Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Purification, Biochemical Characterization and Decolorization Efficiency of Laccases from Peach and Cherry Cultures of Pleutorus eryngii: A Comparative Study

Author(s): Merve Akpinar and Raziye Ozturk Urek*

Volume 27, Issue 7, 2020

Page: [623 - 634] Pages: 12

DOI: 10.2174/0929866526666191112145521

Price: $65

Abstract

Background: Laccases (Lacs) are used potentially in industrial and biotechnological applications such as decolorization of dyes, degradation of industrial effluents, delignification, etc. thanks to their large varieties of substrate specificities and excellent catalytic efficiencies. The efficient utilizations of Lacs in these applications mostly depend on the identifying their biochemical properties.

Objective: The goal of this research is to investigate the purification, biochemical characterization and decolorization efficiencies of Lacs.

Methods: Pleurotus eryngii was incubated on peach (PC) and cherry (CC) wastes under optimized solid state fermentation conditions. Then, the enzymes extracts were purified by ammonium sulfate precipitation, anion exchange chromatography, gel filtration, respectively. Lacs fractions were subjected to electrophoretic analyses as well as their structural and kinetic characteristics. Also, the effects of selected chemical agents on purified Lacs activities and determination of decolorization efficiencies were studied.

Results: As the results of purification processes of Lacs from both cultures, 3.94-fold purification was obtained for PC, while it was 5.34 for CC. The electrophoretic results of purified Lacs illustrated the single bands of protein (30±1 kDa) in accordance with the results after gel filtration. The Km values of Lacs from PC and CC were respectively detected as 1.1381 and 0.329 mM for ABTS. The selected agents partially/completely inhibited Lac activities. The highest decolorization efficiencies of purified Lacs from PC and CC were separately obtained as 53 and 11.8%.

Conclusion: The results clearly indicated that the performances of Lacs from both cultures in decolorization application are different from each other depending their activities, biochemical and kinetic characteristics.

Keywords: Biochemical characterization, cherry waste, dye decolorization, laccase, peach waste, Pleurotus eryngii, purification.

Graphical Abstract

[1]
Mussatto, S.I.; Teixeira, J.A. Lignocellulose as raw material in fermentation processes. in: Current research, technology and education topics in applied microbiology and microbial biotechnology; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2010, pp. 897-907.
[2]
Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sc., 2014, 7(2), 163-173.
[http://dx.doi.org/10.1016/j.jrras.2014.02.003]
[3]
Marzo, C.; Díaz, A.B.; Caro, I.; Blandino, A. Valorization of agroindustrial wastes to produce hydrolytic enzymes by fungal solidstate fermentation. Waste Manag. Res., 2019, 37(2), 149-156.
[http://dx.doi.org/10.1177/0734242X18798699] [PMID: 30222065]
[4]
Hansen, G.H.; Lübeck, M.; Frisvad, J.C.; Lübeck, P.S.; Andersen, B. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem., 2015, 50(9), 1327-1341.
[http://dx.doi.org/10.1016/j.procbio.2015.05.017]
[5]
Barrios-González, J. Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. Process Biochem., 2012, 47(2), 175-185.
[http://dx.doi.org/10.1016/j.procbio.2011.11.016]
[6]
Cohen, R.; Persky, L.; Hadar, Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol., 2002, 58(5), 582-594.
[http://dx.doi.org/10.1007/s00253-002-0930-y] [PMID: 11956739]
[7]
Martínez-Morales, F.; Bertrand, B.; Pasión Nava, A.A.; Tinoco, R.; Acosta-Urdapilleta, L.; Trejo-Hernández, M.R. Production, purification and biochemical characterization of two laccase isoforms produced by Trametes versicolor grown on oak sawdust. Biotechnol. Lett., 2015, 37(2), 391-396.
[http://dx.doi.org/10.1007/s10529-014-1679-y] [PMID: 25257594]
[8]
Patel, H.; Gupte, S.; Gahlout, M.; Gupte, A. purification and characterization of an extracellular laccase from solid-state culture of pleurotus ostreatus hp-1. 3 biotech. 2014, 4(1), 77-84.
[9]
Rodríguez-Couto, S. Fungal laccase: A versatile enzyme for biotechnological applications. in:Recent advancement in white biotechnology through fungi. Springer, 2019, 429-457.
[http://dx.doi.org/10.1007/978-3-030-10480-1_13]
[10]
Yuan, X.; Tian, G.; Zhao, Y.; Zhao, L.; Wang, H.; Ng, T.B. Biochemical characteristics of three laccase isoforms from the basidiomycete Pleurotus nebrodensis. Molecules, 2016, 21(2), 203.
[http://dx.doi.org/10.3390/molecules21020203] [PMID: 26861278]
[11]
Ai, M.Q.; Wang, F.F.; Huang, F. Purification and characterization of a thermostable laccase from Trametes trogii and its ability in modification of kraft lignin. J. Microbiol. Biotechnol., 2015, 25(8), 1361-1370.
[http://dx.doi.org/10.4014/jmb.1502.02022] [PMID: 25876603]
[12]
Akpinar, M.; Ozturk Urek, R. induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 biotech., 2017, 7(2), 98-108.
[13]
Akpinar, M. Production of some ligninolytic and hydrolytic enzymes with solid state fermentation. phd thesis, dokuz eylül university: i̇zmir, july, 2017.
[14]
Akpinar, M.; ozturk Urek, R. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Prep. Biochem. Biotechnol., 2012, 42(6), 582-597.
[http://dx.doi.org/10.1080/10826068.2012.673528] [PMID: 23030469]
[15]
Stajić, M.; Persky, L.; Friesem, D.; Hadar, Y.; Wasser, S.P.; Nevo, E.; Vukojević, J. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb. Technol., 2006, 38(1), 65-73.
[http://dx.doi.org/10.1016/j.enzmictec.2005.03.026]
[16]
Johannes, C.; Majcherczyk, A. Laccase activity tests and laccase inhibitors. J. Biotechnol., 2000, 78(2), 193-199.
[http://dx.doi.org/10.1016/S0168-1656(00)00208-X] [PMID: 10725542]
[17]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[18]
Taqi, M. Biomass Production, Purification and Characterization of Selected Microbial Laccases. phd thesis, mcgill university: montreal, march, 2012.
[19]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[20]
Gnanamani, A.; Jayaprakashvel, M.; Arulmani, M.; Sadulla, S. Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes. Enzyme Microb. Technol., 2006, 38(7), 1017-1021.
[http://dx.doi.org/10.1016/j.enzmictec.2006.01.004]
[21]
El-Batal, A.I.; ElKenawy, N.M.; Yassin, A.S.; Amin, M.A. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep. (Amst.), 2014, 5, 31-39.
[http://dx.doi.org/10.1016/j.btre.2014.11.001] [PMID: 28626680]
[22]
Camassola, M.; da Rosa, L.O.; Calloni, R.; Gaio, T.A.; Dillon, A.J. Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust. Braz. J. Microbiol., 2013, 44(1), 207-213.
[http://dx.doi.org/10.1590/S1517-83822013005000006] [PMID: 24159307]
[23]
Sathishkumar, P.; Palvannan, T. Purification and characterization of Pleurotus florida laccase (L1) involved in the Remazol Brilliant Blue R (RBBR) decoloration. J. Environ. Treat. Tech., 2013, 1(1), 24-34.
[24]
Ding, Z.; Chen, Y.; Xu, Z.; Peng, L.; Xu, G.; Gu, Z.; Zhang, L.; Shi, G.; Zhang, K. Production and characterization of laccase from Pleurotus ferulae in submerged fermentation. Ann. Microbiol., 2014, 64(1), 121-129.
[http://dx.doi.org/10.1007/s13213-013-0640-y]
[25]
Yang, Y.; Ding, Y.; Liao, X.; Cai, Y. Purification and characterization of a new laccase from Shiraia sp. SUPER-H168. Process Biochem., 2013, 48(2), 351-357.
[http://dx.doi.org/10.1016/j.procbio.2012.12.011]
[26]
Singha, S.; Panda, T. Optimization of laccase fermentation and evaluation of kinetic and thermodynamic parameters of a partially purified laccase produced by Daedalea flavida. Prep. Biochem. Biotechnol., 2015, 45(4), 307-335.
[http://dx.doi.org/10.1080/10826068.2014.887581] [PMID: 24547974]
[27]
Liu, L.; Lin, Z.; Zheng, T.; Lin, L.; Zheng, C.; Lin, Z.; Wang, S.; Wang, Z. Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 2009, 44(6), 426-433.
[http://dx.doi.org/10.1016/j.enzmictec.2009.02.008]
[28]
Huang, W.T.; Tai, R.; Hseu, R.S.; Huang, C.T. Overexpression and characterization of a thermostable, pH-stable and organic solventtolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochem., 2011, 46(7), 1469-1474.
[http://dx.doi.org/10.1016/j.procbio.2011.03.020]
[29]
Manavalan, A.; Manavalan, T.; Murugesan, K.; Kutzner, A.; Thangavelu, K.P.; Heese, K. Characterization of a solvent, surfactant and temperature-tolerant laccase from Pleurotus sp. MAK-II and its dye decolorizing property. Biotechnol. Lett., 2015, 37(12), 2403-2409.
[http://dx.doi.org/10.1007/s10529-015-1937-7] [PMID: 26315605]
[30]
Castaño, J.D.; Cruz, C.; Torres, E. Optimization of the production, purification and characterization of a laccase from the native fungus Xylaria sp. Biocatal. Agric. Biotechnol., 2015, 4(4), 710-716.
[http://dx.doi.org/10.1016/j.bcab.2015.09.012]
[31]
Wang, H.X.; Ng, T.B. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotechnol., 2006, 69(5), 521-525.
[http://dx.doi.org/10.1007/s00253-005-0086-7] [PMID: 16075291]
[32]
Rivera-Hoyos, M.; Morales-Alvarez, E.D.; Poutou-Pinales, R.A.; Pedroza-Rodríguez, A.M.; Rodríguez-Vázquezd, R.; Delgado-Boadae, J.M. Fungal laccases. Fungal Biol. Rev., 2013, 27, 67-82.
[http://dx.doi.org/10.1016/j.fbr.2013.07.001]
[33]
Devasena, T. Enzymology; Oxford University Press: India, 2010.
[34]
Vantamuri, A.B.; Kaliwal, B.B. purification and characterization oflaccase from marasmius species bbkav79 and effective decolorization of selected textile dyes. 3 biotech. 2016, 6(2), 189-199.
[35]
Hamada, S.; Kubota, K.; Sagisaka, M. Purification and characterization of a novel extracellular neutral metalloprotease from Cerrena albocinnamomea. J. Gen. Appl. Microbiol., 2017, 63(1), 51-57.
[http://dx.doi.org/10.2323/jgam.2016.07.006] [PMID: 28123132]
[36]
Panwar, D.; Srivastava, P.K.; Kapoor, M. Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal. Agric. Biotechnol., 2014, 3(2), 118-125.
[http://dx.doi.org/10.1016/j.bcab.2013.09.006]
[37]
Karp, S.G.; Faraco, V.; Amore, A.; Birolo, L.; Giangrande, C.; Soccol, V.T.; Pandey, A.; Soccol, C.R. Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 2012, 114, 735-739.
[http://dx.doi.org/10.1016/j.biortech.2012.03.058] [PMID: 22487128]
[38]
Chaurasia, P.K.; Bharati, L.S.; Singh, S.K. Comparative studies on the blue and yellow laccases. Res. Plant Sci., 2013, 1(2), 32-37.
[39]
Songulashvili, G.; Flahaut, S.; Demarez, M.; Tricot, C.; Bauvois, C.; Debaste, F.; Penninckx, M.J. High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biol., 2016, 120(4), 481-488.
[http://dx.doi.org/10.1016/j.funbio.2016.01.008] [PMID: 27020150]
[40]
Daâssi, D.; Zouari-Mechichi, H.; Prieto, A.; Martínez, M.J.; Nasri, M.; Mechichi, T. Purification and biochemical characterization of a new alkali-stable laccase from Trametes sp. isolated in Tunisia: role of the enzyme in olive mill waste water treatment. World J. Microbiol. Biotechnol., 2013, 29(11), 2145-2155.
[http://dx.doi.org/10.1007/s11274-013-1380-7] [PMID: 23712478]
[41]
Martínez, S.M.S.; Gutiérrez-Soto, G.; Garza, C.F.R.; Galván, T.J.V.; Cordero, J.F.C.; Luna, C.E.H. Purification and partial characterization of a thermostable laccase from Pycnoporus sanguineus CS-2 with ability to oxidize high redox potential substrates and recalcitrant dyes. in: Applied bioremediation – active and passive approaches; Patil, Y.B.; Rao, P., Eds.; IntechOpen, 2013, pp. 353-375.
[http://dx.doi.org/10.5772/56374]
[42]
Asgher, M.; Shahid, M.; Kamal, S.; Iqbal, H.M.N. Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J. Mol. Catal., B Enzym., 2014, 101, 56-66.
[http://dx.doi.org/10.1016/j.molcatb.2013.12.016]
[43]
Si, J.; Peng, F.; Cui, B. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metaltolerant laccase from Trametes pubescens. Bioresour. Technol., 2013, 128, 49-57.
[http://dx.doi.org/10.1016/j.biortech.2012.10.085] [PMID: 23196221]
[44]
Asgher, M.; Kamal, S.; Iqbal, H.M.N. improvement of catalytic efficiency, thermo-stability and dye decolorization capability of pleurotus ostreatus ibl-02 laccase by hydrophobic sol gel entrapment. chem. cent. j. 2012, 6(1)110, , 1-10.
[45]
Raseda, N.; Hong, S.; Kwon, O.Y.; Ryu, K. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride. J. Microbiol. Biotechnol., 2014, 24(12), 1673-1678.
[http://dx.doi.org/10.4014/jmb.1408.08012] [PMID: 25152059]
[46]
Heinzkill, M.; Bech, L.; Halkier, T.; Schneider, P.; Anke, T. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl. Environ. Microbiol., 1998, 64(5), 1601-1606.
[PMID: 9572923]
[47]
Murugesan, K.; Nam, I.H.; Kim, Y.M.; Chang, Y.S. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb. Technol., 2007, 40(7), 1662-1672.
[http://dx.doi.org/10.1016/j.enzmictec.2006.08.028]
[48]
Singh, M.P.; Vishwakarma, S.K.; Srivastava, A.K. Bioremediation of direct blue 14 and extracellular ligninolytic enzyme production by white rot fungi: Pleurotus spp. BioMed Res. Int., 2013, 2013 180156.
[http://dx.doi.org/10.1155/2013/180156] [PMID: 23841054]
[49]
Zucca, P.; Cocco, G.; Sollai, F.; Sanjust, E. Fungal laccases as tools for biodegradation of industrial dyes. Biocatalysis, 2015, 1(1), 82-108.
[http://dx.doi.org/10.1515/boca-2015-0007]
[50]
Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. bioprospecting and biotechnological applications of fungal laccase. 3 biotech. 2016, 6(1), 15.https://dx.doi.org/10.1007%2Fs13205-015-0316-3
[PMID: 28330085]
[51]
Prasada, A.A.; Kumara, G.; Thomasb, D.M. Microbial decolorization of azo dyes ̶ A mini review. Bull. Chem. Pharma. Res., 2017, 1(1), 30-39.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy