Review Article

阿尔茨海默氏病靶向纳米药物递送系统

卷 21, 期 7, 2020

页: [628 - 646] 页: 19

弟呕挨: 10.2174/1389450120666191118123151

价格: $65

摘要

阿尔茨海默氏病(AD)是最常见的神经退行性疾病,并且是庞大且不断增长的医疗保健负担的一部分,该负担正在破坏全球超过5000万个人的认知功能。如今,治疗选择仅限于具有轻度症状获益的方法。开发有效药物的失败归因于但不限于具有多种潜在假说和多因素病理学的AD高度异质性。另外,用于诊断和治疗诸如AD的神经系统疾病的靶向药物递送至中枢神经系统(CNS)受到CNS周围血脑界面构成的挑战的限制,从而限制了治疗剂的生物利用度。在过去十年中进行的研究集中在开发新的策略以克服这些限制并成功地将药物输送到中枢神经系统。能够封装具有持续药物释放曲线和可调节理化特性的药物的纳米颗粒可以越过CNS周围的保护层。因此,纳米技术为AD治疗提供了新的希望,可以替代常规的药物递送机制。在这篇综述中,讨论了基于纳米颗粒的方法在阿尔茨海默氏病中的潜在应用及其在治疗中的意义。

关键词: 阿尔茨海默氏病,纳米颗粒,纳米技术,药物输送,靶向输送,理化。

图形摘要

[1]
Kumar A, Singh A, Ekavali . A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203. [http://dx.doi.org/10.1016/j.pharep.2014.09.004]
[PMID: 25712639]
[2]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47. [http://dx.doi.org/10.1016/j.jconrel.2016.05.044].
[PMID: 27208862]
[3]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91. [http://dx.doi.org/10.1016/j.jalz.2007.04.381].
[PMID: 19595937]
[4]
Singh A. Alzheimer’s disease Inhibitors: Current status and future prospects. IJPLS 2014; 5(8): 3734-40.
[5]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: American Psychiatric Association 2013.
[6]
Morris R, Mucke L. Alzheimer’s disease: A needle from the haystack. Nature 2006; 440(7082): 284-5. [http://dx.doi.org/10.1038/440284a]
[PMID: 16541054]
[7]
Hugo J, Ganguli M. Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clin Geriatr Med 2014; 30(3): 421-42. [http://dx.doi.org/10.1016/j.cger.2014.04.001]
[PMID: 25037289]
[8]
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009; 63(3): 287-303. [http://dx.doi.org/10.1016/j.neuron.2009.06.026]
[PMID: 19679070]
[9]
Jendresen C, Årskog V, Daws MR, Nilsson LN. The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. J Neuroinflammation 2017; 14(1): 59. [http://dx.doi.org/10.1186/s12974-017-0835-4]
[PMID: 28320424]
[10]
Obulesu M, Somashekhar R, Venu R. Genetics of Alzheimer’s disease: an insight into presenilins and apolipoprotein E instigated neurodegeneration. Int J Neurosci 2011; 121(5): 229-36. [http://dx.doi.org/10.3109/00207454.2010.551432]
[PMID: 21545304]
[11]
Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 2018; 7: 2. [http://dx.doi.org/10.1186/s40035-018-0107-y]
[PMID: 29423193]
[12]
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 2011; 35(6): 1397-409. [http://dx.doi.org/10.1016/j.neubiorev.2011.03.001]
[PMID: 21392524]
[13]
Becker RE, Greig NH, Giacobini E. Why do so many drugs for Alzheimer’s disease fail in development? Time for new methods and new practices? J Alzheimers Dis 2008; 15(2): 303-25. [http://dx.doi.org/10.3233/JAD-2008-15213]
[PMID: 18953116]
[14]
Ansari SA, Satar R, Perveen A, Ashraf GM. Current opinion in Alzheimer’s disease therapy by nanotechnology-based approaches. Curr Opin Psychiatry 2017; 30(2): 128-35. [http://dx.doi.org/10.1097/YCO.0000000000000310]
[PMID: 28009724]
[15]
Aprahamian I, Stella F, Forlenza OV. New treatment strategies for Alzheimer’s disease: is there a hope? Indian J Med Res 2013; 138(4): 449-60.
[PMID: 24434253]
[16]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5. [http://dx.doi.org/10.1126/science.1566067]
[PMID: 1566067]
[17]
Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front Neurosci 2018; 12: 25. [http://dx.doi.org/10.3389/fnins.2018.00025]
[PMID: 29440986]
[18]
Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG. Abeta aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med 2009; 13(3): 412-21. [http://dx.doi.org/10.1111/j.1582-4934.2009.00609.x]
[PMID: 19374683]
[19]
Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 2015; 18(6): 800-6. [http://dx.doi.org/10.1038/nn.4018]
[PMID: 26007213]
[20]
Ricciarelli R, Fedele E. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Curr Neuropharmacol 2017; 15(6): 926-35. [http://dx.doi.org/10.2174/1570159X15666170116143743]
[PMID: 28093977]
[21]
Chételat G, La Joie R, Villain N, et al. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage Clin 2013; 2: 356-65. [http://dx.doi.org/10.1016/j.nicl.2013.02.006]
[PMID: 24179789]
[22]
Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimer’s disease: identification of novel therapeutic targets. Alzheimers Res Ther 2013; 5(5): 49. [http://dx.doi.org/10.1186/alzrt214]
[PMID: 24152385]
[23]
Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 2008; 15(23): 2321-8. [http://dx.doi.org/10.2174/092986708785909111]
[PMID: 18855662]
[24]
Maccioni RB, Farías G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 2010; 41(3): 226-31. [http://dx.doi.org/10.1016/j.arcmed.2010.03.007]
[PMID: 20682182]
[25]
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem 2010; 112(6): 1353-67. [http://dx.doi.org/10.1111/j.1471-4159.2009.06511.x]
[PMID: 19943854]
[26]
Albarracin SL, Stab B, Casas Z, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 2012; 15(1): 1-9. [http://dx.doi.org/10.1179/1476830511Y.0000000028]
[PMID: 22305647]
[27]
Khan TA, Hassan I, Ahmad A, et al. Recent Updates on the Dynamic Association Between Oxidative Stress and Neurodegenerative Disorders. CNS Neurol Disord Drug Targets 2016; 15(3): 310-20. [http://dx.doi.org/10.2174/1871527315666160202124518]
[PMID: 26831262]
[28]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22. [http://dx.doi.org/10.3892/br.2016.630]
[PMID: 27123241]
[29]
Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 2014; 35(1): 456-65. [http://dx.doi.org/10.1016/j.biomaterials.2013.09.063]
[PMID: 24099709]
[30]
Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003; 306(3): 821-7. [http://dx.doi.org/10.1124/jpet.102.041616]
[PMID: 12805474]
[31]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35. [http://dx.doi.org/10.2174/1570159X11311030006]
[PMID: 24179466]
[32]
Bartus RT. Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol Biochem Behav 1978; 9(6): 833-6. [http://dx.doi.org/10.1016/0091-3057(78)90364-7]
[PMID: 106402]
[33]
Drachman DA. Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 1977; 27(8): 783-90. [http://dx.doi.org/10.1212/WNL.27.8.783]
[PMID: 560649]
[34]
Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in Alzheimer’s Diagnosis and Therapy: The Implications of Nanotechnology. Trends Biotechnol 2017; 35(10): 937-53. [http://dx.doi.org/10.1016/j.tibtech.2017.06.002]
[PMID: 28666544]
[35]
Md S, Bhattmisra SK, Zeeshan F, et al. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018; 43: 295-310. [http://dx.doi.org/10.1016/j.jddst.2017.09.022].
[36]
Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine (Lond) 2011; 7(5): 521-40. [http://dx.doi.org/10.1016/j.nano.2011.03.008]
[PMID: 21477665]
[37]
Leszek J, Md Ashraf G, Tse WH, et al. Nanotechnology for Alzheimer Disease. Curr Alzheimer Res 2017; 14(11): 1182-9. [http://dx.doi.org/10.2174/1567205014666170203125008]
[PMID: 28164767]
[38]
Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007; 12(1-2): 54-61. [http://dx.doi.org/10.1016/j.drudis.2006.10.013]
[PMID: 17198973]
[39]
Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 2011; 152(2): 208-31. [http://dx.doi.org/10.1016/j.jconrel.2010.11.033]
[PMID: 21134407]
[40]
Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015; 41(12): 1922-34. [http://dx.doi.org/10.3109/03639045.2015.1052081]
[PMID: 26057769]
[41]
Banks WA. Peptides and the blood-brain barrier. Peptides 2015; 72: 16-9. [http://dx.doi.org/10.1016/j.peptides.2015.03.010]
[PMID: 25805003]
[42]
Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009; 31(4): 497-511. [http://dx.doi.org/10.1007/s00281-009-0177-0]
[PMID: 19779720]
[43]
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016; 6(4): 268-86. [http://dx.doi.org/10.1016/j.apsb.2016.05.013]
[PMID: 27471668]
[44]
Pardridge WM. Blood-brain barrier biology and methodology. J Neurovirol 1999; 5(6): 556-69. [http://dx.doi.org/10.3109/13550289909021285]
[PMID: 10602397]
[45]
Graff CL, Pollack GM. Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab 2004; 5(1): 95-108. [http://dx.doi.org/10.2174/1389200043489126]
[PMID: 14965253]
[46]
Fazil M, Shadab , Baboota S, Sahni JK, Ali J. Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future. J Drug Target 2012; 20(2): 97-113. [http://dx.doi.org/10.3109/1061186X.2011.607499]
[PMID: 22023651]
[47]
Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 1976; 65(12): 1763-6. [http://dx.doi.org/10.1002/jps.2600651217]
[PMID: 1036442]
[48]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2017.
[49]
Loureiro JA, Andrade S, Duarte A, et al. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer’s Disease. Molecules 2017; 22(2): 277. [http://dx.doi.org/10.3390/molecules22020277]
[PMID: 28208831]
[50]
Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J Control Release 2017; 245: 95-107. [http://dx.doi.org/10.1016/j.jconrel.2016.11.025]
[PMID: 27889394]
[51]
Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014; 8(3): 1958-65. [http://dx.doi.org/10.1021/nn501292z]
[PMID: 24660817]
[52]
Barbu E, Molnàr E, Tsibouklis J, Górecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2009; 6(6): 553-65. [http://dx.doi.org/10.1517/17425240902939143]
[PMID: 19435406]
[53]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13. [http://dx.doi.org/10.1081/DDC-120001481]
[PMID: 11858519]
[54]
Etame AB, Smith CA, Chan WC, Rutka JT. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine (Lond) 2011; 7(6): 992-1000. [http://dx.doi.org/10.1016/j.nano.2011.04.004]
[PMID: 21616168]
[55]
Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. Int J Mol Sci 2014; 15(2): 1812-25. [http://dx.doi.org/10.3390/ijms15021812]
[PMID: 24469316]
[56]
Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 2008; 66(2): 274-80. [http://dx.doi.org/10.1016/j.colsurfb.2008.07.004]
[PMID: 18722754]
[57]
Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010; 141(3): 320-7. [http://dx.doi.org/10.1016/j.jconrel.2009.10.014]
[PMID: 19874859]
[58]
Banerjee T, Mitra S, Kumar Singh A, Kumar Sharma R, Maitra A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 2002; 243(1-2): 93-105. [http://dx.doi.org/10.1016/S0378-5173(02)00267-3]
[PMID: 12176298]
[59]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23. [http://dx.doi.org/10.1016/j.yexmp.2008.12.004]
[PMID: 19186176]
[60]
Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 2001; 70(3): 353-63. [http://dx.doi.org/10.1016/S0168-3659(00)00367-9]
[PMID: 11182205]
[61]
Pan H, Marsh JN, Christenson ET, et al. Postformulation peptide drug loading of nanostructures. Methods Enzymol 2012; 508: 17-39. [http://dx.doi.org/10.1016/B978-0-12-391860-4.00002-1].
[PMID: 22449919]
[62]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid St M 2002; 6(4): 319-27. [http://dx.doi.org/10.1016/S1359-0286(02)00117-1].
[63]
Bramini M, Ye D, Hallerbach A, et al. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 2014; 8(5): 4304-12. [http://dx.doi.org/10.1021/nn5018523]
[PMID: 24773217]
[64]
Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 2010; 107(3): 1235-40. [http://dx.doi.org/10.1073/pnas.0914140107]
[PMID: 20080552]
[65]
Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 2013; 110(21): 8662-7. [http://dx.doi.org/10.1073/pnas.1307152110]
[PMID: 23650374]
[66]
Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm 2007; 344(1-2): 103-9. [http://dx.doi.org/10.1016/j.ijpharm.2007.06.023]
[PMID: 17651930]
[67]
Gao X, Qian J, Zheng S, et al. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano 2014; 8(4): 3678-89. [http://dx.doi.org/10.1021/nn5003375]
[PMID: 24673594]
[68]
Arvizo RR, Miranda OR, Moyano DF, et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 2011; 6(9)e24374 [http://dx.doi.org/10.1371/journal.pone.0024374]
[PMID: 21931696]
[69]
Doggui S, Dao L, Ramassamy C. Potential of drug-loaded nanoparticles for Alzheimer’s disease: diagnosis, prevention and treatment. Ther Deliv 2012; 3(9): 1025-7. [http://dx.doi.org/10.4155/tde.12.84]
[PMID: 23035588]
[70]
Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 2014; 119-120: 20-38. [http://dx.doi.org/10.1016/j.pneurobio.2014.05.002]
[PMID: 24820405]
[71]
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166(2): 182-94. [http://dx.doi.org/10.1016/j.jconrel.2012.12.013]
[PMID: 23262199]
[72]
Karatas H, Aktas Y, Gursoy-Ozdemir Y, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 2009; 29(44): 13761-9. [http://dx.doi.org/10.1523/JNEUROSCI.4246-09.2009]
[PMID: 19889988]
[73]
Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 2015; 14(4): 239-47. [http://dx.doi.org/10.1038/nrd4503]
[PMID: 25598505]
[74]
Silva AC, Santos D, Ferreira D, Souto EB, Nalwa HS. In: Encyclopedia of Nanoscience and Nanotechnology; H.S Nalwa, Ed. American: Scientific. 2011; pp. 1-14
[75]
Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm 2014; 87(3): 433-44. [http://dx.doi.org/10.1016/j.ejpb.2014.05.004]
[PMID: 24833004]
[76]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24. [http://dx.doi.org/10.1016/j.nano.2009.04.008]
[PMID: 19447208]
[77]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109. [http://dx.doi.org/10.1016/j.jconrel.2007.12.018]
[PMID: 18313785]
[78]
Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology 2015; 26(49)495103 [http://dx.doi.org/10.1088/0957-4484/26/49/495103]
[PMID: 26574295]
[79]
Robinson M, Lee BY, Leonenko Z. Drugs and drug delivery systems targeting amyloid- β in Alzheimer’s disease. AIMS Mol Sci 2015; 2(3): 332-58. [http://dx.doi.org/10.3934/molsci.2015.3.332].
[80]
Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55. [http://dx.doi.org/10.2174/187221013804484827]
[PMID: 22946628]
[81]
Hadavi D, Poot AA. Biomaterials for the treatment of Alzheimer’s disease. Front Bioeng Biotechnol 2016; 4: 49. [http://dx.doi.org/10.3389/fbioe.2016.00049]
[PMID: 27379232]
[82]
Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004; 269(1): 1-14. [http://dx.doi.org/10.1016/j.ijpharm.2003.09.016]
[PMID: 14698571]
[83]
Gulati M, Grover M, Singh S, Singh M. Lipophilic drug derivatives in liposomes. Int J Pharm 1998; 165(2): 129-68. [http://dx.doi.org/10.1016/S0378-5173(98)00006-4].
[84]
Fonseca-Santos B, Gremião MP, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2015; 10: 4981-5003. [http://dx.doi.org/10.2147/IJN.S87148]
[PMID: 26345528]
[85]
Fernandes C, Soni U, Patravale V. Nano-interventions for neurodegenerative disorders. Pharmacol Res 2010; 62(2): 166-78. [http://dx.doi.org/10.1016/j.phrs.2010.02.004]
[PMID: 20153429]
[86]
Silva AC, González-Mira E, Lobo JM, Amaral MH. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer’s and schizophrenia. Curr Pharm Des 2013; 19(41): 7185-95. [http://dx.doi.org/10.2174/138161281941131219123329]
[PMID: 23489198]
[87]
Pathak K, Pattnaik S, Swain K. Nanoemulsions; SM Jafari. Academic Press 2018; pp. 415-33. [http://dx.doi.org/10.1016/B978-0-12-811838-2.00013-8]
[88]
Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 2012; 73(4): 504-17. [http://dx.doi.org/10.1111/j.1365-2125.2011.04134.x]
[PMID: 22035455]
[89]
Cummings JL. Defining and labeling disease-modifying treatments for Alzheimer’s disease. Alzheimers Dement 2009; 5(5): 406-18. [http://dx.doi.org/10.1016/j.jalz.2008.12.003]
[PMID: 19751920]
[90]
Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 2008; 13(2): 199-223. [http://dx.doi.org/10.3233/JAD-2008-13210]
[PMID: 18376062]
[91]
Songjiang Z, Lixiang W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech 2009; 10(3): 900-5. [http://dx.doi.org/10.1208/s12249-009-9279-1]
[PMID: 19609682]
[92]
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017; 9(4)E53 [http://dx.doi.org/10.3390/pharmaceutics9040053]
[PMID: 29156634]
[93]
Permanne B, Adessi C, Saborio GP, et al. Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a beta-sheet breaker peptide. FASEB J 2002; 16(8): 860-2. [http://dx.doi.org/10.1096/fj.01-0841fje]
[PMID: 11967228]
[94]
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 2016; 145: 8-13. [http://dx.doi.org/10.1016/j.colsurfb.2016.04.041]
[PMID: 27131092]
[95]
Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 2004; 21(5): 387-422. [http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20]
[PMID: 15719481]
[96]
Fahrenkrug J. Vasoactive intestinal polypeptide: measurement, distribution and putative neurotransmitter function. Digestion 1979; 19(3): 149-69. [http://dx.doi.org/10.1159/000198339]
[PMID: 39014]
[97]
Brenneman DE, Glazner G, Hill JM, Hauser J, Davidson A, Gozes I. VIP neurotrophism in the central nervous system: multiple effectors and identification of a femtomolar-acting neuroprotective peptide. Ann N Y Acad Sci 1998; 865: 207-12. [http://dx.doi.org/10.1111/j.1749-6632.1998.tb11180.x]
[PMID: 9928014]
[98]
Gozes I, Divinsky I, Pilzer I, Fridkin M, Brenneman DE, Spier AD. From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J Mol Neurosci 2003; 20(3): 315-22. [http://dx.doi.org/10.1385/JMN:20:3:315]
[PMID: 14501014]
[99]
Gao X, Wu B, Zhang Q, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release 2007; 121(3): 156-67. [http://dx.doi.org/10.1016/j.jconrel.2007.05.026]
[PMID: 17628165]
[100]
Kanwar JR, Kanwar RK, Mahidhara G. Recent Advances in Nanoneurology for Drug Delivery to the Brain. Curr Nanosci 2009; 5(4): 441-7. [http://dx.doi.org/10.2174/157341309789378014].
[101]
Rubinow DR, Schmidt PJ. Gonadal steroids, brain, and behavior: role of context. Dialogues Clin Neurosci 2002; 4(2): 123-37.
[PMID: 22033695]
[102]
Amtul Z, Wang L, Westaway D, Rozmahel RF. Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer’s disease. Neuroscience 2010; 169(2): 781-6. [http://dx.doi.org/10.1016/j.neuroscience.2010.05.031]
[PMID: 20493928]
[103]
Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 2008; 70(3): 735-40. [http://dx.doi.org/10.1016/j.ejpb.2008.07.005]
[PMID: 18684400]
[104]
Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 2007; 119(1): 77-85. [http://dx.doi.org/10.1016/j.jconrel.2007.01.016]
[PMID: 17349712]
[105]
Mittal G, Carswell H, Brett R, Currie S, Kumar MN. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release 2011; 150(2): 220-8. [http://dx.doi.org/10.1016/j.jconrel.2010.11.013]
[PMID: 21111014]
[106]
Chen Q, Du Y, Zhang K, et al. Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer’s Disease. ACS Nano 2018; 12(2): 1321-38. [http://dx.doi.org/10.1021/acsnano.7b07625]
[PMID: 29364648]
[107]
Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 2018; 25(1): 307-20. [http://dx.doi.org/10.1080/10717544.2018.1428243]
[PMID: 29350055]
[108]
Jinwal UK, Groshev A, Zhang J, Grover A, Sutariya VB. Preparation and characterization of methylene blue nanoparticles for Alzheimer’s disease and other tauopathies. Curr Drug Deliv 2014; 11(4): 541-50. [http://dx.doi.org/10.2174/1567201810666131113102037]
[PMID: 24237400]
[109]
Lu RC, Tan MS, Wang H, Xie AM, Yu JT, Tan L. Heat shock protein 70 in Alzheimer’s disease. BioMed Res Int 2014; 2014435203 [http://dx.doi.org/10.1155/2014/435203]
[PMID: 25431764]
[110]
Koya K, Li Y, Wang H, et al. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 1996; 56(3): 538-43.
[PMID: 8564968]
[111]
Jinwal UK, Grover A, Narayan M, Hirani A, Sutariya V. Preparation and Characterization of MKT-077 Nanoparticles for Treatment of Alzheimer’s Disease and Other Tauopathies. Pharm Nanotechnol 2014; 2(4): 217-26. [http://dx.doi.org/10.2174/2211738503666150328001726]
[112]
Fricker RA, Green EL, Jenkins SI, Griffin SM. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 2018; 111178646918776658 [http://dx.doi.org/10.1177/1178646918776658]
[PMID: 29844677]
[113]
Fillit H, Friedman L, Hara Y, Koemeter-Cox A, McKeehan N. Closing in on a cure - 2017 Alzheimer’s clinical trials report. New York: Alzheimer Drug Discovery Foundation 2017.
[114]
Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru 2018; 26(2): 165-77. [http://dx.doi.org/10.1007/s40199-018-0221-5]
[PMID: 30386982]
[115]
Francis PT. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 2005; 10(11)(Suppl. 18): 6-9. [http://dx.doi.org/10.1017/S1092852900014164]
[PMID: 16273023]
[116]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology Based Theranostic Approaches in Alzheimer’s Disease Management: Current Status and Future Perspective. Curr Alzheimer Res 2017; 14(11): 1164-81. [http://dx.doi.org/10.2174/1567205014666170508121031]
[PMID: 28482786]
[117]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 2008; 1200: 159-68. [http://dx.doi.org/10.1016/j.brainres.2008.01.039]
[PMID: 18291351]
[118]
Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 2010; 76(2): 189-99. [http://dx.doi.org/10.1016/j.ejpb.2010.07.007]
[PMID: 20637869]
[119]
Hanafy AS, Farid RM, ElGamal SS. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: preparation and detection in rat brain. Drug Dev Ind Pharm 2015; 41(12): 2055-68. [http://dx.doi.org/10.3109/03639045.2015.1062897]
[PMID: 26133084]
[120]
Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012; 47(1): 6-15. [http://dx.doi.org/10.1016/j.ejps.2012.04.013]
[PMID: 22561106]
[121]
Bhavna Shadab M, Ali M, Bhatnagar A, Baboota S, Sahni JK, Ali J. Design, Development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer’s disease. Sci Adv Mater 2014; 6(4): 720-35. [http://dx.doi.org/10.1166/sam.2014.1761]
[122]
Alam S, Khan ZI, Mustafa G, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 2012; 7: 5705-18. [http://dx.doi.org/10.2147/IJN.S35329]
[PMID: 23180965]
[123]
Tumiatti V, Minarini A, Bolognesi ML, Milelli A, Rosini M, Melchiorre C. Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 2010; 17(17): 1825-38. [http://dx.doi.org/10.2174/092986710791111206]
[PMID: 20345341]
[124]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 2008; 70(1): 75-84. [http://dx.doi.org/10.1016/j.ejpb.2008.03.009]
[PMID: 18472255]
[125]
Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine (Lond) 2010; 6(1): 144-52. [http://dx.doi.org/10.1016/j.nano.2009.04.001]
[PMID: 19446656]
[126]
Sun W, Xie C, Wang H, Hu Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 2004; 25(15): 3065-71. [http://dx.doi.org/10.1016/j.biomaterials.2003.09.087]
[PMID: 14967540]
[127]
Sunena , Singh SK, Mishra DN. Nose to Brain Delivery of Galantamine Loaded Nanoparticles: In-vivo Pharmacodynamic and Biochemical Study in Mice. Curr Drug Deliv 2019; 16(1): 51-8. [http://dx.doi.org/10.2174/1567201815666181004094707]
[PMID: 30289074]
[128]
Fan L, Wang J, Meng F, et al. Delivering the Acetylcholine Neurotransmitter by Nanodrugs as an Effective Treatment for Alzheimer’s Disease. J Biomed Nanotechnol 2018; 14(12): 2066-76. [http://dx.doi.org/10.1166/jbn.2018.2649]
[PMID: 30305214]
[129]
Huang HC, Chang P, Dai XL, Jiang ZF. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage. Neurochem Res 2012; 37(7): 1584-97. [http://dx.doi.org/10.1007/s11064-012-0754-9]
[PMID: 22476982]
[130]
Zhao LN, Chiu SW, Benoit J, Chew LY, Mu Y. The effect of curcumin on the stability of Aβ dimers. J Phys Chem B 2012; 116(25): 7428-35. [http://dx.doi.org/10.1021/jp3034209]
[PMID: 22690789]
[131]
Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 2004; 6(4): 367-77. [http://dx.doi.org/10.3233/JAD-2004-6403]
[PMID: 15345806]
[132]
Daniel S, Limson JL, Dairam A, Watkins GM, Daya S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 2004; 98(2): 266-75. [http://dx.doi.org/10.1016/j.jinorgbio.2003.10.014]
[PMID: 14729307]
[133]
Sood S, Jain K, Gowthamarajan K. Curcumin-donepezil–loaded nanostructured lipid carriers for intranasal delivery in an Alzheimer’s disease model. Alzheimers Dement 2013; 9(4): 299. [http://dx.doi.org/10.1016/j.jalz.2013.05.609]
[134]
Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 2013; 85(3 Pt A): 339-45. [http://dx.doi.org/10.1016/j.ejpb.2013.02.005]
[PMID: 23454202]
[135]
Sun M, Gao Y, Guo C, et al. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res 2010; 12(8): 3111-22. [http://dx.doi.org/10.1007/s11051-010-9907-4]
[136]
Mulik R, Mahadik K, Paradkar A. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. Eur J Pharm Sci 2009; 37(3-4): 395-404. [http://dx.doi.org/10.1016/j.ejps.2009.03.009]
[PMID: 19491031]
[137]
Markus MA, Morris BJ. Resveratrol in prevention and treatment of common clinical conditions of aging. Clin Interv Aging 2008; 3(2): 331-9.
[PMID: 18686754]
[138]
Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem 1997; 30(2): 91-113. [http://dx.doi.org/10.1016/S0009-9120(96)00155-5]
[PMID: 9127691]
[139]
Jang JH, Surh YJ. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 2003; 34(8): 1100-10. [http://dx.doi.org/10.1016/S0891-5849(03)00062-5]
[PMID: 12684095]
[140]
Frozza RL, Bernardi A, Paese K, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 2010; 6(6): 694-703. [http://dx.doi.org/10.1166/jbn.2010.1161]
[PMID: 21361135]
[141]
Lu X, Ji C, Xu H, et al. Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int J Pharm 2009; 375(1-2): 89-96. [http://dx.doi.org/10.1016/j.ijpharm.2009.03.021]
[PMID: 19481694]
[142]
Bondi ML, Montana G, Craparo EF, et al. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: preparation, characterization and cytotoxicity studies. Curr Nanosci 2009; 5(1): 26-32. [http://dx.doi.org/10.2174/157341309787314656].
[143]
Landsiedel R, Fabian E, Ma-Hock L, et al. Toxico-/biokinetics of nanomaterials. Arch Toxicol 2012; 86(7): 1021-60. [http://dx.doi.org/10.1007/s00204-012-0858-7]
[PMID: 22576463]
[144]
Kim JS, Yoon TJ, Yu KN, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006; 89(1): 338-47. [http://dx.doi.org/10.1093/toxsci/kfj027]
[PMID: 16237191]
[145]
Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 2006; 114(11): 1697-702. [http://dx.doi.org/10.1289/ehp.9209]
[PMID: 17107855]
[146]
Li W, Luo R, Lin X, et al. Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials 2015; 65: 76-85. [http://dx.doi.org/10.1016/j.biomaterials.2015.06.041]
[PMID: 26142778]
[147]
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013238428 [http://dx.doi.org/10.1155/2013/238428]
[PMID: 25937958]
[148]
Pietroiusti A, Campagnolo L, Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 2013; 9(9-10): 1557-72. [http://dx.doi.org/10.1002/smll.201201463]
[PMID: 23097249]
[149]
Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 2013; 12(1): 289-309. [http://dx.doi.org/10.1016/j.arr.2012.06.003]
[PMID: 22742992]
[150]
Report WA. World Alzheimer Report The state of the art of dementia research: New frontiers London: Alzheimer’s Disease International. ADI 2018.
[151]
Khemariya RP, Khemariya PS. New-tangled approach in the management of Alzheimer by formulation of polysorbate 80 coated chitosan nanoparticles of rivastigmine for brain delivery and their in vivo evaluation. IJRMS 2016; 2(2): 18-29.
[152]
Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale 2015; 7(28): 12076-84. [http://dx.doi.org/10.1039/C5NR03474D]
[PMID: 26118655]
[153]
Md S, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm 2014; 40(2): 278-87. [http://dx.doi.org/10.3109/03639045.2012.758130]
[PMID: 23369094]
[154]
Baysal I, Ucar G, Gultekinoglu M, Ulubayram K, Yabanoglu-Ciftci S. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm (Vienna) 2017; 124(1): 33-45. [http://dx.doi.org/10.1007/s00702-016-1527-4]
[PMID: 26911385]
[155]
Agyare EK, Curran GL, Ramakrishnan M, Yu CC, Poduslo JF, Kandimalla KK. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res 2008; 25(11): 2674-84. [http://dx.doi.org/10.1007/s11095-008-9688-y]
[PMID: 18712585]
[156]
Majzik A, Fülöp L, Csapó E, et al. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. Colloids Surf B Biointerfaces 2010; 81(1): 235-41. [http://dx.doi.org/10.1016/j.colsurfb.2010.07.011]
[PMID: 20674288]
[157]
Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 2010; 31(5): 908-15. [http://dx.doi.org/10.1016/j.biomaterials.2009.09.104]
[PMID: 19853292]
[158]
Silva-Abreu M, Calpena AC, Andrés-Benito P, et al. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: in vitro and in vivo studies. Int J Nanomedicine 2018; 13: 5577-90. [http://dx.doi.org/10.2147/IJN.S171490]
[PMID: 30271148]
[159]
Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 2014; 461(1-2): 192-202. [http://dx.doi.org/10.1016/j.ijpharm.2013.11.049]
[PMID: 24300213]
[160]
Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17(8): 564-74. [http://dx.doi.org/10.1080/10611860903112842]
[PMID: 19694610]
[161]
Liu Z, Gao X, Kang T, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 2013; 24(6): 997-1007. [http://dx.doi.org/10.1021/bc400055h]
[PMID: 23718945]
[162]
Schaffazick SR, Pohlmann AR, de Cordova CA, Creczynski-Pasa TB, Guterres SS. Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int J Pharm 2005; 289(1-2): 209-13. [http://dx.doi.org/10.1016/j.ijpharm.2004.11.003]
[PMID: 15652213]
[163]
He W, Horn SW, Hussain MD. Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 2007; 334(1-2): 173-8. [http://dx.doi.org/10.1016/j.ijpharm.2006.10.025]
[PMID: 17101249]
[164]
Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 2010; 79(3): 330-8. [http://dx.doi.org/10.1016/j.bcp.2009.09.003]
[PMID: 19735646]
[165]
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm 2010; 7(3): 815-25. [http://dx.doi.org/10.1021/mp900306x]
[PMID: 20230014]
[166]
Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate. Eur J Pharm Sci 2010; 41(2): 219-25. [http://dx.doi.org/10.1016/j.ejps.2010.06.010]
[PMID: 20600878]
[167]
Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56. [http://dx.doi.org/10.1002/jps.24557]
[168]
Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci Lett 2009; 455(3): 187-90. [http://dx.doi.org/10.1016/j.neulet.2009.03.064]
[PMID: 19429118]
[169]
Cui Z, Lockman PR, Atwood CS, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 2005; 59(2): 263-72. [http://dx.doi.org/10.1016/j.ejpb.2004.07.009]
[PMID: 15661498]
[170]
Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 2016; 23(4): 1434-43. [http://dx.doi.org/10.3109/10717544.2015.1089956]
[PMID: 26405825]
[171]
Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci 2015; 78: 54-66. [http://dx.doi.org/10.1016/j.ejps.2015.07.002]
[PMID: 26143262]
[172]
Picone P, Bondi ML, Montana G, et al. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic Res 2009; 43(11): 1133-45. [http://dx.doi.org/10.1080/10715760903214454]
[PMID: 19863373]
[173]
Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 2010; 389(1-2): 207-12. [http://dx.doi.org/10.1016/j.ijpharm.2010.01.012]
[PMID: 20083179]
[174]
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. Mater Sci Eng C 2017; 77: 680-9. [http://dx.doi.org/10.1016/j.msec.2017.03.303]
[PMID: 28532079]
[175]
Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 2012; 34(2): 272-9. [http://dx.doi.org/10.1016/j.etap.2012.04.012]
[PMID: 22613079]
[176]
Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54. [http://dx.doi.org/10.1016/j.ijpharm.2013.05.009]
[PMID: 23680731]
[177]
Mutlu NB, Değim Z, Yilmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37(7): 775-89. [http://dx.doi.org/10.3109/03639045.2010.541262]
[PMID: 21231901]
[178]
Arumugam K, Subramanian GS, Mallayasamy SR, Averineni RK, Reddy MS, Udupa N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm 2008; 58(3): 287-97. [http://dx.doi.org/10.2478/v10007-008-0014-3]
[PMID: 19103565]
[179]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15.
[PMID: 26834457]
[180]
Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv 2011; 2011469679 [http://dx.doi.org/10.1155/2011/469679]
[PMID: 22203906]
[181]
Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011; 32(6): 1635-45. [http://dx.doi.org/10.1016/j.biomaterials.2010.10.027]
[PMID: 21131044]
[182]
Patel PA, Patil SC, Kalaria DR, Kalia YN, Patravale VB. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm 2013; 446(1-2): 16-23. [http://dx.doi.org/10.1016/j.ijpharm.2013.02.014]
[PMID: 23410989]
[183]
Jin Y, Wen J, Garg S, et al. Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int J Nanomedicine 2013; 8: 421-30. [http://dx.doi.org/10.2147/IJN.S37984]
[PMID: 23378764]
[184]
Chaiyana W, Rades T, Okonogi S. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm 2013; 452(1-2): 201-10. [http://dx.doi.org/10.1016/j.ijpharm.2013.05.005]
[PMID: 23680734]
[185]
Zhang LK, Xu RX, Jiang M, et al. Evaluation of brain-targeting of β-asarone microemulsion by intranasal administration. Chin Tradit Herbal Drugs 2014; 45(1): 86-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy