Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Emerging Role of Exosomal Non-coding RNAs in Musculoskeletal Diseases

Author(s): Chao Tu, Jieyu He, Ruiqi Chen and Zhihong Li*

Volume 25, Issue 42, 2019

Page: [4523 - 4535] Pages: 13

DOI: 10.2174/1381612825666191113104946

Price: $65

Abstract

Exosomes are phospholipid bilayer-enclosed membrane vesicles derived and constitutively secreted by various metabolically active cells. They are capable of mediating hetero- and homotypic intercellular communication by transferring multiple cargos from donor cells to recipient cells. Nowadays, non-coding RNAs (ncRNAs) have emerged as novel potential biomarkers or disease-targeting agents in a variety of diseases. However, the lack of effective delivery systems may impair their clinical application. Recently, accumulating evidence demonstrated that ncRNAs could be efficiently delivered to recipient cells using exosomes as a carrier, and therefore can exert a critical role in musculoskeletal diseases including osteoarthritis, rheumatoid arthritis, osteoporosis, muscular dystrophies, osteosarcoma and other diseases. Herein, we present an extensive review of biogenesis, physiological relevance and clinical implication of exosome-derived ncRNAs in musculoskeletal diseases.

Keywords: Exosome, lncRNA, miRNA, osteosarcoma, osteoarthritis, rheumatoid arthritis.

[1]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[2]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[3]
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20.
[PMID: 3597417]
[4]
Zhou R, Chen KK, Zhang J, et al. The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer 2018; 17(1): 75.
[http://dx.doi.org/10.1186/s12943-018-0823-z] [PMID: 29558960]
[5]
Shimbo K, Miyaki S, Ishitobi H, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 2014; 445(2): 381-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.007] [PMID: 24525123]
[6]
Torreggiani E, Roncuzzi L, Perut F, Zini N, Baldini N. Multimodal transfer of MDR by exosomes in human osteosarcoma. Int J Oncol 2016; 49(1): 189-96.
[http://dx.doi.org/10.3892/ijo.2016.3509] [PMID: 27176642]
[7]
Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol 2017; 67: 56-64.
[http://dx.doi.org/10.1016/j.semcdb.2016.11.008] [PMID: 27871993]
[8]
Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 2015; 77: 13-27.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071641] [PMID: 25293529]
[9]
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[10]
Lin X, Xu F, Cui RR, et al. Arterial calcification is regulated via an miR-204/DNMT3a regulatory circuit both in vitro and in female mice. Endocrinology 2018; 159(8): 2905-16.
[http://dx.doi.org/10.1210/en.2018-00320] [PMID: 29850805]
[11]
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 2016; 96(4): 1297-325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[12]
Elshelmani H, Rani S. Exosomal microRNA discovery in age-related macular degeneration. Methods Mol Biol 2017; 1509: 93-113.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_10] [PMID: 27826921]
[13]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285(23): 17442-52.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[14]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[15]
Wang Y, Yu D, Liu Z, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 2017; 8(1): 189.
[http://dx.doi.org/10.1186/s13287-017-0632-0] [PMID: 28807034]
[16]
Behera J, Tyagi N. Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience 2018; 5(5-6): 181-95.
[PMID: 30035185]
[17]
Peng YQ, Xiong D, Lin X, et al. Oestrogen inhibits arterial calcification by promoting autophagy. Sci Rep 2017; 7(1): 3549.
[http://dx.doi.org/10.1038/s41598-017-03801-x] [PMID: 28615727]
[18]
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-β signaling in bone remodeling and osteosarcoma progression. J Clin Med 2016; 5(11): 96.
[http://dx.doi.org/10.3390/jcm5110096] [PMID: 27827889]
[19]
Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev 2019; 4(6): 221-9.
[http://dx.doi.org/10.1302/2058-5241.4.180102] [PMID: 31210964]
[20]
Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 2010; 70(23): 9621-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1722] [PMID: 21098712]
[21]
Sun H, Hu S, Zhang Z, Lun J, Liao W, Zhang Z. Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J Cell Biochem 2019; 120(1): 171-81.
[http://dx.doi.org/10.1002/jcb.27289] [PMID: 30277597]
[22]
Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 2012; 28: 337-62.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154152] [PMID: 22831642]
[23]
Edgar JR, Eden ER, Futter CE. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 2014; 15(2): 197-211.
[http://dx.doi.org/10.1111/tra.12139] [PMID: 24279430]
[24]
Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol 2012; 83(11): 1484-94.
[http://dx.doi.org/10.1016/j.bcp.2011.12.037] [PMID: 22230477]
[25]
Jaiswal JK, Andrews NW, Simon SM. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 2002; 159(4): 625-35.
[http://dx.doi.org/10.1083/jcb.200208154] [PMID: 12438417]
[26]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3): 1161-72.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[27]
Brouwers JF, Aalberts M, Jansen JW, et al. Distinct lipid compositions of two types of human prostasomes. Proteomics 2013; 13(10-11): 1660-6.
[http://dx.doi.org/10.1002/pmic.201200348] [PMID: 23404715]
[28]
Carayon K, Chaoui K, Ronzier E, et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem 2011; 286(39): 34426-39.
[http://dx.doi.org/10.1074/jbc.M111.257444] [PMID: 21828046]
[29]
Palma J, Yaddanapudi SC, Pigati L, et al. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res 2012; 40(18): 9125-38.
[http://dx.doi.org/10.1093/nar/gks656] [PMID: 22772984]
[30]
Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119(3): 756-66.
[http://dx.doi.org/10.1182/blood-2011-02-338004] [PMID: 22031862]
[31]
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38(20): 7248-59.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[32]
Nolte-‘t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ’t Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012; 40(18): 9272-85.
[http://dx.doi.org/10.1093/nar/gks658] [PMID: 22821563]
[33]
Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012; 109(31): E2110-6.
[http://dx.doi.org/10.1073/pnas.1209414109] [PMID: 22753494]
[34]
Tu C, He J, Wu B, Wang W, Li Z. An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 2019; 113: 1-12.
[http://dx.doi.org/10.1016/j.cyto.2018.06.019] [PMID: 30539776]
[35]
Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5: 16044.
[http://dx.doi.org/10.1038/boneres.2016.44] [PMID: 28149655]
[36]
Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis Lancet 2015; 386(9991): 376-87.
[http://dx.doi.org/10.1016/S0140-6736(14)60802-3] [PMID: 25748615]
[37]
Yuan Y, Yan G, Gong R, et al. Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 2017; 43(1): 237-46.
[http://dx.doi.org/10.1159/000480344] [PMID: 28854417]
[38]
Duan ZX, Huang P, Tu C, et al. MicroRNA-15a-5p regulates the development of osteoarthritis by targeting PTHrP in chondrocytes. BioMed Res Int 2019; 2019 3904923
[http://dx.doi.org/10.1155/2019/3904923] [PMID: 30949498]
[39]
Liu Y, Zou R, Wang Z, Wen C, Zhang F, Lin F. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J 2018; 475(22): 3629-38.
[http://dx.doi.org/10.1042/BCJ20180675] [PMID: 30341166]
[40]
Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep 2017; 7(1): 2029.
[http://dx.doi.org/10.1038/s41598-017-01905-y] [PMID: 28515465]
[41]
Burke J, Kolhe R, Hunter M, Isales C, Hamrick M, Fulzele S. Stem cell-derived exosomes: a potential alternative therapeutic agent in orthopaedics. Stem Cells Int 2016; 20165802529
[http://dx.doi.org/10.1155/2016/5802529] [PMID: 26904130]
[42]
Tofiño-Vian M, Guillén MI, Pérez Del Caz MD, Silvestre A, Alcaraz MJ. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cell Physiol Biochem 2018; 47(1): 11-25.
[http://dx.doi.org/10.1159/000489739] [PMID: 29763932]
[43]
Gao K, Zhu W, Li H, et al. Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod Rheumatol 2019; 1-7.
[http://dx.doi.org/10.1080/14397595.2019.1651445] [PMID: 31370732]
[44]
Wu J, Kuang L, Chen C, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 2019; 206: 87-100.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.022] [PMID: 30927715]
[45]
Meng F, Li Z, Zhang Z, et al. MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics 2018; 8(10): 2862-83.
[http://dx.doi.org/10.7150/thno.23547] [PMID: 29774080]
[46]
Mao G, Hu S, Zhang Z, et al. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med 2018; 22(11): 5354-66.
[http://dx.doi.org/10.1111/jcmm.13808] [PMID: 30063117]
[47]
Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 2013; 95(12): 1535-41.
[http://dx.doi.org/10.1097/TP.0b013e318291a2da] [PMID: 23680930]
[48]
Chiang ER, Ma HL, Wang JP, Liu CL, Chen TH, Hung SC. Allogeneic mesenchymal stem cells in combination with hyaluronic acid for the treatment of osteoarthritis in rabbits. PLoS One 2016; 11(2) e0149835
[http://dx.doi.org/10.1371/journal.pone.0149835] [PMID: 26915044]
[49]
Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair. Science 2012; 336(6082): 717-21.
[http://dx.doi.org/10.1126/science.1215157] [PMID: 22491093]
[50]
Zhang Y, Pizzute T, Li J, He F, Pei M. sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment - A feasible approach for autologous stem cell based osteoarthritic cartilage repair. Biomaterials 2015; 64: 88-97.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.038] [PMID: 26122165]
[51]
Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC. Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant 2018; 27(3): 349-63.
[http://dx.doi.org/10.1177/0963689717723636] [PMID: 29692195]
[52]
Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther 2018; 9(1): 247.
[http://dx.doi.org/10.1186/s13287-018-1004-0] [PMID: 30257711]
[53]
Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 2017; 7(1): 16214.
[http://dx.doi.org/10.1038/s41598-017-15376-8] [PMID: 29176667]
[54]
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018; 156: 16-27.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.028] [PMID: 29182933]
[55]
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage 2016; 24(12): 2135-40.
[http://dx.doi.org/10.1016/j.joca.2016.06.022] [PMID: 27390028]
[56]
Meirelles LdaS, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009; 20(5-6): 419-27.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.002] [PMID: 19926330]
[57]
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017; 7(1): 180-95.
[http://dx.doi.org/10.7150/thno.17133] [PMID: 28042326]
[58]
Xie Q, Wang Z, Zhou H, et al. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Biomaterials 2016; 75: 279-94.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.042] [PMID: 26513420]
[59]
Huang S, Song X, Li T, et al. Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation. Stem Cell Res Ther 2017; 8(1): 264.
[http://dx.doi.org/10.1186/s13287-017-0719-7] [PMID: 29141683]
[60]
van der Kraan PM. Differential role of transforming growth factor-beta in an osteoarthritic or a healthy joint. J Bone Metab 2018; 25(2): 65-72.
[http://dx.doi.org/10.11005/jbm.2018.25.2.65] [PMID: 29900155]
[61]
Wang R, Xu B, Xu H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle 2018; 17(24): 17.
[http://dx.doi.org/10.1080/15384101.2018.1556063] [PMID: 30526325]
[62]
Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Res Ther 2019; 10(1): 216.
[http://dx.doi.org/10.1186/s13287-019-1341-7] [PMID: 31358056]
[63]
Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop 2018; 42(12): 2865-72.
[http://dx.doi.org/10.1007/s00264-018-4093-6] [PMID: 30128669]
[64]
Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle 2018; 17(21-22): 2411-22.
[http://dx.doi.org/10.1080/15384101.2018.1526603] [PMID: 30324848]
[65]
Wang L, Wang C, Jia X, Yu J. Circulating exosomal mir-17 inhibits the induction of regulatory T Cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem 2018; 50(5): 1754-63.
[http://dx.doi.org/10.1159/000494793] [PMID: 30384383]
[66]
Murata K, Yoshitomi H, Tanida S, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2010; 12(3): R86.
[http://dx.doi.org/10.1186/ar3013] [PMID: 20470394]
[67]
Takamura Y, Aoki W, Satomura A, Shibasaki S, Ueda M. Small RNAs detected in exosomes derived from the MH7A synovial fibroblast cell line with TNF-α stimulation. PLoS One 2018; 13(8)e0201851
[http://dx.doi.org/10.1371/journal.pone.0201851] [PMID: 30096164]
[68]
Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27(6): 847-59.
[http://dx.doi.org/10.1016/j.immuni.2007.10.009] [PMID: 18055230]
[69]
O’Connell RM, Kahn D, Gibson WS, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33(4): 607-19.
[http://dx.doi.org/10.1016/j.immuni.2010.09.009] [PMID: 20888269]
[70]
Bhaumik D, Scott GK, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 2009; 1(4): 402-11.
[http://dx.doi.org/10.18632/aging.100042] [PMID: 20148189]
[71]
Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58(5): 1284-92.
[http://dx.doi.org/10.1002/art.23429] [PMID: 18438844]
[72]
Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103(33): 12481-6.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[73]
Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM. Synovium-derived micrornas regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 2017; 32(3): 461-72.
[http://dx.doi.org/10.1002/jbmr.3005] [PMID: 27676131]
[74]
Pinto M, Carmo AM. CD6 as a therapeutic target in autoimmune diseases: successes and challenges. BioDrugs 2013; 27(3): 191-202.
[http://dx.doi.org/10.1007/s40259-013-0027-4] [PMID: 23568178]
[75]
Kang K, Nam S, Kim B, et al. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes. Biochem Biophys Res Commun 2015; 468(4): 611-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.167] [PMID: 26546825]
[76]
Li X, Liu P, Liu W, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005; 37(9): 945-52.
[http://dx.doi.org/10.1038/ng1614] [PMID: 16056226]
[77]
Kim SJ, Chen Z, Essani AB, et al. Identification of a novel Toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol 2016; 68(5): 1099-110.
[PMID: 26662519]
[78]
Woo CJ, Kingston RE. HOTAIR lifts noncoding RNAs to new levels. Cell 2007; 129(7): 1257-9.
[http://dx.doi.org/10.1016/j.cell.2007.06.014] [PMID: 17604716]
[79]
Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 2015; 15(1): 121-6.
[http://dx.doi.org/10.1007/s10238-013-0271-4] [PMID: 24722995]
[80]
Yang C, Robbins PD. Immunosuppressive exosomes: a new approach for treating arthritis. Int J Rheumatol 2012; 2012573528
[http://dx.doi.org/10.1155/2012/573528] [PMID: 22548070]
[81]
Schorey JS, Bhatnagar S. Exosome function: from tumor immunology to pathogen biology. Traffic 2008; 9(6): 871-81.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00734.x] [PMID: 18331451]
[82]
Spurlock CF III, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol 2014; 66(11): 2947-57.
[http://dx.doi.org/10.1002/art.38805] [PMID: 25077978]
[83]
Zhang HJ, Wei QF, Wang SJ, et al. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int Immunopharmacol 2017; 50: 283-90.
[http://dx.doi.org/10.1016/j.intimp.2017.06.021] [PMID: 28732288]
[84]
Bianco NR, Kim SH, Morelli AE, Robbins PD. Modulation of the immune response using dendritic cell-derived exosomes. Methods Mol Biol 2007; 380: 443-55.
[http://dx.doi.org/10.1007/978-1-59745-395-0_28] [PMID: 17876111]
[85]
Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med 2017; 21(5): 1033-41.
[http://dx.doi.org/10.1111/jcmm.13039] [PMID: 27878944]
[86]
Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 2016; 590(1): 185-92.
[http://dx.doi.org/10.1002/1873-3468.12024] [PMID: 26763102]
[87]
Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res 2013; 28(5): 1180-90.
[http://dx.doi.org/10.1002/jbmr.1845] [PMID: 23225151]
[88]
Davis C, Dukes A, Drewry M, et al. MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng Part A 2017; 23(21-22): 1231-40.
[http://dx.doi.org/10.1089/ten.tea.2016.0525] [PMID: 28363268]
[89]
Ke K, Sul OJ, Rajasekaran M, Choi HS. MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 2015; 81: 237-46.
[http://dx.doi.org/10.1016/j.bone.2015.07.006] [PMID: 26163109]
[90]
Wei J, Li H, Wang S, et al. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev 2014; 23(13): 1452-63.
[http://dx.doi.org/10.1089/scd.2013.0600] [PMID: 24617339]
[91]
Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott CE, Knaus P. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol 2013; 45(3): 696-705.
[http://dx.doi.org/10.1016/j.biocel.2012.12.008] [PMID: 23262291]
[92]
Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 2010; 19(6): 877-85.
[http://dx.doi.org/10.1089/scd.2009.0112] [PMID: 19795981]
[93]
Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep 2016; 6: 21961.
[http://dx.doi.org/10.1038/srep21961] [PMID: 26911789]
[94]
Xu JF, Yang GH, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 2014; 9(12) e114627
[http://dx.doi.org/10.1371/journal.pone.0114627] [PMID: 25503309]
[95]
Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 2012; 287(50): 42084-92.
[http://dx.doi.org/10.1074/jbc.M112.377515] [PMID: 23060446]
[96]
Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009; 24(5): 816-25.
[http://dx.doi.org/10.1359/jbmr.081230] [PMID: 19063684]
[97]
Jiang LB, Tian L, Zhang CG. Bone marrow stem cells-derived exosomes extracted from osteoporosis patients inhibit osteogenesis via microRNA-21/SMAD7. Eur Rev Med Pharmacol Sci 2018; 22(19): 6221-9.
[PMID: 30338786]
[98]
Zhao C, Sun W, Zhang P, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 2015; 12(3): 343-53.
[http://dx.doi.org/10.1080/15476286.2015.1017205] [PMID: 25826666]
[99]
Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19(1): 93-100.
[http://dx.doi.org/10.1038/nm.3026] [PMID: 23223004]
[100]
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 2016; 7: 10872.
[http://dx.doi.org/10.1038/ncomms10872] [PMID: 26947250]
[101]
Soares AR, Santos M. Discovery and function of transfer RNA-derived fragments and their role in disease. Wiley Interdiscip Rev RNA 2017; 8(5): 8.
[http://dx.doi.org/10.1002/wrna.1423] [PMID: 28608481]
[102]
Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23(22): 2639-49.
[http://dx.doi.org/10.1101/gad.1837609] [PMID: 19933153]
[103]
Zhang Y, Cai F, Liu J, et al. Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis. Int J Rheum Dis 2018; 21(9): 1659-69.
[http://dx.doi.org/10.1111/1756-185X.13346] [PMID: 30345646]
[104]
Cao Z, Moore BT, Wang Y, et al. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One 2014; 9(5)e97098
[http://dx.doi.org/10.1371/journal.pone.0097098] [PMID: 24820117]
[105]
Wang Y, Li L, Moore BT, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One 2012; 7(4)e34641
[http://dx.doi.org/10.1371/journal.pone.0034641] [PMID: 22506038]
[106]
Fulzele S, Mendhe B, Khayrullin A, et al. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY) 2019; 11(6): 1791-803.
[http://dx.doi.org/10.18632/aging.101874] [PMID: 30910993]
[107]
Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS One 2017; 12(5) e0178520
[http://dx.doi.org/10.1371/journal.pone.0178520] [PMID: 28542607]
[108]
Edwards JR, Perrien DS, Fleming N, et al. Silent information regulator (Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling. J Bone Miner Res 2013; 28(4): 960-9.
[http://dx.doi.org/10.1002/jbmr.1824] [PMID: 23172686]
[109]
Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem 2017; 292(26): 11021-33.
[http://dx.doi.org/10.1074/jbc.M116.770941] [PMID: 28465350]
[110]
Song H, Li X, Zhao Z, et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett 2019; 19(5): 3040-8.
[http://dx.doi.org/10.1021/acs.nanolett.9b00287] [PMID: 30968694]
[111]
Weilner S, Schraml E, Wieser M, et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 2016; 15(4): 744-54.
[http://dx.doi.org/10.1111/acel.12484] [PMID: 27146333]
[112]
Emery AE. The muscular dystrophies. Lancet 2002; 359(9307): 687-95.
[http://dx.doi.org/10.1016/S0140-6736(02)07815-7] [PMID: 11879882]
[113]
Matsuzaka Y, Tanihata J, Komaki H, et al. Characterization and functional analysis of extracellular vesicles and muscle-abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 myocytes and mdx Mice. PLoS One 2016; 11(12) e0167811
[http://dx.doi.org/10.1371/journal.pone.0167811] [PMID: 27977725]
[114]
Koutsoulidou A, Photiades M, Kyriakides TC, et al. Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress. Hum Mol Genet 2017; 26(17): 3285-302.
[http://dx.doi.org/10.1093/hmg/ddx212] [PMID: 28637233]
[115]
Koutsoulidou A, Kyriakides TC, Papadimas GK, et al. Elevated muscle-specific mirnas in serum of myotonic dystrophy patients relate to muscle disease progress. PLoS One 2015; 10(4)e0125341
[http://dx.doi.org/10.1371/journal.pone.0125341] [PMID: 25915631]
[116]
Bier A, Berenstein P, Kronfeld N, et al. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials 2018; 174: 67-78.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.055] [PMID: 29783118]
[117]
Zanotti S, Gibertini S, Blasevich F, et al. Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. Matrix Biol 2018; 74: 77-100.
[http://dx.doi.org/10.1016/j.matbio.2018.07.003] [PMID: 29981373]
[118]
Rogers RG, Fournier M, Sanchez L, et al. Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight 2019; 4(11) pii: 130202
[119]
Aminzadeh MA, Rogers RG, Fournier M, et al. Exosome-mediated benefits of cell therapy in mouse and human models of duchenne muscular dystrophy. Stem Cell Reports 2018; 10(3): 942-55.
[http://dx.doi.org/10.1016/j.stemcr.2018.01.023] [PMID: 29478899]
[120]
Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology 2019; 92(8): e866-78.
[http://dx.doi.org/10.1212/WNL.0000000000006950] [PMID: 30674601]
[121]
Lu W, Chao T, Ruiqi C, Juan S, Zhihong L. Patient-derived xenograft models in musculoskeletal malignancies. J Transl Med 2018; 16(1): 107.
[http://dx.doi.org/10.1186/s12967-018-1487-6] [PMID: 29688859]
[122]
Ren X, Tu C, Tang Z, Ma R, Li Z. Alternative lengthening of telomeres phenotype and loss of ATRX expression in sarcomas. Oncol Lett 2018; 15(5): 7489-96.
[http://dx.doi.org/10.3892/ol.2018.8318] [PMID: 29725455]
[123]
Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer 2014; 14(11): 722-35.
[http://dx.doi.org/10.1038/nrc3838] [PMID: 25319867]
[124]
Hu Y, Li D, Wu A, et al. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett 2017; 393: 60-7.
[http://dx.doi.org/10.1016/j.canlet.2017.02.009] [PMID: 28216373]
[125]
Bhome R, Goh RW, Bullock MD, et al. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging (Albany NY) 2017; 9(12): 2666-94.
[http://dx.doi.org/10.18632/aging.101355] [PMID: 29283887]
[126]
Gong L, Bao Q, Hu C, et al. Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun 2018; 500(2): 170-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.016] [PMID: 29626470]
[127]
Yoshida A, Fujiwara T, Uotani K, et al. Clinical and functional significance of intracellular and extracellular microRNA-25-3p in osteosarcoma. Acta Med Okayama 2018; 72(2): 165-74.
[PMID: 29674765]
[128]
Wu F, Li F, Lin X, et al. Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocr Relat Cancer 2019.pii: ERC-19-0008.R1.
[http://dx.doi.org/10.1530/ERC-19-0008] [PMID: 30870812]
[129]
Fujiwara T, Uotani K, Yoshida A, et al. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2017; 8(20): 33375-92.
[http://dx.doi.org/10.18632/oncotarget.16498] [PMID: 28380419]
[130]
Takahashi N, Nobusue H, Shimizu T, et al. ROCK inhibition induces terminal adipocyte differentiation and suppresses tumorigenesis in chemoresistant osteosarcoma cells. Cancer Res 2019; 79(12): 3088-99.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2693] [PMID: 30992323]
[131]
Xu JF, Wang YP, Zhang SJ, et al. Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy. Oncotarget 2017; 8(44): 75968-78.
[http://dx.doi.org/10.18632/oncotarget.18373] [PMID: 29100284]
[132]
Wang JW, Wu XF, Gu XJ, Jiang XH. Exosomal miR-1228 from cancer-associated fibroblasts promotes cell migration and invasion of osteosarcoma by directly targeting SCAI. Oncol Res 2019; 27(9): 979-86.
[http://dx.doi.org/10.3727/096504018X15336368805108] [PMID: 30180920]
[133]
Ventura S, Aryee DNT, Felicetti F, et al. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene 2016; 35(30): 3944-54.
[http://dx.doi.org/10.1038/onc.2015.463] [PMID: 26616853]
[134]
De Feo A, Sciandra M, Ferracin M, et al. Exosomes from CD99-deprived Ewing sarcoma cells reverse tumor malignancy by inhibiting cell migration and promoting neural differentiation. Cell Death Dis 2019; 10(7): 471.
[http://dx.doi.org/10.1038/s41419-019-1675-1] [PMID: 31209202]
[135]
Igarashi K, Kawaguchi K, Kiyuna T, et al. Pazopanib regresses a doxorubicin-resistant synovial sarcoma in a patient-derived orthotopic xenograft mouse model. Tissue Cell 2019; 58: 107-11.
[http://dx.doi.org/10.1016/j.tice.2019.04.010] [PMID: 31133237]
[136]
Nielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov 2015; 5(2): 124-34.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1246] [PMID: 25614489]
[137]
Riggi N, Cironi L, Stamenkovic I. Synovial sarcoma: when epigenetic changes dictate tumour development. Swiss Med Wkly 2018; 148 w14667
[http://dx.doi.org/10.4414/smw.2018.14667] [PMID: 30506527]
[138]
Tsuno H, Suematsu N, Sato T, et al. Effects of methotrexate and salazosulfapyridine on protein profiles of exosomes derived from a human synovial sarcoma cell line of SW982. Proteomics Clin Appl 2016; 10(2): 164-71.
[http://dx.doi.org/10.1002/prca.201500064] [PMID: 26172530]
[139]
Uotani K, Fujiwara T, Yoshida A, et al. Circulating microRNA-92b-3p as a novel biomarker for monitoring of synovial sarcoma. Sci Rep 2017; 7(1): 14634.
[http://dx.doi.org/10.1038/s41598-017-12660-5] [PMID: 29116117]
[140]
Bill KL, Casadei L, Prudner BC, Iwenofu H, Strohecker AM, Pollock RE. Liposarcoma: molecular targets and therapeutic implications. Cell Mol Life Sci 2016; 73(19): 3711-8.
[http://dx.doi.org/10.1007/s00018-016-2266-2] [PMID: 27173057]
[141]
Casadei L, Calore F, Creighton CJ, et al. Exosome-derived miR-25-3p and miR-92a-3p stimulate liposarcoma progression. Cancer Res 2017; 77(14): 3846-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2984] [PMID: 28588009]
[142]
Ghayad SE, Rammal G, Ghamloush F, et al. Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep 2016; 6: 37088.
[http://dx.doi.org/10.1038/srep37088] [PMID: 27853183]
[143]
Yohe ME, Heske CM, Stewart E, et al. Insights into pediatric rhabdomyosarcoma research: challenges and goals. Pediatr Blood Cancer 2019; 66(10) e27869
[http://dx.doi.org/10.1002/pbc.27869] [PMID: 31222885]
[144]
Min L, Shen J, Tu C, Hornicek F, Duan Z. The roles and implications of exosomes in sarcoma. Cancer Metastasis Rev 2016; 35(3): 377-90.
[http://dx.doi.org/10.1007/s10555-016-9630-4] [PMID: 27342745]
[145]
Burger D, Viñas JL, Akbari S, et al. Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. Am J Pathol 2015; 185(8): 2309-23.
[http://dx.doi.org/10.1016/j.ajpath.2015.04.010] [PMID: 26073035]
[146]
Toh WS, Lai RC, Zhang B, Lim SK. MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans 2018; 46(4): 843-53.
[http://dx.doi.org/10.1042/BST20180079] [PMID: 29986939]
[147]
Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 2014; 111(41): 14888-93.
[http://dx.doi.org/10.1073/pnas.1408301111] [PMID: 25267620]
[148]
Park CK, Xu ZZ, Berta T, et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 2014; 82(1): 47-54.
[http://dx.doi.org/10.1016/j.neuron.2014.02.011] [PMID: 24698267]
[149]
Gao F, Jiao F, Xia C, et al. A novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and TiO2. Chem Sci (Camb) 2018; 10(6): 1579-88.
[http://dx.doi.org/10.1039/C8SC04197K] [PMID: 30842820]
[150]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1)1535750
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[151]
Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018; 3(8): 99263.
[http://dx.doi.org/10.1172/jci.insight.99263] [PMID: 29669940]
[152]
Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 2018; 201(8): 2472-82.
[http://dx.doi.org/10.4049/jimmunol.1800304] [PMID: 30224512]
[153]
Xu D, Song M, Chai C, et al. Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4. J Cell Physiol 2019; 234(2): 1502-11.
[http://dx.doi.org/10.1002/jcp.27014] [PMID: 30132861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy