Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Study of Antihypertensive Activity of Anvillea radiata in L-Name-Induced Hypertensive Rats and HPLC-ESI-MS Analysis

Author(s): Mourad Akdad, Mohammed Ajebli, Andrea Breuer, Farid Khallouki, Robert W. Owen and Mohamed Eddouks*

Volume 20, Issue 7, 2020

Page: [1059 - 1072] Pages: 14

DOI: 10.2174/1871530319666191115114023

Price: $65

Abstract

Objective: This study aimed to evaluate the effect of the aqueous extract of Anvillea radiate (A. radiata) aerial parts (AEAR) on arterial blood pressure in normotensive and hypertensive rats.

Methods: The effect of the acute and sub-chronic administration of AEAR on the following blood pressure parameters: systolic blood pressure (SBP), mean blood pressure (MBP), diastolic blood pressure (DBP), and heart rate (HR) was evaluated in normotensive and L-NAME induced hypertensive rats. In the second experiment, the vasorelaxant effect of AEAR was assessed in isolated aortic rings from rats with functional endothelium pre-contracted with epinephrine (EP) or KCl, and six antagonists/ inhibitors were used to explore the mechanisms of action involved in the vasorelaxant effect. In order to determine the phytochemical contents of Anvillea radiata, HPLC-ESI-MS analysis was conducted.

Results: Daily oral administration of AEAR (100 mg/kg) provoked a significant decrease in SBP, MBP, and DBP without affecting HR in hypertensive rats. In addition, AEAR (0.08-0.64 mg/ml) revealed a vasorelaxant effect in thoracic aortic rings pre-contracted by EP (10 μM) or KCl (80 mM). This effect was reduced in the presence of Nifedipine, L-Name or Methylene blue. The polyphenolic compounds of AEAR were determined.

Conclusion: This study revealed that AEAR possesses a potent antihypertensive activity and its vasorelaxant activity seems to be mediated through Ca2+ channels, direct nitric oxide (NO), and NO/cGMP pathways. Chlorogenic acid and caffeic acid identified in A. radiata could be at least partially responsible for the antihypertensive activity of this extract.

Keywords: Antihypertensive, vasorelaxation, Anvillea radiata, calcium channels, medicinal plant, direct nitric oxide.

Graphical Abstract

[1]
WHO. Global Atlas on cardiovascular disease prevention and control; World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization; WHO press: Geneva, Switzerland, 2013.
[2]
Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr; Roccella, E.J. National high blood pressure education program coordinating committee. The sev-enth report of the joint national committee on prevention, de-tection, evaluation, and treatment of high blood pressure: the JNC 7 report. Hypertension, 2003, 42(6), 1206-1252.
[http://dx.doi.org/10.1161/01.HYP.0000107251.49515.c2] [PMID: 14656957]
[3]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[4]
Telli, A.; Esnault, M.A.; Khelil, A.O. An ethnopharmacologi-cal survey of plants used in traditional diabetes treatment in southeastern Algeria (Ouargla province). J. Arid Environ., 2016, 127, 82-92.
[http://dx.doi.org/10.1016/j.jaridenv.2015.11.005]
[5]
Hebi, M.; Eddouks, M. Glucose Lowering Activity of Anvillea Radiata Coss & Durieu in Diabetic Rats. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(1), 71-80.
[http://dx.doi.org/10.2174/1871529X18666180223100427] [PMID: 29473527]
[6]
Kandouli, C.; Cassien, M.; Mercier, A.; Delehedde, C.; Ricquebourg, E.; Stocker, P.; Mekaouche, M.; Leulmi, Z.; Mechakra, A.; Thétiot-Laurent, S.; Culcasi, M.; Pietri, S. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillea radiata in high-fat-diet fed mice. J. Ethnopharmacol., 2017, 207, 251-267.
[http://dx.doi.org/10.1016/j.jep.2017.06.042] [PMID: 28669771]
[7]
Lakhdar, M.; Harche, K.; Benlarbi, M.; Rahmani, L.; Sarhani, A. Phytochemical Analysis and Antifungal Activity of Anvil-lea Radiata. World Appl. Sci. J., 2013, 26(2), 165-17.
[8]
Hebi, M.; Eddouks, M. Study of Hypolipidemic and Antioxi-dant Activities of Anvillea radiataCoss&Durieu in Diabetic Rats. Immunol. Endocr. Metab. Agents Med. Chem., 2017, 17(2), 140-148.
[http://dx.doi.org/10.2174/1871522218666180319163700]
[9]
Saoud, D.H.; Jelassi, A.; Hlila, M.B.; Goudjil, M.B.; Ladjel, S.; Jannet, H.B. Biological activities of extracts and metabolites isolated from AnvillearadiataCoss. &Dur. (Asteraceae). S. Afr. J. Bot., 2019, 121, 386-393.
[http://dx.doi.org/10.1016/j.sajb.2018.10.033]
[10]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019. 242112039
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[11]
Khallouki, F.; Haubner, R.; Hull, W.E.; Erben, G.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br. Food Chem. Toxicol., 2007, 45(3), 472-485.
[http://dx.doi.org/10.1016/j.fct.2006.09.011] [PMID: 17084499]
[12]
Khallouki, F.; Haubner, R. Phytochemical composition and antioxidant capacity of vari-ous botanical parts of the fruits of Prunus domestica L Lorraine region of Europe Food Chemistry 133 2012, 697-706.
[13]
Potue, P.; Wunpathe, C.; Maneesai, P.; Kukongviriyapan, U.; Prachaney, P.; Pakdeechote, P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct., 2019, 10(4), 1880-1892.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[14]
Aekthammarat, D.; Pannangpetch, P.; Tangsucharit, P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine, 2019, 54, 9-16.
[http://dx.doi.org/10.1016/j.phymed.2018.10.023] [PMID: 30668387]
[15]
Bilanda, D.C.; Dzeufiet, P.D.D.; Kouakep, L.; Aboubakar, B.F.O.; Tedong, L.; Kamtchouing, P.; Dimo, T. Bidens pilosa Ethylene acetate extract can protect against L-NAME-induced hypertension on rats. BMC Complement. Altern. Med., 2017, 17(1), 479.
[http://dx.doi.org/10.1186/s12906-017-1972-0] [PMID: 29017485]
[16]
Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 2007, 15(6), 252-259.
[http://dx.doi.org/10.1007/s10787-007-0013-x] [PMID: 18236016]
[17]
Malmström, R.E.; Weitzberg, E. Endothelin and nitric oxide in inflammation: could there be a need for endothelin blocking anti-inflammatory drugs? J. Hypertens., 2004, 22(1), 27-29.
[http://dx.doi.org/10.1097/00004872-200401000-00006] [PMID: 15106788]
[18]
Grisham, M.B.; Miles, A.M. Effects of aminosalicylates and immunosuppressive agents on nitric oxide-dependent N-nitrosation reactions. Biochem. Pharmacol., 1994, 47(10), 1897-1902.
[http://dx.doi.org/10.1016/0006-2952(94)90320-4] [PMID: 8204107]
[19]
Stichtenoth, D.O.; Frölich, J.C. Nitric oxide and inflammatory joint diseases. Br. J. Rheumatol., 1998, 37(3), 246-257.
[http://dx.doi.org/10.1093/rheumatology/37.3.246] [PMID: 9566663]
[20]
Gobert, A.P.; Mersey, B.D.; Cheng, Y.; Blumberg, D.R.; Newton, J.C.; Wilson, K.T. Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J. Immunol., 2002, 168(12), 6002-6006.
[http://dx.doi.org/10.4049/jimmunol.168.12.6002] [PMID: 12055207]
[21]
Vane, J.; Corin, R.E. Prostacyclin: a vascular mediator. Eur. J. Vasc. Endovasc. Surg., 2003, 26(6), 571-578.
[http://dx.doi.org/10.1016/S1078-5884(03)00385-X] [PMID: 14603414]
[22]
Humbert, M.; Ghofrani, H.A. The molecular targets of approved treatments for pulmonary arterial hypertension. Thorax, 2016, 71(1), 73-83.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207170] [PMID: 26219978]
[23]
Alfranca, A.; Iñiguez, M.A.; Fresno, M.; Redondo, J.M. Prostanoid signal transduction and gene expression in the endothelium: role in cardiovascular diseases. Cardiovasc. Res., 2006, 70(3), 446-456.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.020] [PMID: 16458868]
[24]
Tan, C.S.; Loh, Y.C.; Ng, C.H.; Ch’ng, Y.S.; Asmawi, M.Z.; Ahmad, M.; Yam, M.F. Anti-hypertensive and vasodilatory effects of amended Banxia Baizhu Tianma Tang. Biomed. Pharmacother., 2018, 97, 985-994.
[http://dx.doi.org/10.1016/j.biopha.2017.11.021] [PMID: 29136777]
[25]
Santos, B.A.; Roman-Campos, D.; Carvalho, M.S.; Miranda, F.M.; Carneiro, D.C.; Cavalcante, P.H.; Cândido, E.A.; Filho, L.X.; Cruz, J.S.; Gondim, A.N. Cardiodepressive effect elicited by the essential oil of Alpinia speciosa is related to L-type Ca²+ current blockadePhytomedicine; 2011, 18 pp. (7)539-543..
[26]
Boukhris, M.A.; Destandau, E.; Hakmaoui, A.E.; Rhaffari, L.E.; Elfakir, C. A dereplication strategy for the identification of new phenolic compounds from Anvillea radiata (Coss. & Durieu). C. R. Chim., 2016, 19, 1124-1132.
[http://dx.doi.org/10.1016/j.crci.2016.05.019]
[27]
Suzuki, A.; Yamamoto, N.; Jokura, H.; Yamamoto, M.; Fujii, A.; Tokimitsu, I.; Saito, I. Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J. Hypertens., 2006, 24(6), 1065-1073.
[http://dx.doi.org/10.1097/01.hjh.0000226196.67052.c0] [PMID: 16685206]
[28]
Bankar, G.R.; Nayak, P.G.; Bansal, P.; Paul, P.; Pai, K.S.; Singla, R.K.; Bhat, V.G. Vasorelaxant and antihypertensive effect of Cocos nucifera Linn. endocarp on isolated rat thoracic aorta and DOCA salt-induced hypertensive rats. J. Ethnopharmacol., 2011, 134(1), 50-54.
[http://dx.doi.org/10.1016/j.jep.2010.11.047] [PMID: 21129472]
[29]
Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin. Exp. Hypertens., 2006, 28(5), 439-449.
[http://dx.doi.org/10.1080/10641960600798655] [PMID: 16820341]
[30]
Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; Shaheen, U.; Patel, S.; Fischmeister, R.; Legssyer, A. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother., 2017, 93, 62-69.
[http://dx.doi.org/10.1016/j.biopha.2017.06.015] [PMID: 28623784]
[31]
Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother., 2019, 109, 450-458.
[http://dx.doi.org/10.1016/j.biopha.2018.10.044] [PMID: 30399581]
[32]
Rawat, P.; Singh, P.K.; Vipin, K. Antihypertensive Medicinal Plants and their Modof Action. J. Herb. Med., 2016, 6(3), 107-118.
[http://dx.doi.org/10.1016/j.hermed.2016.06.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy