08.019] [PMID: 17931852]
[77]
Rasmussen CD, Andersen JET, Zachau-Christiansen B. Improved performance of the potentiometric biosensor for the determination of creatinine. Anal Lett 2007; 40: 39-52.
[http://dx.doi.org/10.1080/00032710600952341]
[78]
Hsiung SK, Chou JC, Sun TP, et al. Dual type potentiometric biosensor US Patent No7758733 B2. 2010.
[79]
Pookaiyaudom P, Seelanan P, Lidgey FJ, et al. Measurement of urea, creatinine and urea to creatinine ratio using enzyme based chemical current conveyor (CCCII+). Sens Actuat B 2011; 153: 453-9.
[http://dx.doi.org/10.1016/j.snb.2010.11.015]
[80]
Killard AJ, Smyth MR. Creatinine biosensors: principles and designs. Trends Biotechnol 2000; 18(10): 433-7.
[http://dx.doi.org/10.1016/S0167-7799(00)01491-8] [PMID: 10998509]
[81]
Lad U, Khokhar S, Kale GM. Electrochemical creatinine biosensors. Anal Chem 2008; 80(21): 7910-7.
[http://dx.doi.org/10.1021/ac801500t] [PMID: 18975861]
[82]
Isildak I, Cubuk O, Altikatoglu M, et al. A novel conductometric creatinine biosensor based on solid-state contact ammonium sensitive PVC-NH2 membrane. Biochem Eng J 2012; 62: 34-8.
[http://dx.doi.org/10.1016/j.bej.2011.10.013]
[83]
Jurkiewicz M, Alegret S, Fabrega E. Comparison of flow injection analytical biosystems based on open-tube and packed-bed enzyme reactors. Anal Chim Acta 1998; 370: 47-58.
[http://dx.doi.org/10.1016/S0003-2670(98)00234-7]
[84]
Premanode B, Toumazoub C. A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuat B 2007; 120: 732-5.
[http://dx.doi.org/10.1016/j.snb.2006.03.051]
[85]
Nguyen VK, Wolff CM, Seris JL, Schwing JP. Immobilized enzyme electrode for creatinine determination in serum. Anal Chem 1991; 63(6): 611-4.
[http://dx.doi.org/10.1021/ac00006a011] [PMID: 2031562]
[86]
Suzuki H, Arakawa H, Karube I. Fabrication of a sensing module using micromachined biosensors. Biosens Bioelectron 2001; 16(9-12): 725-33.
[http://dx.doi.org/10.1016/S0956-5663(01)00214-7] [PMID: 11679250]
[87]
Rui CS, Sonomoto K, Kato Y. Amperometric flow-injection biosensor system for the simultaneous determination of urea and creatinine. Anal Sci 1992; 8: 845-50.
[http://dx.doi.org/10.2116/analsci.8.845]
[88]
Rui CS, Sonomoto K, Ogawa HI, Kato Y. A flow-injection biosensor system for the amperometric determination of creatinine: simultaneous compensation of endogenous interferents. Anal Biochem 1993; 210(1): 163-71.
[http://dx.doi.org/10.1006/abio.1993.1168] [PMID: 8098188]
[89]
Rui CS, Ogawa HI, Sonomoto K, Kato Y. Multifunctional flow-injection biosensor for the simultaneous measurement of creatinine, glucose and urea. Biosci Biotechnol Biochem 1993; 57(2): 191-4.
[http://dx.doi.org/10.1271/bbb.57.191] [PMID: 27314768]
[90]
Kubo I, Karube I, Suzuki S. Amperometric determination of creatinine with a biosensor based on immobilized creatininase and nitrifying bacteria. Anal Chim Acta 1983; 151: 371-6.
[http://dx.doi.org/10.1016/S0003-2670(00)80098-7]
[91]
Kubo I, Karube I. Immobilization of creatinine deiminase on a substituted poly(methylglutamate) membrane and its use in a creatinine sensor. Anal Chim Acta 1986; 187: 31-7.
[http://dx.doi.org/10.1016/S0003-2670(00)82895-0]
[92]
Kim EJ, Haruyama T, Yanagida Y, et al. Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system. Anal Chim Acta 1999; 394: 225-31.
[http://dx.doi.org/10.1016/S0003-2670(99)00308-6]
[93]
Schneider J, Grhdig B, Renneberg R, et al. Hydrogel matrix for three enzyme entrapment in creatine/creatinine amperometric biosensing. Anal Chim Acta 1996; 325: 161-7.
[http://dx.doi.org/10.1016/0003-2670(96)00031-1]
[94]
Sakslund H, Hammerich O. Effects of pH, temperature and reaction products on the performance of an immobilized creatininase-creatinase-sarcosine oxidase enzyme system for creatinine determination. Anal Chim Acta 1992; 268: 331-45.
[http://dx.doi.org/10.1016/0003-2670(92)85229-Y]
[95]
Shin JN, Choi YS, Lee HJ, et al. A planar amperometric creatinine biosensor employing an insoluble oxidizing agent for removing redox-active interferences. Anal Chem 2001; 73(24): 5965-71.
[http://dx.doi.org/10.1021/ac010497a] [PMID: 11791567]
[96]
Tombach B, Schneider J, Matzkies F, Schaefer RM, Chemnitius GC. Amperometric creatinine biosensor for hemodialysis patients. Clin Chim Acta 2001; 312(1-2): 129-34.
[http://dx.doi.org/10.1016/S0009-8981(01)00610-6] [PMID: 11580918]
[97]
Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel) 2015; 15(5): 10481-510.
[http://dx.doi.org/10.3390/s150510481] [PMID: 25951336]
[98]
Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 2015; 45(2): 97-105.
[http://dx.doi.org/10.1080/10408347.2014.881250] [PMID: 25558771]
[99]
Lee HJ, Nedelkov D, Corn RM. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 2006; 15; 78(18): 6504-10.
[http://dx.doi.org/10.1021/ac060881d]
[100]
Nedelkov D, Nelson RW. Analysis of human urine protein biomarkers via biomolecular interaction analysis mass spectrometry. Am J Kidney Dis 2001; 38(3): 481-7.
[http://dx.doi.org/10.1053/ajkd.2001.26831] [PMID: 11532678]
[101]
Nedelkov D, Nelson RW. Delineating protein-protein interactions via biomolecular interaction analysis-mass spectrometry. J Mol Recognit 2003; 16(1): 9-14.
[http://dx.doi.org/10.1002/jmr.600] [PMID: 12557233]
[102]
Nedelkov D, Nelson RW. Design and use of multi-affinity surfaces in biomolecular interaction analysis-mass spectrometry (BIA/MS): a step toward the design of SPR/MS arrays. J Mol Recognit 2003; 16(1): 15-9.
[http://dx.doi.org/10.1002/jmr.601] [PMID: 12557234]
[103]
Nedelkov D, Nelson RW. Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes. Biosens Bioelectron 2001; 16(9-12): 1071-8.
[http://dx.doi.org/10.1016/S0956-5663(01)00229-9] [PMID: 11679291]
[104]
Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 2019; 37(3): 294-309.
[http://dx.doi.org/10.1016/j.tibtech.2018.08.009] [PMID: 30241923]
[105]
Scheller FW, Zhang X, Yarman A, et al. Molecularly imprinted polymer-based electrochemical sensors for biopolymers. Curr Opin Electrochem 2019; 14: 53-9.
[http://dx.doi.org/10.1016/j.coelec.2018.12.005]
[106]
Panasyuk-Delaney T, Mirsky VM, Otto WS. Capacitive creatinine sensor based on a photografted molecularly imprinted polymer. Electroanalysis 2002; 14: 221-4.
[http://dx.doi.org/10.1002/1521-4109(200202)14:3<221:AID-ELAN221>3.0.CO;2-Y]
[107]
Khadro B, Sanglar C, Bonhomme A, et al. Molecularly imprinted polymers (MIP) based electrochemical sensor for detection of urea and creatinine. Procedia Eng 2010; 5: 371-4.
[http://dx.doi.org/10.1016/j.proeng.2010.09.125]
[108]
Benkert A, Scheller F, Schössler W, et al. Development of a creatinine ELISA and an amperometric antibody-based creatine sensor with a detection limit in the nanomolar range. Anal Chem 2000; 72(5): 916-21.
[http://dx.doi.org/10.1021/ac9909047] [PMID: 10739192]
[109]
Ozin GA, Arsenault AC, Cademartiri L. Nanochemistry: a chemical approach to nanomaterials. 2nd ed. Royal Society of Chemistry 2009.
[110]
Yadav S, Kumar A, Pundir CS. Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem 2011; 419(2): 277-83.
[http://dx.doi.org/10.1016/j.ab.2011.07.032] [PMID: 21906581]
[111]
Yadav S, Devi R, Kumar A, Pundir CS. Tri-enzyme functionalized ZnO-NPs/CHIT/c-MWCNT/PANI composite film for amperometric determination of creatinine. Biosens Bioelectron 2011; 28(1): 64-70.
[http://dx.doi.org/10.1016/j.bios.2011.06.044] [PMID: 21803561]
[112]
Rossi LM, Quach AD, Rosenzweig Z. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 2004; 380(4): 606-13.
[http://dx.doi.org/10.1007/s00216-004-2770-3] [PMID: 15448967]
[113]
Kouassi GK, Irudayaraj J, McCarty G. Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnology 2005; 3(1): 1-9.
[http://dx.doi.org/10.1186/1477-3155-3-1] [PMID: 15661076]
[114]
Kaushik A, Solanki PR, Ansari AA. Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem Commun 2008; 10: 1364-8.
[http://dx.doi.org/10.1016/j.elecom.2008.07.007]
[115]
Yadav S, Devi R, Bhar P, et al. A creatinine biosensor based on iron oxide nanoparticles/chitosan-g- polyaniline composite film electrodeposited on Pt electrode. Enzyme Microb Technol 2012; 50: 247-54.
[http://dx.doi.org/10.1016/j.enzmictec.2012.01.008] [PMID: 22418265]
[116]
Filip S, Pontillo C, Peter Schanstra J, Vlahou A, Mischak H, Klein J. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 2014; 11(5): 535-48.
[http://dx.doi.org/10.1586/14789450.2014.926224] [PMID: 24957818]
[117]
Good DM, Zürbig P, Argilés A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 2010; 9(11): 2424-37.
[http://dx.doi.org/10.1074/mcp.M110.001917] [PMID: 20616184]
[118]
Argilés Á, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One 2013; 8(5) e62837
[http://dx.doi.org/10.1371/journal.pone.0062837] [PMID: 23690958]
[119]
Posada-Ayala M, Zubiri I, Martin-Lorenzo M, et al. Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int 2014; 85(1): 103-11.
[http://dx.doi.org/10.1038/ki.2013.328] [PMID: 24048377]
[120]
Abbiss H, Maker GL, Trengove RD. Metabolomics approaches for the diagnosis and understanding of kidney diseases. Metabolites 2019; 9(2): 34.
[http://dx.doi.org/10.3390/metabo9020034] [PMID: 30769897]
[121]
Wonnacott A, Bowen T, Fraser DJ. MicroRNAs as biomarkers in chronic kidney disease. Curr Opin Nephrol Hypertens 2017; 26(6): 460-6.
[http://dx.doi.org/10.1097/MNH.0000000000000356] [PMID: 28806192]
[122]
Jia L, Wang C, Zhao S, Lu X, Xu G. Metabolomic identification of potential phospholipid biomarkers for chronic glomerulonephritis by using high performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 860(1): 134-40.
[http://dx.doi.org/10.1016/j.jchromb.2007.10.033] [PMID: 17996503]
[123]
Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol 1995; 57: 263-78.
[http://dx.doi.org/10.1146/annurev.ph.57.030195.001403] [PMID: 7778868]
[124]
Kriz W, LeHir M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int 2005; 67(2): 404-19.
[http://dx.doi.org/10.1111/j.1523-1755.2005.67097.x] [PMID: 15673288]
[125]
Lapinski R, Perico N, Remuzzi A, Sangalli F, Benigni A, Remuzzi G. Angiotensin II modulates glomerular capillary permselectivity in rat isolated perfused kidney. J Am Soc Nephrol 1996; 7(5): 653-60.
[PMID: 8738798]
[126]
Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995; 95(3): 995-1001.
[http://dx.doi.org/10.1172/JCI117809] [PMID: 7884001]
[127]
Feener EP, Northrup JM, Aiello LP, King GL. Angiotensin II induces plasminogen activator inhibitor-1 and -2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 1995; 95(3): 1353-62.
[http://dx.doi.org/10.1172/JCI117786] [PMID: 7883982]
[128]
Gómez-Garre D, Largo R, Tejera N, Fortes J, Manzarbeitia F, Egido J. Activation of NF-kappaB in tubular epithelial cells of rats with intense proteinuria: role of angiotensin II and endothelin-1. Hypertension 2001; 37(4): 1171-8.
[http://dx.doi.org/10.1161/01.HYP.37.4.1171] [PMID: 11304520]
[129]
Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet 2017; 389(10075): 1238-52.
[http://dx.doi.org/10.1016/S0140-6736(16)32064-5] [PMID: 27887750]
[130]
Bienaimé F, Canaud G, El Karoui K, Gallazzini M, Terzi F. Molecular pathways of chronic kidney disease progression. Nephrol Ther 2016; 12(Suppl. 1): s35-8.
[http://dx.doi.org/10.1016/j.nephro.2016.02.009] [PMID: 26972095]
[131]
Balasubramanian S. Progression of chronic kidney disease: Mechanisms and interventions in retardation. Apollo Medicine 2013; 10(1): 19-28.
[http://dx.doi.org/10.1016/j.apme.2013.01.009]
[132]
Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006; 116(2): 288-96.
[http://dx.doi.org/10.1172/JCI27699] [PMID: 16453013]
[133]
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2015; 26(2): 258-69.
[http://dx.doi.org/10.1681/ASN.2014030278] [PMID: 25060060]
[134]
Franke TF. Intracellular signaling by Akt: bound to be specific. Sci Signal 2008; 1(24): pe29.
[http://dx.doi.org/10.1126/scisignal.124pe29] [PMID: 18560018]
[135]
Ceci M, Ross J Jr, Condorelli G. Molecular determinants of the physiological adaptation to stress in the cardiomyocyte: a focus on AKT. J Mol Cell Cardiol 2004; 37(5): 905-12.
[http://dx.doi.org/10.1016/j.yjmcc.2004.06.020] [PMID: 15522267]
[136]
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007; 129(7): 1261-74.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[137]
Huber TB, Hartleben B, Kim J, et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol 2003; 23(14): 4917-28.
[http://dx.doi.org/10.1128/MCB.23.14.4917-4928.2003] [PMID: 12832477]
[138]
Chuang PY, He JC. Signaling in regulation of podocyte phenotypes. Nephron, Physiol 2009; 111(2): 9-15.
[http://dx.doi.org/10.1159/000191075] [PMID: 19142027]
[139]
Canaud G, Bienaimé F, Viau A, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med 2013; 19(10): 1288-96.
[http://dx.doi.org/10.1038/nm.3313] [PMID: 24056770]
[140]
Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 2008; 14(12): 1370-6.
[http://dx.doi.org/10.1038/nm.1879] [PMID: 19029984]
[141]
Akilesh S, Suleiman H, Yu H, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest 2011; 121(10): 4127-37.
[http://dx.doi.org/10.1172/JCI46458] [PMID: 21911940]
[142]
Welsh GI, Hale LJ, Eremina V, et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 2010; 12(4): 329-40.
[http://dx.doi.org/10.1016/j.cmet.2010.08.015] [PMID: 20889126]
[143]
Letavernier E, Bruneval P, Vandermeersch S, et al. Sirolimus interacts with pathways essential for podocyte integrity. Nephrol Dial Transplant 2009; 24(2): 630-8.
[http://dx.doi.org/10.1093/ndt/gfn574] [PMID: 18927120]
[144]
Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol 2012; 8(5): 301-6.
[http://dx.doi.org/10.1038/nrneph.2012.42] [PMID: 22391456]
[145]
Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol 2012; 23: 1917-28.
[146]
Ohse T, Inagi R, Tanaka T, et al. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 2006; 70(8): 1447-55.
[http://dx.doi.org/10.1038/sj.ki.5001704] [PMID: 16955111]
[147]
Lindenmeyer MT, Rastaldi MP, Ikehata M, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol 2008; 19(11): 2225-36.
[http://dx.doi.org/10.1681/ASN.2007121313] [PMID: 18776125]
[148]
Wu X, He Y, Jing Y, Li K, Zhang J. Albumin overload induces apoptosis in renal tubular epithelial cells through a CHOP-dependent pathway. OMICS 2010; 14(1): 61-73.
[http://dx.doi.org/10.1089/omi.2009.0073] [PMID: 20141329]
[149]
Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: a hub of protein quality control in health and disease. Free Radic Biol Med 2017; 108: 383-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.031] [PMID: 28363604]
[150]
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833(12): 3460-70.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.028] [PMID: 23850759]
[151]
Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochim Biophys Acta 2013; 1833(12): 3507-17.
[http://dx.doi.org/10.1016/j.bbamcr.2013.07.024] [PMID: 23988738]
[152]
Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol 2019; 25 101047
[http://dx.doi.org/10.1016/j.redox.2018.11.005] [PMID: 30470534]
[153]
Krebs J, Agellon LB, Michalak M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun 2015; 460(1): 114-21.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.004] [PMID: 25998740]
[154]
Jung M, Mertens C, Bauer R, Rehwald C, Brüne B. Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res 2017; 120: 146-56.
[http://dx.doi.org/10.1016/j.phrs.2017.03.018] [PMID: 28342790]
[155]
El Karoui K, Viau A, Dellis O, et al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun 2016; 7: 10330.
[http://dx.doi.org/10.1038/ncomms10330] [PMID: 26787103]
[156]
Kolb PS, Ayaub EA, Zhou W, Yum V, Dickhout JG, Ask K. The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. Int J Biochem Cell Biol 2015; 61: 45-52.
[http://dx.doi.org/10.1016/j.biocel.2015.01.015] [PMID: 25660369]
[157]
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10(12): 700-11.
[http://dx.doi.org/10.1038/nrneph.2014.184] [PMID: 25311535]
[158]
Böttinger EP. TGF-beta in renal injury and disease. Semin Nephrol 2007; 27(3): 309-20.
[http://dx.doi.org/10.1016/j.semnephrol.2007.02.009] [PMID: 17533008]
[159]
Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ II. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 2009; 122(1): 1-8.
[http://dx.doi.org/10.1016/j.pharmthera.2008.11.008] [PMID: 19135477]
[160]
Shostak K, Chariot A. EGFR and NF-κB: partners in cancer. Trends Mol Med 2015; 21(6): 385-93.
[http://dx.doi.org/10.1016/j.molmed.2015.04.001] [PMID: 25979753]
[161]
Shougang Z, Na L. EGFR signaling in renal fibrosis. Kidney Int 2014; 4(1)(Suppl.): s70-4.
[http://dx.doi.org/10.1038/kisup.2014.13]
[162]
Mazorra Z, Chao L, Lavastida A, et al. Nimotuzumab: beyond the EGFR signaling cascade inhibition. Semin Oncol 2018; 45(1-2): 18-26.
[http://dx.doi.org/10.1053/j.seminoncol.2018.04.008] [PMID: 30318080]
[163]
Terzi F, Burtin M, Hekmati M, et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J Clin Invest 2000; 106(2): 225-34.
[http://dx.doi.org/10.1172/JCI8315] [PMID: 10903338]
[164]
Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005; 11(8): 867-74.
[http://dx.doi.org/10.1038/nm1275] [PMID: 16041383]
[165]
Laouari D, Burtin M, Phelep A, et al. TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am Soc Nephrol 2011; 22(2): 327-35.
[http://dx.doi.org/10.1681/ASN.2010040356] [PMID: 21183591]
[166]
Laouari D, Burtin M, Phelep A, et al. A transcriptional network underlies susceptibility to kidney disease progression. EMBO Mol Med 2012; 4(8): 825-39.
[http://dx.doi.org/10.1002/emmm.201101127] [PMID: 22711280]
[167]
Pillebout E, Weitzman JB, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Invest 2003; 112(6): 843-52.
[http://dx.doi.org/10.1172/JCI200317647] [PMID: 12975469]
[168]
Zeng F, Singh AB, Harris RC. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 2009; 315(4): 602-10.
[http://dx.doi.org/10.1016/j.yexcr.2008.08.005] [PMID: 18761338]
[169]
Grossmann C, Gekle M. Non-classical actions of the mineralocorticoid receptor: misuse of EGF receptors? Mol Cell Endocrinol 2007; 277(1-2): 6-12.
[http://dx.doi.org/10.1016/j.mce.2007.07.001] [PMID: 17692454]
[170]
Buelli S, Rosanò L, Gagliardini E, et al. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J Am Soc Nephrol 2014; 25(3): 523-33.
[http://dx.doi.org/10.1681/ASN.2013040362] [PMID: 24371298]
[171]
Beidler CB, Petrovan RJ, Conner EM, et al. Generation and activity of a humanized monoclonal antibody that selectively neutralizes the epidermal growth factor receptor ligands transforming growth factor-α and epiregulin. J Pharmacol Exp Ther 2014; 349(2): 330-43.
[http://dx.doi.org/10.1124/jpet.113.210765] [PMID: 24518034]
[172]
Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 1989; 84(6): 1757-61.
[http://dx.doi.org/10.1172/JCI114359] [PMID: 2592559]
[173]
Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 2010; 120(11): 4065-76.
[http://dx.doi.org/10.1172/JCI42004] [PMID: 20921623]
[174]
Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 2005; 115(3): 610-21.
[http://dx.doi.org/10.1172/JCI23056] [PMID: 15711640]
[175]
Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 2009; 10: 388.
[http://dx.doi.org/10.1186/1471-2164-10-388] [PMID: 19698090]
[176]
Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton) 2012; 17(4): 311-21.
[http://dx.doi.org/10.1111/j.1440-1797.2012.01572.x] [PMID: 22288610]
[177]
Dounousi E, Papavasiliou E, Makedou A, et al. Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis 2006; 48(5): 752-60.
[http://dx.doi.org/10.1053/j.ajkd.2006.08.015] [PMID: 17059994]
[178]
Li HY, Hou FF, Zhang X, et al. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol 2007; 18(2): 528-38.
[http://dx.doi.org/10.1681/ASN.2006070781] [PMID: 17202414]
[179]
Capeillère-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta 2004; 1689(2): 91-102.
[http://dx.doi.org/10.1016/j.bbadis.2004.02.008] [PMID: 15196590]
[180]
Meng Q, Wong YT, Chen J, Ruan R. Age-related changes in mitochondrial function and antioxidative enzyme activity in fischer 344 rats. Mech Ageing Dev 2007; 128(3): 286-92.
[http://dx.doi.org/10.1016/j.mad.2006.12.008] [PMID: 17270247]
[181]
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 2012; 81(5): 442-8.
[http://dx.doi.org/10.1038/ki.2011.379] [PMID: 22113526]
[182]
Levey AS, James MT. Acute kidney injury. Ann Intern Med 2017; 167(9): ITC66-80.
[http://dx.doi.org/10.7326/AITC201711070] [PMID: 29114754]
[183]
Maringer K, Sims-Lucas S. The multifaceted role of the renal microvasculature during acute kidney injury. Pediatr Nephrol 2016; 31(8): 1231-40.
[http://dx.doi.org/10.1007/s00467-015-3231-2] [PMID: 26493067]
[184]
Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 2014; 307(11): F1187-95.
[http://dx.doi.org/10.1152/ajprenal.00425.2014] [PMID: 25350978]
[185]
Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med 2016; 67: 293-307.
[http://dx.doi.org/10.1146/annurev-med-050214-013407] [PMID: 26768243]
[186]
Venkatachalam MA, Geng H, Lan RP, et al. Maladaptive Repair and AKI to CKD Transition. Comprehensive Toxicology 3rd ed. 2018; 14: pp. 164-88.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.64190-9]
[187]
García-Ortuño LE, Bobadilla NA. Integrative view of the mechanisms that induce acute kidney injury and its transition to chronic kidney disease. Rev Invest Clin 2018; 70(6): 261-8.
[http://dx.doi.org/10.24875/RIC.18002546] [PMID: 30532110]
[188]
de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009; 20(9): 2075-84.
[http://dx.doi.org/10.1681/ASN.2008111205] [PMID: 19608703]
[189]
Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 2010; 78(3): 303-9.
[http://dx.doi.org/10.1038/ki.2010.129] [PMID: 20445497]
[190]
Dobre M, Rahman M, Hostetter TH. Current status of bicarbonate in CKD. J Am Soc Nephrol 2015; 26(3): 515-23.
[http://dx.doi.org/10.1681/ASN.2014020205] [PMID: 25150154]
[191]
Berend K, de Vries AP, Gans RO. Physiological approach to assessment of acid-base disturbances. N Engl J Med 2014; 371(15): 1434-45.
[http://dx.doi.org/10.1056/NEJMra1003327] [PMID: 25295502]
[192]
Wesson DE, Jo CH, Simoni J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int 2012; 82(11): 1184-94.
[http://dx.doi.org/10.1038/ki.2012.267] [PMID: 22832514]
[193]
Khanna A, Simoni J, Wesson DE. Endothelin-induced increased aldosterone activity mediates augmented distal nephron acidification as a result of dietary protein. J Am Soc Nephrol 2005; 16(7): 1929-35.
[http://dx.doi.org/10.1681/ASN.2004121054] [PMID: 15872074]
[194]
Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int 2010; 78(11): 1128-35.
[http://dx.doi.org/10.1038/ki.2010.348] [PMID: 20861823]
[195]
Wesson DE, Jo CH, Simoni J. Angiotensin II-mediated GFR decline in subtotal nephrectomy is due to acid retention associated with reduced GFR. Nephrol Dial Transplant 2015; 30(5): 762-70.
[http://dx.doi.org/10.1093/ndt/gfu388] [PMID: 25527741]
[196]
Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 2012; 81(1): 86-93.
[http://dx.doi.org/10.1038/ki.2011.313] [PMID: 21881553]
[197]
Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol 2013; 8(3): 371-81.
[http://dx.doi.org/10.2215/CJN.02430312] [PMID: 23393104]
[198]
Eddington H, Hoefield R, Sinha S, et al. Serum phosphate and mortality in patients with chronic kidney disease. Clin J Am Soc Nephrol 2010; 5(12): 2251-7.
[http://dx.doi.org/10.2215/CJN.00810110] [PMID: 20688884]
[199]
Moe SM, Drüeke T, Lameire N, Eknoyan G. Chronic kidney disease-mineral-bone disorder: a new paradigm. Adv Chronic Kidney Dis 2007; 14(1): 3-12.
[http://dx.doi.org/10.1053/j.ackd.2006.10.005] [PMID: 17200038]
[200]
Mitch WE, Remuzzi G. Diets for patients with chronic kidney disease, should we reconsider? BMC Nephrol 2016; 17(1): 80.
[http://dx.doi.org/10.1186/s12882-016-0283-x] [PMID: 27401192]
[201]
Barsotti G, Cupisti A, Morelli E, et al. Secondary hyperparathyroidism in severe chronic renal failure is corrected by very-low dietary phosphate intake and calcium carbonate supplementation. Nephron 1998; 79(2): 137-41.
[http://dx.doi.org/10.1159/000045015] [PMID: 9647491]
[202]
Combe C, Morel D, de Précigout V, et al. Long-term control of hyperparathyroidism in advanced renal failure by low-phosphorus low-protein diet supplemented with calcium (without changes in plasma calcitriol). Nephron 1995; 70(3): 287-95.
[http://dx.doi.org/10.1159/000188606] [PMID: 7477615]
[203]
Combe C, Aparicio M. Phosphorus and protein restriction and parathyroid function in chronic renal failure. Kidney Int 1994; 46(5): 1381-6.
[http://dx.doi.org/10.1038/ki.1994.408] [PMID: 7853797]
[204]
Martinez I, Saracho R, Montenegro J, Llach F. The importance of dietary calcium and phosphorous in the secondary hyperparathyroidism of patients with early renal failure. Am J Kidney Dis 1997; 29(4): 496-502.
[http://dx.doi.org/10.1016/S0272-6386(97)90330-9] [PMID: 9100037]
[205]
Lafage-Proust MH, Combe C, Barthe N, Aparicio M. Bone mass and dynamic parathyroid function according to bone histology in nondialyzed uremic patients after long-term protein and phosphorus restriction. J Clin Endocrinol Metab 1999; 84(2): 512-9.
[http://dx.doi.org/10.1210/jcem.84.2.5485] [PMID: 10022409]
[206]
Kalantar-Zadeh K, Gutekunst L, Mehrotra R, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol 2010; 5(3): 519-30.
[http://dx.doi.org/10.2215/CJN.06080809] [PMID: 20093346]
[207]
Kidney disease: improving global outcomes (KDIGO) CKD-MBD work group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int 2009; 113(Suppl.): s1-s130.
[208]
Ding RX, Goh WR, Wu RN, et al. Revisit gut microbiota and its impact on human health and disease. Yao Wu Shi Pin Fen Xi 2019; 27(3): 623-31.
[http://dx.doi.org/10.1016/j.jfda.2018.12.012] [PMID: 31324279]
[209]
Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014; 25(4): 657-70.
[http://dx.doi.org/10.1681/ASN.2013080905] [PMID: 24231662]
[210]
Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol 2017; 32(11): 2005-14.
[http://dx.doi.org/10.1007/s00467-016-3527-x] [PMID: 27848096]
[211]
Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int 2015; 88(5): 958-66.
[http://dx.doi.org/10.1038/ki.2015.255] [PMID: 26376131]
[212]
Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012; 26(4): 1727-35.
[http://dx.doi.org/10.1096/fj.11-197921] [PMID: 22247331]
[213]
Simenhoff ML, Dunn SR, Zollner GP, et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 1996; 22(1-3): 92-6.
[PMID: 8676836]
[214]
Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013; 83(2): 308-15.
[http://dx.doi.org/10.1038/ki.2012.345] [PMID: 22992469]
[215]
Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996; 74(2): 349-55.
[http://dx.doi.org/10.1159/000189334] [PMID: 8893154]
[216]
LaClair RE, Hellman RN, Karp SL, et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the united states. Am J Kidney Dis 2005; 45(6): 1026-33.
[http://dx.doi.org/10.1053/j.ajkd.2005.02.029] [PMID: 15957131]
[217]
Pilkey RM, Morton AR, Boffa MB, et al. Subclinical vitamin K deficiency in hemodialysis patients. Am J Kidney Dis 2007; 49(3): 432-9.
[http://dx.doi.org/10.1053/j.ajkd.2006.11.041] [PMID: 17336705]
[218]
Fernandez F, Hill MJ. Proceedings: the production of vitamin k by human intestinal bacteria. J Med Microbiol 1975; 8(2)
[219]
Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol 2009; 587(Pt 17): 4169-74.
[http://dx.doi.org/10.1113/jphysiol.2009.176370] [PMID: 19596893]
[220]
Bentley R, Meganathan R. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 1982; 46(3): 241-80.
[PMID: 6127606]
[221]
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013; 24(2): 160-8.
[http://dx.doi.org/10.1016/j.copbio.2012.08.005] [PMID: 22940212]
[222]
Farhadi A, Banan A, Fields J, Keshavarzian A. Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 2003; 18(5): 479-97.
[http://dx.doi.org/10.1046/j.1440-1746.2003.03032.x] [PMID: 12702039]
[223]
Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron 1990; 56(3): 306-11.
[http://dx.doi.org/10.1159/000186158] [PMID: 2077413]
[224]
Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut 1991; 32(7): 754-9.
[http://dx.doi.org/10.1136/gut.32.7.754] [PMID: 1855681]
[225]
Dullah EC, Ongkudon CM. Current trends in endotoxin detection and analysis of endotoxin-protein interactions. Crit Rev Biotechnol 2017; 37(2): 251-61.
[http://dx.doi.org/10.3109/07388551.2016.1141393] [PMID: 26863480]
[226]
Reidy MA, Bowyer DE. Distortion of endothelial repair. The effect of hypercholesterolaemia on regeneration of aortic endothelium following injury by endotoxin. A scanning electron microscope study. Atherosclerosis 1978; 29(4): 459-66.
[http://dx.doi.org/10.1016/0021-9150(78)90174-0] [PMID: 666889]
[227]
Eggesbø JB, Hjermann I, Ovstebø R, Joø GB, Kierulf P. LPS induced procoagulant activity and plasminogen activator activity in mononuclear cells from persons with high or low levels of HDL lipoprotein. Thromb Res 1995; 77(5): 441-52.
[http://dx.doi.org/10.1016/0049-3848(95)93880-9] [PMID: 7778059]
[228]
Szeto CC, Kwan BC, Chow KM, et al. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol 2008; 3(2): 431-6.
[http://dx.doi.org/10.2215/CJN.03600807] [PMID: 18256376]
[229]
Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr 1976; 29(12): 1448-54.
[http://dx.doi.org/10.1093/ajcn/29.12.1448] [PMID: 826152]
[230]
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50-60.
[http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane] [PMID: 22468341]
[231]
Aronov PA, Luo FJ, Plummer NS, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol 2011; 22(9): 1769-76.
[http://dx.doi.org/10.1681/ASN.2010121220] [PMID: 21784895]
[232]
Martinez AW, Recht NS, Hostetter TH, Meyer TW. Removal of P-cresol sulfate by hemodialysis. J Am Soc Nephrol 2005; 16(11): 3430-6.
[http://dx.doi.org/10.1681/ASN.2005030310] [PMID: 16120820]
[233]
Lin CJ, Chen HH, Pan CF, et al. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal 2011; 25(3): 191-7.
[http://dx.doi.org/10.1002/jcla.20456] [PMID: 21567467]
[234]
Wu IW, Hsu KH, Lee CC, et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant 2011; 26(3): 938-47.
[http://dx.doi.org/10.1093/ndt/gfq580] [PMID: 20884620]
[235]
Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol 2017; 32(6): 921-31.
[http://dx.doi.org/10.1007/s00467-016-3392-7] [PMID: 27129691]
[236]
Schloerb PR. Intestinal dialysis for kidney failure. Personal experience. ASAIO Trans 1990; 36(1): 4-7.
[237]
Twiss EE, Kolff WJ. Treatment of uremia by perfusion of an isolated intestinal loop; survival for forty-six days after removal of the only functioning kidney. J Am Med Assoc 1951; 146(11): 1019-22.
[http://dx.doi.org/10.1001/jama.1951.03670110039011] [PMID: 14841072]
[238]
Poesen R, Meijers B, Evenepoel P. The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 2013; 26(3): 323-32.
[http://dx.doi.org/10.1111/sdi.12082] [PMID: 23458264]
[239]
Evenepoel P, Meijers BK. Dietary fiber and protein: nutritional therapy in chronic kidney disease and beyond. Kidney Int 2012; 81(3): 227-9.
[http://dx.doi.org/10.1038/ki.2011.394] [PMID: 22241557]
[240]
Tsai YL, Lin TL, Chang CJ, et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 2019; 26(1): 3.
[http://dx.doi.org/10.1186/s12929-018-0493-6] [PMID: 30609922]
[241]
Marier JF, Guilbaud R, Kambhampati SRP, et al. The effect of AST-120 on the single-dose pharmacokinetics of losartan and losartan acid (E-3174) in healthy subjects. J Clin Pharmacol 2006; 46: 310-20.
[242]
Schulman G, Agarwal R, Acharya M, Berl T, Blumenthal S, Kopyt N. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am J Kidney Dis 2006; 47(4): 565-77.
[http://dx.doi.org/10.1053/j.ajkd.2005.12.036] [PMID: 16564934]
[243]
Niwa T, Nomura T, Sugiyama S, et al. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulphate levels in undialyzed uremic patients. Kidney Int 1997; 52(Suppl.): s23-8.
[244]
Niwa T, Ise M, Miyazaki T, Meada K. Suppressive effect of an oral sorbent on the accumulation of p-cresol in the serum of experimental uremic rats. Nephron 1993; 65(1): 82-7.
[http://dx.doi.org/10.1159/000187446] [PMID: 8413797]
[245]
Yamagishi S, Nakamura K, Matsui T, Inoue H, Takeuchi M. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses 2007; 69(3): 666-8.
[http://dx.doi.org/10.1016/j.mehy.2006.12.045] [PMID: 17331665]
[246]
Owada K, Nakao M, Koike J, et al. Effects of oral adsorbent AST-120 on the progression of chronic renal failure: a randomized controlled study. Kidney Int 1997; 63: 188-90.
[247]
Shoji T, Wada A, Inoue K, et al. Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function. Nephron Clin Pract 2007; 105(3): c99-c107.
[http://dx.doi.org/10.1159/000097985] [PMID: 17179734]
[248]
Schulman G, Berl T, Beck GJ, et al. Randomized placebo-controlled EPPIC Trials of AST-120 in CKD. J Am Soc Nephrol 2015; 26(7): 1732-46.
[http://dx.doi.org/10.1681/ASN.2014010042] [PMID: 25349205]
[249]
de Smet R, Thermote F, Lameire N, et al. Sevelamer hydrochloride (Renagel) absorbs the uremic compounds indoxyl sulphate, indole and p-cresol. J Am Soc Nephrol 2004; 15(Abstract) a505.
[250]
Phan O, Ivanovski O, Nguyen-Khoa T, et al. Sevelamer prevents uremia-enhanced atherosclerosis progression in apolipoprotein E-deficient mice. Circulation 2005; 112(18): 2875-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA105.541854] [PMID: 16267260]
[251]
Brandenburg VM, Schlieper G, Heussen N, et al. Serological cardiovascular and mortality risk predictors in dialysis patients receiving sevelamer: a prospective study. Nephrol Dial Transplant 2010; 25(8): 2672-9.
[http://dx.doi.org/10.1093/ndt/gfq053] [PMID: 20172849]
[252]
Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015; 66: 343-59.
[http://dx.doi.org/10.1146/annurev-med-060513-093205] [PMID: 25587655]
[253]
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163(7): 1585-95.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy