Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Sonochemistry in Transition Metal Catalyzed Cross-coupling Reactions: Recent Developments

Author(s): Sankuviruthiyil M. Ujwaldev, K. R. Rohit, Sankaran Radhika and Gopinathan Anilkumar*

Volume 23, Issue 28, 2019

Page: [3137 - 3153] Pages: 17

DOI: 10.2174/1385272823666191118103844

Price: $65

Abstract

Transition metal catalyzed cross-coupling reactions have always been very important in synthetic organic chemistry due to their versatility in forming all sorts of carbon-carbon and carbon-hetero atom bonds. Incorporation of ultrasound assistance to these protocols resulted in milder reaction conditions, faster reaction rates, etc. This review focuses on the contributions made by ultrasound-assisted protocols towards transition metal catalyzed crosscoupling reactions.

Keywords: Ultrasound, sonochemistry, coupling, palladium, heterogeneous, milder reaction.

Graphical Abstract

[1]
Adewuyi, Y.G. Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res., 2001, 40, 4681-4715.
[http://dx.doi.org/10.1021/ie010096l]
[2]
Neppiras, E.A. Acoustic cavitation. Phys. Rep., 1980, 61, 159-251.
[http://dx.doi.org/10.1016/0370-1573(80)90115-5]
[3]
Li, J.T.; Xu, W-Z.; Chao, X.; Li, T-S. An efficient and practical synthesis of hydroxyl ketones catalysed by trisodium phosphate under ultrasound. J. Chem. Res., 2004, 2004(12), 838-839.
[http://dx.doi.org/10.3184/0308234043431285]
[4]
Tu, S.; Cao, L.; Zhang, Y.; Shao, Q.; Zhou, D.; Li, C. An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst. Ultrason. Sonochem., 2008, 15(3), 217-221.
[http://dx.doi.org/10.1016/j.ultsonch.2007.03.002] [PMID: 17466564]
[5]
Magdolen, P.; Meciarova, M.; Toma, S. Ultrasound effect on the synthesis of 4-alkyl(aryl)aminobenzaldehydes. Tetrahedron, 2001, 57, 4781-4785.
[http://dx.doi.org/10.1016/S0040-4020(01)00403-3]
[6]
Li, J-T.; Chen, G-F.; Xu, W-Z.; Li, T-S. The Michael reaction catalyzed by KF/basic alumina under ultrasound irradiation. Ultrason. Sonochem., 2003, 10(2), 115-118.
[http://dx.doi.org/10.1016/S1350-4177(02)00134-7] [PMID: 12551772]
[7]
Li, J-T.; Liu, X-F. An efficient and practical synthesis of 2,3-epoxyl-1,3-diaryl-1-propanone by combination of phase transfer catalyst and ultrasound irradiation. Ultrason. Sonochem., 2008, 15(4), 330-333.
[http://dx.doi.org/10.1016/j.ultsonch.2007.07.004] [PMID: 17765002]
[8]
Kimura, T.; Fujita, M.; Ando, T. Sonochemical and photochemical reactions of bromotrichloromethane in the presence and absence of 1-alkene. Ultrason. Sonochem., 1999, 6(1-2), 93-96.
[http://dx.doi.org/10.1016/S1350-4177(98)00032-7] [PMID: 11233944]
[9]
(a)Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 2004, Vols. 1-3, . DOI:10.1002/9783527619535
(b)Jana, R.; Pathak, T.P.; Sigman, M.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev., 2011, 111(3), 1417-1492.
[http://dx.doi.org/10.1021/cr100327p] [PMID: 21319862]
[10]
Beletskaya, I.P.; Cheprakov, A.V. Comprehensive Coordination Chemistry II: Applications of Coordination Chemistry; Ward, M.D., Ed.; , 2003, Vol. 9, pp. 305-360.
[http://dx.doi.org/10.1016/B0-08-043748-6/09089-7 ]
[11]
Molnar, A. Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments. Wiley-VCH Verlag GmbH & Co. KGaA, 2013.
[12]
Mpungose, P.P.; Vundla, Z.P.; Maguire, G.E.M.; Friedrich, H.B. The current status of heterogeneous palladium catalysed Heck and Suzuki cross-coupling reactions. Molecules, 2018, 23(7), 1676-1700.
[http://dx.doi.org/10.3390/molecules23071676] [PMID: 29996491]
[13]
Ma, D.; Cai, Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Res., 2008, 41(11), 1450-1460.
[http://dx.doi.org/10.1021/ar8000298] [PMID: 18698852]
[14]
Sherwood, J.; Clark, J.H.; Fairlamb, I.J.S.; Slattery, J.M. Solvent effects in palladium catalysed cross-coupling reactions. Green Chem., 2019, 21, 2164-2213.
[http://dx.doi.org/10.1039/C9GC00617F]
[15]
Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2011, 40(10), 4925-4936.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
[16]
Parasram, M.; Gevorgyan, V. Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chem. Soc. Rev., 2017, 46(20), 6227-6240.
[http://dx.doi.org/10.1039/C7CS00226B] [PMID: 28799591]
[17]
(a)Lindley, J.; Lorimer, J.P.; Mason, T.J. Enhancement of an Ullmann coupling reaction induced by ultrasound. Ultrasonics, 1986, 24, 292-293.
[http://dx.doi.org/10.1016/0041-624X(86)90108-3]
(b)Lindley, J.; Lorimer, J.P.; Mason, T.J. Sonochemically enhanced Ullmann reactions. Ultrasonics, 1987, 25, 45-48.
[http://dx.doi.org/10.1016/0041-624X(87)90011-4]
[18]
Delair, P.; Luche, J.L. A new sonochemical carbonyl cross-coupling reaction. J. Chem. Soc. Chem. Commun., 1989, 398-399
[http://dx.doi.org/10.1039/c39890000398]
[19]
Smith, K.; Jones, D. A superior synthesis of diaryl ethers by the use of ultrasound in the Ullmann reaction. J. Chem. Soc., Perkin Trans., 1992, 1, 407-408.
[http://dx.doi.org/10.1039/p19920000407]
[20]
(a)Lupacchini, M.; Mascitti, A.; Giachi, G. Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 2017, 73, 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
(b)Penteado, F.; Monti, B.; Sancineto, L.; Perin, G.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Ultrasound-assisted multicomponent reactions, organometallic and organochalcogen chemistry. Asian J. Org. Chem., 2018, 7, 2368-2385.
[http://dx.doi.org/10.1002/ajoc.201800477]
(c)(Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis - a green approach. Curr. Org. Chem., 2013, 17, 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[21]
Bai, L.; Wang, J-X. Environmentally friendly Suzuki aryl-aryl cross-coupling reaction. Curr. Org. Chem., 2005, 9, 535-553.
[http://dx.doi.org/10.2174/1385272053544407]
[22]
Cravotto, G.; Borretto, E.; Oliverio, M.; Procopio, A.; Penoni, A. Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. Catal. Commun., 2015, 63, 2-9.
[http://dx.doi.org/10.1016/j.catcom.2014.12.014]
[23]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[24]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Chem. Comm., 1979, 4(19), 866-867.
[25]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20, 3437-3440.
[http://dx.doi.org/10.1016/S0040-4039(01)95429-2]
[26]
Martin, R.; Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res., 2008, 41(11), 1461-1473.
[http://dx.doi.org/10.1021/ar800036s] [PMID: 18620434]
[27]
Maluenda, I.; Navarro, O. Recent developments in the Suzuki-Miyaura reaction: 2010-2014. Molecules, 2015, 20(5), 7528-7557.
[http://dx.doi.org/10.3390/molecules20057528] [PMID: 25919276]
[28]
Zhang, G.; Luan, Y.; Han, X.; Wang, Y.; Wen, X.; Ding, C. Pd(L-proline)2 complex: an efficient catalyst for Suzuki-Miyaura coupling reaction in neat water. Appl. Organomet. Chem., 2014, 28, 332-336.
[http://dx.doi.org/10.1002/aoc.3129]
[29]
Leadbeater, N.E.; Marco, M. Rapid and amenable suzuki coupling reaction in water using microwave and conventional heating. J. Org. Chem., 2003, 68(3), 888-892.
[http://dx.doi.org/10.1021/jo0264022] [PMID: 12558412]
[30]
Rajagopal, R.; Jarikote, D.V.; Srinivasan, K.V. Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. Chem. Commun. (Camb.), 2002, (6), 616-617.
[http://dx.doi.org/10.1039/b111271f] [PMID: 12120150]
[31]
Polácková, V.; Hut’ka, M.; Toma, S. Ultrasound effect on Suzuki reactions. 1. Synthesis of unsymmetrical biaryls. Ultrason. Sonochem., 2005, 12(1-2), 99-102.
[http://dx.doi.org/10.1016/j.ultsonch.2004.05.011] [PMID: 15474960]
[32]
Cravotto. Gi.; Beggiato. M.; Penoni. A.; Palmisano. G.; Stefano. T.; Le’ve^que. J.-M.; Bonrath. W., High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl-aryl couplings. Tetrahedron Lett., 2005, 46, 2267-2271.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.015]
[33]
Orfão, A.T.G.; Stefani, H.A. Palladium-catalyzed cross-coupling of vinylictellurides and potassium vinyltrifluoroborate salt: synthesis of 1,3-dienes. Tetrahedron Lett., 2006, 47, 5075-5078.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.088]
[34]
Cella, R.; Stefani, H.A. Ultrasound-assisted synthesis of Z and E stilbenes by Suzuki cross-coupling reactions of organotellurides with potassium organotrifluoroborate salts. Tetrahedron, 2006, 62, 5656-5662.
[http://dx.doi.org/10.1016/j.tet.2006.03.090]
[35]
De Souza, L.F.; Silva, L.C.; Antunes, O.A.C. Phosphine-free Suzuki cross-coupling reactions under ultrasound. J. Organomet. Chem., 2007, 692, 3104-3107.
[http://dx.doi.org/10.1016/j.jorganchem.2007.03.029]
[36]
de Souza, A.L.F.; da Silva, L.C.; Oliveira, B.L.; Antunes, O.A.C. Microwave- and ultrasound-assisted Suzuki-Miyaura cross-coupling reactions catalyzed by Pd/PVP. Tetrahedron Lett., 2008, 49, 3895-3898.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.061]
[37]
Guadagnin, R.C.; Suganuma, C.A.; Singh, F.V.; Vieira, A.S.; Cella, R.; Stefani, H.A. Chemoselective cross-coupling Suzuki-Miyaura reaction of (Z)-(2-chlorovinyl)tellurides and potassium aryltrifluoroborate salts. Tetrahedron Lett., 2008, 49, 4713-4716.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.129]
[38]
Singh, F.V.; Weber, M.; Guadagnin, R.C.; Stefani, H.A. Ultrasound-assisted synthesis of functionalized 1,3-enynes by palladium-catalyzed cross-coupling reaction of α-styrylbutyltelluride with alkynyltrifluoroborate salts. Synlett, 2008, 12, 1889-1893.
[39]
Azua, A.; Mata, J.A.; Heymes, P. Palladium N‐heterocyclic carbene catalysts for the ultrasound‐promoted Suzuki-Miyaura reaction in glycerol. Adv. Synth. Catal., 2013, 355, 1107-1116.
[http://dx.doi.org/10.1002/adsc.201201047]
[40]
Shil, A.K.; Guha, N.R.; Sharma, D.; Das, P. A solid supported Pd(0) nano/microparticle catalyzed ultrasound induced continuous flow technique for large scale Suzuki reactions. RSC Advances, 2013, 3, 13671-13676.
[http://dx.doi.org/10.1039/c3ra41364k]
[41]
Ghotbinejad, M.; Khosropour, A.R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Ultrasound-assisted C–C coupling reactions catalyzed by unique SPION-A-Pd(EDTA) as a robustnanocatalyst. RSC Advances, 2014, 4, 8590-8596.
[http://dx.doi.org/10.1039/c3ra45790g]
[42]
Panahi, L.; Naimi-Jamal, M.R.; Mokhtari, J. Ultrasound-assisted Suzuki-Miyaura reaction catalyzed by Pd@Cu2(NH2-BDC)2(DABCO). J. Organomet. Chem., 2018, 868, 36-46.
[http://dx.doi.org/10.1016/j.jorganchem.2018.04.038]
[43]
Kiani, F.; Naeimi, H. Ultrasonic accelerated coupling reaction using magnetically recyclable bis (propyl molononitril) Ni complex nanocatalyst: a novel, green and efficient synthesis of biphenyl derivatives. Ultrason. Sonochem., 2018, 48, 267-274.
[http://dx.doi.org/10.1016/j.ultsonch.2018.06.001] [PMID: 30080550]
[44]
Baran, T. Ultrasound-accelerated synthesis of biphenyl compounds using novel Pd(0) nanoparticles immobilized on bio-composite. Ultrason. Sonochem., 2018, 45, 231-237.
[http://dx.doi.org/10.1016/j.ultsonch.2018.03.017] [PMID: 29705317]
[45]
Labiadh, H. Saidb. K.; Chaabanea. T.B.; Salem. R. Ben. Development of a highly active and reusable heterogeneous catalyst based on ZnS-doped Ni (5%) for Suzuki cross-coupling reactions. J. Mater. Environ. Sci., 2016, 7, 4570-4579.
[46]
Sancheti, S.V.; Gogate, P.R. Intensification of heterogeneously catalyzed Suzuki-Miyaura cross-coupling reaction using ultrasound: understanding effect of operating parameters. Ultrason. Sonochem., 2018, 40(Pt B), 30-39.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.037] [PMID: 28214134]
[47]
Said, K. Salem. R.B. Ultrasonic activation of Suzuki and Hiyama cross-coupling reactions catalyzed by palladium. Adv. Chem. Eng. Sci., 2016, 6, 111-123.
[http://dx.doi.org/10.4236/aces.2016.62013]
[48]
Azarian, D.; Dua, S.S.; Eaborn, C.; Walton, D.R.M. Reactions of organic halides with R3 MMR3 compounds (M = Si, Ge, Sn) in the presence of tetrakis(triarylphosphine)palladium. J. Organomet. Chem., 1976, 117, C55-C75.
[http://dx.doi.org/10.1016/S0022-328X(00)91902-8]
[49]
(a)Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Reactions of allyltin compounds iii. allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine) Pd(0). Chem. Lett., 1977, 6(3), 301-302.
[http://dx.doi.org/10.1246/cl.1977.301]
(b)Kosugi, M.; Shimizu, Y.; Migita, T. Alkylation, arylation, and vinylation of acyl chlorides by means of organotin compounds in the presence of catalytic amounts of tetrakis(triphenylphosphine) Pd(0). Chem. Lett., 1977, 6(12), 1423-1424.
[http://dx.doi.org/10.1246/cl.1977.1423]
[50]
Milstein, D.; Stille, J.K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc., 1978, 100, 3636-3638.
[http://dx.doi.org/10.1021/ja00479a077]
[51]
Cordovilla, C.; Bartolome, C.; Martínez-Ilarduya, J.M. ́ Espinet, P. The Stille reaction, 38 years later. ACS Catal., 2015, 5, 3040-3053.
[http://dx.doi.org/10.1021/acscatal.5b00448]
[52]
Evans, D.A.; Black, W.D. Total synthesis of (+)-A83543A. J. Am. Chem. Soc., 1993, 115, 4497-4513. [(+)-lepicidin A].
[http://dx.doi.org/10.1021/ja00064a011]
[53]
Harris, P.A.; Cheung, M.; Hunter, R.N., III; Brown, M.L.; Veal, J.M.; Nolte, R.T.; Wang, L.; Liu, W.; Crosby, R.M.; Johnson, J.H.; Epperly, A.H.; Kumar, R.; Luttrell, D.K.; Stafford, J.A. Discovery and evaluation of 2-anilino-5-aryloxazoles as a novel class of VEGFR2 kinase inhibitors. J. Med. Chem., 2005, 48(5), 1610-1619.
[http://dx.doi.org/10.1021/jm049538w] [PMID: 15743202]
[54]
Stille, J.K. Palladium catalyzed coupling of organotin reagents with organic electrophiles. Pure Appl. Chem., 1985, 57, 1771-1780.
[http://dx.doi.org/10.1351/pac198557121771]
[55]
Ma, K.; Martin, B.S.; Yin, X.; Dai, M. Natural product syntheses via carbonylative cyclizations. Nat. Prod. Rep., 2019, 36(1), 174-219.
[http://dx.doi.org/10.1039/C8NP00033F] [PMID: 29923586]
[56]
Domini, C.E.; Silbestri, G.F.; Fernández Band, B.; Chopa, A.B. Ultrasound-assisted synthesis of unsymmetrical biaryls by Stille cross-coupling reactions. Ultrason. Sonochem., 2012, 19(3), 410-414.
[http://dx.doi.org/10.1016/j.ultsonch.2011.08.013] [PMID: 22019789]
[57]
Luong, M.; Domini, C.E.; Silbestri, G.F.; Chopa, A.B. Ultrasound-assisted synthesis of benzophenones by Stille cross-coupling reactions. Optimization via experimental design. J. Organomet. Chem., 2013, 723, 43-48.
[http://dx.doi.org/10.1016/j.jorganchem.2012.10.026]
[58]
Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn., 1971, 44, 581-581.
[http://dx.doi.org/10.1246/bcsj.44.581]
[59]
Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37, 2320-2322.
[http://dx.doi.org/10.1021/jo00979a024]
[60]
Littke, A.F.; Fu, G.C. A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. J. Am. Chem. Soc., 2001, 123(29), 6989-7000.
[http://dx.doi.org/10.1021/ja010988c] [PMID: 11459477]
[61]
Masters, J.J.; Link, J.T.; Snyder, L.B.; Young, W.B.; Danishefsky, S.J. A total synthesis of taxol. Angew. Chem., 1995, 34, 1723-1726.
[http://dx.doi.org/10.1002/anie.199517231]
[62]
Fu, X.; Zhang, S.; Yin, J.; McAllister, T.L.; Jiang, S.A.; Tann, C-H.; Thiruvengadam, T.K.; Zhang, F. First examples of a tosylate in the palladium-catalyzed Heck cross coupling reaction. Tetrahedron Lett., 2002, 43, 573-576.
[http://dx.doi.org/10.1016/S0040-4039(01)02240-7]
[63]
Beletskaya, I.P.; Cheprakov, A.V. The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313]
[64]
Vulovic, B.; Watson, D.A. Heck-like reactions involving heteroatomic electrophiles. Eur. J. Org. Chem., 2017, 2017(34), 4996-5009.
[http://dx.doi.org/10.1002/ejoc.201700485] [PMID: 29104453]
[65]
Deshmukh, R.R.; Rajagopal, R.; Srinivasan, K.V. Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. Chem. Commun. (Camb.), 2001, (17), 1544-1545.
[http://dx.doi.org/10.1039/b104532f] [PMID: 12240373]
[66]
Zhang, Z.; Zha, Z.; Gan, C.; Pan, C.; Zhou, Y.; Wang, Z.; Zhou, M.M. Catalysis and regioselectivity of the aqueous Heck reaction by Pd(0) nanoparticles under ultrasonic irradiation. J. Org. Chem., 2006, 71(11), 4339-4342.
[http://dx.doi.org/10.1021/jo060372b] [PMID: 16709085]
[67]
Garella, D.; Tagliapietra, S.; Mehta, V.P.; Van Der Eycken, E.; Cravotto, G. Straight forward functionalization of 3,5-dichloro-2-pyrazinones under simultaneous microwave and ultrasound Irradiation. Synthesis, 2010, 136-140.
[68]
An, G.X. Ji.; Han, J.; Pan, Y. Ultrasound-promoted ligand-free Heck reaction in water. Synth. Commun., 2011, 411, 464-1471.
[69]
Bhavani, S.; Ashfaq, M.A.; Rambabu, D.; Basaveswara Rao, M.V.; Pal, M. Ultrasound assisted Mizoroki-Heck reaction catalyzed by Pd/C: synthesis of 3-vinylindoles as potential cytotoxic agents. Arabian. J. Chem., 2019, 12(8), 3836-3846.
[http://dx.doi.org/10.1016/j.arabjc.2016.02.002]
[70]
Prasad, A.S.G.; Bhaskara Rao, T.; Rambabu, D.; Basaveswara Rao, M.V.; Pal, M. Ultrasound assisted Mizoroki-Heck coupling/C-H amination in a single pot: direct synthesis of indolederivatives. Arabian. J. Chem., 2016, 12(8), 4320-4330.
[http://dx.doi.org/10.1016/j.arabjc.2016.12.020]
[71]
Rezaei, S.J.T. PEDOT nanofiber/Pd(0) composite-mediated aqueous Mizoroki-Heck reactions under ultrasonic irradiation: an efficient and green method for the C–C cross-coupling reactions. J. Iran Chem. Soc., 2017, 14, 585-594.
[http://dx.doi.org/10.1007/s13738-016-1007-7]
[72]
Naeimi, H.; Kiani, F. Magnetically thiamine palladium complex nanocomposites as an effective recyclable catalyst for facile sonochemical cross coupling reaction Palladium catalyzed sonochemical cross coupling reaction. Appl. Organomet. Chem., 2019, 33(3) e4742
[http://dx.doi.org/10.1002/aoc.4742]
[73]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16, 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[74]
Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev., 2011, 40(10), 5084-5121.
[http://dx.doi.org/10.1039/c1cs15071e] [PMID: 21655588]
[75]
Sonogashira, K. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1-2), 46-49.
[http://dx.doi.org/10.1016/S0022-328X(02)01158-0]
[76]
Liang, B.; Dai, M.; Chen, J.; Yang, Z. Copper-free Sonogashira coupling reaction with PdCl2 in water under aerobic conditions. J. Org. Chem., 2005, 70(1), 391-393.
[http://dx.doi.org/10.1021/jo048599z] [PMID: 15624959]
[77]
Mori, S.; Yanase, T.; Aoyagi, S.; Monguchi, Y.; Maegawa, T.; Sajiki, H. Ligand-free Sonogashira coupling reactions with heterogeneous Pd/C as the catalyst. Chemistry, 2008, 14(23), 6994-6999.
[http://dx.doi.org/10.1002/chem.200800387] [PMID: 18604848]
[78]
Sindhu, K.S.; Thankachan, A.P.; Thomas, A.M.; Anilkumar, G. Iron-catalyzed Sonogashira type cross-coupling reaction of Aryl iodides with terminal alkynes in water under aerobic conditions. ChemistrySelect, 2016, 1, 556-559.
[http://dx.doi.org/10.1002/slct.201600051]
[79]
(a)Thomas, A.M.; Sujatha, A.; Anilkumar, G. Recent advances and perspectives in copper-catalyzed Sonogashira coupling reactions. RSC Advances, 2014, 4, 21688-21698.
[http://dx.doi.org/10.1039/C4RA02529F]
(b)Thankachan, A.P.; Sindhu, K.S.; Krishnan, K.K.; Gopinathan, A. An efficient zinc-catalyzed cross-coupling reaction of aryl iodides with terminal aromatic alkynes. Tetrahedron Lett., 2015, 56, 5525-5528.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.027]
(c)Carril, M.; Correa, A.; Bolm, C. Iron-catalyzed Sonogashira reactions. Angew. Chem. Int. Ed. Engl., 2008, 47(26), 4862-4865.
[http://dx.doi.org/10.1002/anie.200801539] [PMID: 18506862]
[80]
Gholap, A.R.; Venkatesan, K.; Pasricha, R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Copper- and ligand-free Sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasound irradiation. J. Org. Chem., 2005, 70(12), 4869-4872.
[http://dx.doi.org/10.1021/jo0503815] [PMID: 15932333]
[81]
Palimkar, S.S.; More, V.S.; Srinivasan, K.V. Ultrasound promoted copper-, ligand- and amine-free synthesis of benzo[b]furans/nitro benzo[b]furans via Sonogashira coupling-5-endo-dig-cyclization. Ultrason. Sonochem., 2008, 15(5), 853-862.
[http://dx.doi.org/10.1016/j.ultsonch.2007.10.006] [PMID: 18078777]
[82]
Palimkar, S.S.; Kumar, P.H.; Lahoti, R.J.; Srinivasan, K.V. Ligand-, copper-, and amine-free one-pot synthesis of 2-substituted indoles via Sonogashira coupling 5-endo-dig cyclization. Tetrahedron, 2006, 62, 5109-5115.
[http://dx.doi.org/10.1016/j.tet.2006.03.035]
[83]
Fu, N. Zhang. Y.; Yang. D.; Chen. B.; Wu. Xiaoli, A rapid synthesis of 1-ferrocenyl-2-arylacetylenes under ultrasound irradiation. Catal. Commun., 2008, 9, 976-979.
[http://dx.doi.org/10.1016/j.catcom.2007.09.039]
[84]
Shaabani, A.; Mahyari, M. Pd-Co bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 9303-9311.
[http://dx.doi.org/10.1039/c3ta11706e]
[85]
Naeimi, H.; Kiani, F. Hexamethylenetetramine Copper Diiodide Immobilized on Graphene Oxide Nanocomposite as recyclable catalyst for Sonochemical green synthesis of diarylethynes. ChemistrySelect, 2018, 3, 13311-13318.
[http://dx.doi.org/10.1002/slct.201802512]
[86]
Dutta, M.M.; Phukan, P. Cu-doped CoFe2O4 nanoparticles as magnetically recoverable catalyst for CN cross-coupling reaction. Catal. Commun., 2018, 109, 38-42.
[http://dx.doi.org/10.1016/j.catcom.2018.02.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy