Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Pharmacokinetic Evaluation of 99mTc-radiolabeled Solid Lipid Nanoparticles and Chitosan Coated Solid Lipid Nanoparticles

Author(s): Nasrin Abbasi Gharibkandi, Sajjad Molavipordanjani, Jafar Akbari and Seyed Jalal Hosseinimehr*

Volume 20, Issue 13, 2019

Page: [1044 - 1052] Pages: 9

DOI: 10.2174/1389200220666191112145808

Price: $65

Abstract

Background: Solid Lipid Nanoparticles (SLNs) possess unique in vivo features such as high resistivity, bioavailability, and habitation at the target site. Coating nanoparticles with polymers such as chitosan greatly affects their pharmacokinetic behavior, stability, tissue uptake, and controlled drug delivery. The aim of this study was to prepare and evaluate the biodistribution of 99mTc-labeled SLNs and chitosan modified SLNs in mice.

Methods: 99mTc-oxine was prepared and utilized to radiolabel pre-papered SLNs or chitosan coated SLNs. After purification of radiolabeled SLNs (99mTc-SLNs) and radiolabeled chitosan-coated SLNs (99mTc-Chi-SLNs) using Amicon filter, they were injected into BALB/c mice to evaluate their biodistribution patterns. In addition, nanoparticles were characterized using Transmission Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRD) and Dynamic Light Scattering (DLS).

Results: 99mTc-oxine with high radiochemical purity (RCP~100%) and stability (RCP > 97% at 24 h) was used to provide 99mTc-SLNs and 99mTc-Chi-SLNs with high initial RCP (100%). TEM image and DLS data suggest 99mTc- SLNs susceptibility to aggregation. To that end, the main portion of 99mTc-SLNs radioactivity accumulates in the liver and intestines, while 99mTc-Chi-SLNs sequesters in the liver, intestines and kidneys. The blood radioactivity of 99mTc-Chi-SLNs was higher than that of 99mTc-SLNs by 7.5, 3.17 and 3.5 folds at 1, 4 and 8 h post-injection. 99mTc- Chi-SLNs uptake in the kidneys in comparison with 99mTc-SLNs was higher by 37.48, 5.84 and 11 folds at 1, 4 and 8h.

Conclusion: The chitosan layer on the surface of 99mTc-Chi-SLNs reduces lipophilicity in comparison with 99mTc- SLNs. Therefore, 99mTc-Chi-SLNs are less susceptible to aggregation, which leads to their lower liver uptake and higher kidney uptake and blood concentration.

Keywords: Solid lipid nanoparticles, 99mTc-oxine, chitosan coating, nanoparticles radiolabeling, biological distribution, pharmacokinetic.

Graphical Abstract

[1]
Dowling, A.P. Development of nanotechnologies. Mater. Today, 2004, 7, 30-35.
[http://dx.doi.org/10.1016/S1369-7021(04)00628-5]
[2]
Jourghanian, P.; Ghaffari, S.; Ardjmand, M.; Haghighat, S.; Mohammadnejad, M. Sustained release curcumin loaded solid lipid nanoparticles. Adv. Pharm. Bull., 2016, 6(1), 17-21.
[http://dx.doi.org/10.15171/apb.2016.04] [PMID: 27123413]
[3]
Lee, J.H.; Cheng, K.T.; Malinin, V.; Li, Z.; Yao, Z.; Lee, S.J.; Gould, C.M.; Olivier, K.N.; Chen, C.; Perkins, W.R.; Paik, C.H. (99m)Tc-labeled therapeutic inhaled amikacin loaded liposomes. J. Liposome Res., 2013, 23(4), 336-342.
[http://dx.doi.org/10.3109/08982104.2013.819889] [PMID: 23879241]
[4]
Nowack, B.; Bucheli, T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut., 2007, 150(1), 5-22.
[http://dx.doi.org/10.1016/j.envpol.2007.06.006] [PMID: 17658673]
[5]
Xing, Y.; Zhu, J.; Zhao, L.; Xiong, Z.; Li, Y.; Wu, S.; Chand, G.; Shi, X.; Zhao, J. SPECT/CT imaging of chemotherapy-induced tumor apoptosis using 99mTc-labeled dendrimer-entrapped gold nanoparticles. Drug Deliv., 2018, 25(1), 1384-1393.
[http://dx.doi.org/10.1080/10717544.2018.1474968] [PMID: 29869521]
[6]
Yoon, G.; Park, J.W.; Yoon, I-S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. J. Pharm. Investig., 2013, 43, 353-362.
[http://dx.doi.org/10.1007/s40005-013-0087-y]
[7]
Oyewumi, M.O.; Yokel, R.A.; Jay, M.; Coakley, T.; Mumper, R.J. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release, 2004, 95(3), 613-626.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.002] [PMID: 15023471]
[8]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 595-607.
[PMID: 18203427]
[9]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[10]
Kakkar, V.; Mishra, A.K.; Chuttani, K.; Chopra, K.; Kaur, I.P. Delivery of sesamol-loaded solid lipid nanoparticles to the brain for menopause-related emotional and cognitive central nervous system derangements. Rejuvenation Res., 2011, 14(6), 597-604.
[http://dx.doi.org/10.1089/rej.2011.1193] [PMID: 21978086]
[11]
Almeida, A.J.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[12]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[13]
Ramalingam, P.; Ko, Y.T. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm. Res., 2015, 32(2), 389-402.
[http://dx.doi.org/10.1007/s11095-014-1469-1] [PMID: 25082210]
[14]
Sun, Y.; Wan, A. Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules. J. Appl. Polym. Sci., 2007, 105, 552-561.
[http://dx.doi.org/10.1002/app.26038]
[15]
Takeuchi, I.; Takeshita, T.; Suzuki, T.; Makino, K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf. B Biointerfaces, 2017, 160, 520-526.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.011] [PMID: 29017147]
[16]
Araújo, J.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm., 2010, 393(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.034] [PMID: 20362042]
[17]
Fundarò, A.; Cavalli, R.; Bargoni, A.; Vighetto, D.; Zara, G.P.; Gasco, M.R. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after I.V. administration to rats. Pharmacol. Res., 2000, 42(4), 337-343.
[http://dx.doi.org/10.1006/phrs.2000.0695] [PMID: 10987994]
[18]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[19]
Sarmento, B.; Mazzaglia, D.; Bonferoni, M.C.; Neto, A.P.; do Céu Monteiro, M.; Seabra, V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr. Polym., 2011, 84, 919-925.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.042]
[20]
Sandri, G.; Bonferoni, M.C.; Gökçe, E.H.; Ferrari, F.; Rossi, S.; Patrini, M.; Caramella, C. Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J. Microencapsul., 2010, 27(8), 735-746.
[http://dx.doi.org/10.3109/02652048.2010.517854] [PMID: 21034366]
[21]
Ng, W.K.; Kwek, J.W.; Yuen, A.; Tan, C.L.; Tan, R. Effect of milling on DSC thermogram of excipient adipic acid. AAPS PharmSciTech, 2010, 11(1), 159-167.
[http://dx.doi.org/10.1208/s12249-009-9372-5] [PMID: 20101483]
[22]
Hou, D.; Xie, C.; Huang, K.; Zhu, C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials, 2003, 24(10), 1781-1785.
[http://dx.doi.org/10.1016/S0142-9612(02)00578-1] [PMID: 12593960]
[23]
Underwood, C.; Pollitt, C.C.; Metselaar, J.M.; Laverman, P.; van Bloois, L.; van den Hoven, J.M.; Storm, G.; van Eps, A.W. Distribution of technetium-99m PEG-liposomes during oligofructose-induced laminitis development in horses. Vet. J., 2015, 206(2), 218-225.
[http://dx.doi.org/10.1016/j.tvjl.2015.07.013] [PMID: 26403954]
[24]
Hwang, D.W.; Choi, H.; Jang, S.C.; Yoo, M.Y.; Park, J.Y.; Choi, N.E.; Oh, H.J.; Ha, S.; Lee, Y.S.; Jeong, J.M.; Gho, Y.S.; Lee, D.S. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO. Sci. Rep., 2015, 5, 15636.
[http://dx.doi.org/10.1038/srep15636] [PMID: 26497063]
[25]
Almasi, A.; Shahhosseini, S.; Haeri, A.; Daha, F.J.; Geramifar, P.; Dadashzadeh, S. Radiolabeling of preformed niosomes with [99mTc]: in vitro stability, biodistribution, and in vivo performance. AAPS PharmSciTech, 2018, 19(8), 3859-3870.
[http://dx.doi.org/10.1208/s12249-018-1182-1] [PMID: 30291544]
[26]
Audi, S.H.; Clough, A.V.; Haworth, S.T.; Medhora, M.; Ranji, M.; Densmore, J.C.; Jacobs, E.R. 99mTc-hexamethylpropyleneamine oxime imaging for early detection of acute lung injury in rats exposed to hyperoxia or lipopolysaccharide treatment. Shock, 2016, 46(4), 420-430.
[http://dx.doi.org/10.1097/SHK.0000000000000605] [PMID: 26974426]
[27]
Mirahmadi, N.; Babaei, M.H.; Vali, A.M.; Daha, F.J.; Kobarfard, F.; Dadashzadeh, S. 99mTc-HMPAO-labeled liposomes: an investigation into the effects of some formulation factors on labeling efficiency and in vitro stability. Nucl. Med. Biol., 2008, 35(3), 387-392.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.12.001] [PMID: 18355695]
[28]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[29]
Ying, X-Y.; Cui, D.; Yu, L.; Du, Y-Z. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr. Polym., 2011, 84, 1357-1364.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.037]
[30]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[31]
Li, S.D.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm., 2008, 5(4), 496-504.
[http://dx.doi.org/10.1021/mp800049w] [PMID: 18611037]
[32]
Tiwari, R.; Pathak, K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm., 2011, 415(1-2), 232-243.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.044] [PMID: 21640809]
[33]
Luo, Y.; Teng, Z.; Li, Y.; Wang, Q. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym., 2015, 122, 221-229.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.084] [PMID: 25817662]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy