Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent?

Author(s): Jacek M. Witkowski*, Ewa Bryl and Tamas Fulop

Volume 25, Issue 39, 2019

Page: [4154 - 4162] Pages: 9

DOI: 10.2174/1381612825666191111153016

Price: $65

Abstract

With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.

Keywords: Immune system aging, evolution, immunosenescence, inflammaging, immune cells, senescent cells, human.

[1]
Lloyd D, Aon MA, Cortassa S. Why homeodynamics, not homeostasis? ScientificWorldJournal 2001; 1: 133-45.
[http://dx.doi.org/10.1100/tsw.2001.20] [PMID: 12805697]
[2]
Rattan SI. Theories of biological aging: genes, proteins, and free radicals. Free Radic Res 2006; 40(12): 1230-8.
[http://dx.doi.org/10.1080/10715760600911303] [PMID: 17090411]
[3]
Coventry BJA, Ashdown M, Henneberg M, Davies PCW. The immune system and responses to cancer: coordinated evolution. F1000 Res 2015; 4: 552.
[4]
Miles WO, Dyson NJ, Walker JA. Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 2011; 4(6): 753-61.
[http://dx.doi.org/10.1242/dmm.006908] [PMID: 21979943]
[5]
Walker C, Böttger SA, Mulkern J, Jerszyk E, Litvaitis M, Lesser M. Mass culture and characterization of tumor cells from a naturally occurring invertebrate cancer model: applications for human and animal disease and environmental health. Biol Bull 2009; 216(1): 23-39.
[http://dx.doi.org/10.1086/BBLv216n1p23] [PMID: 19218489]
[6]
Kwak EJ, Hong JY, Kim MN, et al. Chitinase 3-like 1 drives allergic skin inflammation via Th2 immunity and M2 macrophage activation. Clin Exp Allergy 2019; 49(11): 1464-74.
[http://dx.doi.org/10.1111/cea.13478] [PMID: 31397016]
[7]
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203107394
[http://dx.doi.org/10.1016/j.pharmthera.2019.107394] [PMID: 31356910]
[8]
de Jesus Carrion S, Abbondante S, Clark HL, et al. Aspergillus fumigatus corneal infection is regulated by chitin synthases and by neutrophil-derived acidic mammalian chitinase. Eur J Immunol 2019; 49(6): 918-27.
[http://dx.doi.org/10.1002/eji.201847851] [PMID: 30903663]
[9]
Logue EC, Neff CP, Mack DG, et al. Upregulation of chitinase 1 in alveolar macrophages of HIV-infected smokers. J Immunol 2019; 202(5): 1363-72.
[http://dx.doi.org/10.4049/jimmunol.1801105] [PMID: 30665939]
[10]
Majewski S, Tworek D, Szewczyk K, et al. Overexpression of chitotriosidase and YKL-40 in peripheral blood and sputum of healthy smokers and patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14: 1611-31.
[http://dx.doi.org/10.2147/COPD.S184097] [PMID: 31413557]
[11]
Li SS, Ogbomo H, Mansour MK, et al. Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nat Commun 2018; 9(1): 751.
[http://dx.doi.org/10.1038/s41467-018-03014-4] [PMID: 29467448]
[12]
Li SS, Kyei SK, Timm-McCann M, et al. The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe 2013; 14(4): 387-97.
[http://dx.doi.org/10.1016/j.chom.2013.09.007] [PMID: 24139398]
[13]
Schmidt S, Tramsen L, Lehrnbecher T. Natural killer cells in antifungal immunity. Front Immunol 2017; 8: 1623.
[http://dx.doi.org/10.3389/fimmu.2017.01623] [PMID: 29213274]
[14]
Anderson MK, Pant R, Miracle AL, et al. Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. J Immunol 2004; 172(10): 5851-60.
[http://dx.doi.org/10.4049/jimmunol.172.10.5851] [PMID: 15128764]
[15]
Fulop T, Larbi A, Witkowski JM, et al. Aging, frailty and age-related diseases. Biogerontology 2010; 11(5): 547-63.
[http://dx.doi.org/10.1007/s10522-010-9287-2] [PMID: 20559726]
[16]
Fulop T, Larbi A, Witkowski JM, Kotb R, Hirokawa K, Pawelec G. Immunosenescence and cancer. Crit Rev Oncog 2013; 18(6): 489-513.
[http://dx.doi.org/10.1615/CritRevOncog.2013010597] [PMID: 24579731]
[17]
Fulop T, Witkowski JM, Pawelec G, Alan C, Larbi A. On the immunological theory of aging. Interdiscip Top Gerontol 2014; 39: 163-76.
[http://dx.doi.org/10.1159/000358904] [PMID: 24862019]
[18]
Fulop T, Dupuis G, Baehl S, et al. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 2016; 17(1): 147-57.
[http://dx.doi.org/10.1007/s10522-015-9615-7] [PMID: 26472173]
[19]
Fülöp T, Dupuis G, Witkowski JM, Larbi A. The Role of Immunosenescence in the Development of Age-Related Diseases. Rev Invest Clin 2016; 68(2): 84-91.
[PMID: 27103044]
[20]
White A, Ironmonger L, Steele RJC, Ormiston-Smith N, Crawford C, Seims A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 2018; 18(1): 906.
[http://dx.doi.org/10.1186/s12885-018-4786-7] [PMID: 30236083]
[21]
Syed YY. Recombinant zoster vaccine (Shingrix®): a review in herpes zoster. Drugs Aging 2018; 35(12): 1031-40.
[http://dx.doi.org/10.1007/s40266-018-0603-x] [PMID: 30370455]
[22]
Bharucha T, Ming D, Breuer J. A critical appraisal of ‘Shingrix’, a novel herpes zoster subunit vaccine (HZ/Su or GSK1437173A) for varicella zoster virus. Hum Vaccin Immunother 2017; 13(8): 1789-97.
[http://dx.doi.org/10.1080/21645515.2017.1317410] [PMID: 28426274]
[23]
Watad A, Bragazzi NL, Adawi M, et al. Autoimmunity in the elderly: insights from basic science and clinics - a mini-review. Gerontology 2017; 63(6): 515-23.
[http://dx.doi.org/10.1159/000478012] [PMID: 28768257]
[24]
Franceschi C, Garagnani P, Morsiani C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 2018; 5: 61.
[http://dx.doi.org/10.3389/fmed.2018.00061] [PMID: 29662881]
[25]
Franceschi C, Bonafe M, Valensin S, Olivieri F, De LM, Ottaviani E, et al. Inflamm-aging an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 6/2000(908): 244-54.
[26]
De MM, Franceschi C, Monti D, Ginaldi L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 2005; Nov 4579(10): 2035-9.
[27]
Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, et al. Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 2006; 12(24): 3161-71.
[http://dx.doi.org/10.2174/138161206777947470]
[28]
Ramasamy R, Yan SF, Schmidt AM. The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascul Pharmacol 2012; 57(5-6): 160-7.
[http://dx.doi.org/10.1016/j.vph.2012.06.004] [PMID: 22750165]
[29]
Geginat J, Paroni M, Pagani M, et al. The enigmatic role of viruses in multiple sclerosis: molecular mimicry or disturbed immune surveillance? Trends Immunol 2017; 38(7): 498-512.
[http://dx.doi.org/10.1016/j.it.2017.04.006] [PMID: 28549714]
[30]
Liu CL, Tangsombatvisit S, Rosenberg JM, et al. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res Ther 2012; 14(1): R25.
[http://dx.doi.org/10.1186/ar3707] [PMID: 22300536]
[31]
Knight JS, Carmona-Rivera C, Kaplan MJ. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 2012; 3: 380.
[http://dx.doi.org/10.3389/fimmu.2012.00380] [PMID: 23248629]
[32]
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14(10): 653-66.
[http://dx.doi.org/10.1038/nri3737] [PMID: 25234143]
[33]
Bandala-Sanchez EG, Bediaga N, Goddard-Borger ED, et al. CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci USA 2018; 115(30): 7783-8.
[http://dx.doi.org/10.1073/pnas.1722056115] [PMID: 29997173]
[34]
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019; 572(7769): 392-6.
[http://dx.doi.org/10.1038/s41586-019-1456-0] [PMID: 31367043]
[35]
Malik M, Chiles J III, Xi HS, et al. Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum Mol Genet 2015; 24(12): 3557-70.
[http://dx.doi.org/10.1093/hmg/ddv092] [PMID: 25762156]
[36]
Omoumi A, Fok A, Greenwood T, Sadovnick AD, Feldman HH, Hsiung GY. Evaluation of late-onset Alzheimer disease genetic susceptibility risks in a Canadian population Neurobiol Aging 2014; 35(4): 936 e5-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.025]
[37]
Zhao L. CD33 in Alzheimer’s disease - biology, pathogenesis, and therapeutics: a mini-review. Gerontology 2019; 65(4): 323-31.
[http://dx.doi.org/10.1159/000492596] [PMID: 30541012]
[38]
Netea MG, van der Meer JW. Trained immunity: an ancient way of remembering. Cell Host Microbe 2017; 21(3): 297-300.
[http://dx.doi.org/10.1016/j.chom.2017.02.003] [PMID: 28279335]
[39]
Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013; 120: 163-84.
[http://dx.doi.org/10.1016/B978-0-12-417028-5.00006-5] [PMID: 24070384]
[40]
Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther 2015; 37(4): 914-23.
[http://dx.doi.org/10.1016/j.clinthera.2015.01.008] [PMID: 25704108]
[41]
Blok BA, Arts RJ, van Crevel R, Benn CS, Netea MG. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 2015; 98(3): 347-56.
[http://dx.doi.org/10.1189/jlb.5RI0315-096R] [PMID: 26150551]
[42]
Gardiner CM, Mills KH. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases. Semin Immunol 2016; 28(4): 343-50.
[http://dx.doi.org/10.1016/j.smim.2016.03.001] [PMID: 26979658]
[43]
Arts RJ, Joosten LA, Netea MG. Immunometabolic circuits in trained immunity. Semin Immunol 2016; 28(5): 425-30.
[http://dx.doi.org/10.1016/j.smim.2016.09.002] [PMID: 27686054]
[44]
Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 2017; 8: 982.
[http://dx.doi.org/10.3389/fimmu.2017.00982] [PMID: 28861086]
[45]
Blidner AG, Méndez-Huergo SP, Cagnoni AJ, Rabinovich GA. Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett 2015; 589(22): 3407-18.
[http://dx.doi.org/10.1016/j.febslet.2015.08.037] [PMID: 26352298]
[46]
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13(12): 875-87.
[http://dx.doi.org/10.1038/nri3547] [PMID: 24157572]
[47]
Storci G, De Carolis S, Olivieri F, Bonafè M. Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 2018; 40: 6-16.
[http://dx.doi.org/10.1016/j.smim.2018.08.003] [PMID: 30227944]
[48]
Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 2018; 8: 1960.
[http://dx.doi.org/10.3389/fimmu.2017.01960] [PMID: 29375577]
[49]
Fülöp T, Larbi A, Witkowski JM. Human inflammaging. Gerontology 2019; 65(5): 495-504.
[http://dx.doi.org/10.1159/000497375] [PMID: 31055573]
[50]
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol 2018; 40: 17-35.
[http://dx.doi.org/10.1016/j.smim.2018.09.003] [PMID: 30287177]
[51]
Jones L, Kumar J, Mistry A, et al. The transformative possibilities of the microbiota and mycobiota for health, disease, aging, and technological innovation Biomedicines 2019; 28; 7(2). pii: E24.
[http://dx.doi.org/10.3390/biomedicines7020024] [PMID: 30925795]
[52]
Ticinesi A, Nouvenne A, Cerundolo N, et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients 2019; 11(7)E1633
[http://dx.doi.org/10.3390/nu11071633] [PMID: 31319564]
[53]
Ticinesi A, Tana C, Nouvenne A. The intestinal microbiome and its relevance for functionality in older persons. Curr Opin Clin Nutr Metab Care 2019; 22(1): 4-12.
[http://dx.doi.org/10.1097/MCO.0000000000000521] [PMID: 30489399]
[54]
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging 2018; 13: 1497-511.
[http://dx.doi.org/10.2147/CIA.S139163] [PMID: 30214170]
[55]
Riaz Rajoka MS, Zhao H, Li N, et al. Origination, change, and modulation of geriatric disease-related gut microbiota during life. Appl Microbiol Biotechnol 2018; 102(19): 8275-89.
[http://dx.doi.org/10.1007/s00253-018-9264-2] [PMID: 30066188]
[56]
Laing B, Barnett MPG, Marlow G, Nasef NA, Ferguson LR. An update on the role of gut microbiota in chronic inflammatory diseases, and potential therapeutic targets. Expert Rev Gastroenterol Hepatol 2018; 12(10): 969-83.
[http://dx.doi.org/10.1080/17474124.2018.1505497] [PMID: 30052094]
[57]
Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology 2018; 64(6): 513-20.
[http://dx.doi.org/10.1159/000490615] [PMID: 30025401]
[58]
Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol 2018; 19(6): e295-304.
[http://dx.doi.org/10.1016/S1470-2045(18)30095-0] [PMID: 29893261]
[59]
Campisi J. Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc 1997; 45(4): 482-8.
[http://dx.doi.org/10.1111/j.1532-5415.1997.tb05175.x] [PMID: 9100719]
[60]
Campisi J. From cells to organisms: can we learn about aging from cells in culture? Exp Gerontol 2001; 36(4-6): 607-18.
[http://dx.doi.org/10.1016/S0531-5565(00)00230-8] [PMID: 11295503]
[61]
Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102144] [PMID: 20078217]
[62]
Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 2014; 17(4): 324-8.
[http://dx.doi.org/10.1097/MCO.0000000000000065] [PMID: 24848532]
[63]
Byun HO, Lee YK, Kim JM, Yoon G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep 2015; 48(10): 549-58.
[http://dx.doi.org/10.5483/BMBRep.2015.48.10.122] [PMID: 26129674]
[64]
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586.
[http://dx.doi.org/10.3389/fimmu.2018.00586] [PMID: 29686666]
[65]
Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123(3): 966-72.
[http://dx.doi.org/10.1172/JCI64098] [PMID: 23454759]
[66]
Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 2010; 29(2): 273-83.
[http://dx.doi.org/10.1007/s10555-010-9220-9] [PMID: 20390322]
[67]
Caruso C, Lio D, Cavallone L, Franceschi C. Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 2004; 1028: 1-13.
[http://dx.doi.org/10.1196/annals.1322.001]
[68]
Chen R, Alvero AB, Silasi DA, Mor G. Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. Am J Reprod Immunol 2007; 57(2): 93-107.
[http://dx.doi.org/10.1111/j.1600-0897.2006.00441.x] [PMID: 17217363]
[69]
Hursting SD. Obesity, energy balance, and cancer: a mechanistic perspective Cancer Treat Res 2014; 159: 21-33.
[http://dx.doi.org/10.1007/978-3-642-38007-5_2] [PMID: 24114472]
[70]
Hursting SD, Dunlap SM. Obesity, metabolic dysregulation, and cancer: a growing concern and an inflammatory (and microenvironmental) issue. Ann N Y Acad Sci 2012; 1271: 82-7.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06737.x] [PMID: 23050968]
[71]
Hursting SD, Hursting MJ. Growth signals, inflammation, and vascular perturbations: mechanistic links between obesity, metabolic syndrome, and cancer. Arterioscler Thromb Vasc Biol 2012; 32(8): 1766-70.
[http://dx.doi.org/10.1161/ATVBAHA.111.241927] [PMID: 22815342]
[72]
Harvey AE, Lashinger LM, Hursting SD. The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci 2011; 1229: 45-52.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06096.x] [PMID: 21793838]
[73]
Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 2015; 36(10): 1085-93.
[http://dx.doi.org/10.1093/carcin/bgv123] [PMID: 26354776]
[74]
Djuric Z. Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Transl Res 2017; 179: 155-67.
[http://dx.doi.org/10.1016/j.trsl.2016.07.017] [PMID: 27522986]
[75]
Rubino G, Bulati M, Aiello A, et al. Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin Exp Res 2019; 31(1): 125-33.
[http://dx.doi.org/10.1007/s40520-018-0936-7] [PMID: 29594822]
[76]
Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother 2009; 58(12): 1909-17.
[http://dx.doi.org/10.1007/s00262-008-0639-6] [PMID: 19139887]
[77]
Liu X, Wan M. A tale of the good and bad: cell senescence in bone homeostasis and disease. Int Rev Cell Mol Biol 2019; 346: 97-128.
[http://dx.doi.org/10.1016/bs.ircmb.2019.03.005] [PMID: 31122396]
[78]
Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine 2017; 21: 21-8.
[http://dx.doi.org/10.1016/j.ebiom.2017.04.013] [PMID: 28416161]
[79]
Sagiv A, Krizhanovsky V. Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 2013; 14(6): 617-28.
[http://dx.doi.org/10.1007/s10522-013-9473-0] [PMID: 24114507]
[80]
Lujambio A. To clear, or not to clear (senescent cells)? That is the question. BioEssays 2016; 38(Suppl. 1): S56-64.
[http://dx.doi.org/10.1002/bies.201670910] [PMID: 27417123]
[81]
Rao SG, Jackson JG. SASP: Tumor suppressor or promoter? Yes! Trends Cancer 2016; 2(11): 676-87.
[http://dx.doi.org/10.1016/j.trecan.2016.10.001] [PMID: 28741506]
[82]
Sun Y, Coppé JP, Lam EW. Cellular senescence: the sought or the unwanted? Trends Mol Med 2018; 24(10): 871-85.
[http://dx.doi.org/10.1016/j.molmed.2018.08.002] [PMID: 30153969]
[83]
Bryl E, Witkowski JM. Decreased proliferative capability of CD4(+) cells of elderly people is associated with faster loss of activation-related antigens and accumulation of regulatory T cells. Exp Gerontol 2004; 39(4): 587-95.
[84]
Douziech N, Seres I, Larbi A, Szikszay E, Roy PM, Arcand M, et al. Modulation of human lymphocyte proliferative response with aging Exp Gerontol 2002; 1/2002; 37(2-3): 369-87.
[http://dx.doi.org/10.1016/S0531-5565(01)00204-2]
[85]
Fulop T Jr. Signal transduction changes in granulocytes and lymphocytes with ageing. Immunol Lett 1994; 40(3): 259-68.
[86]
Fulop T Jr, Barabas G, Varga Z, Csongor J, Hauck M, Szucs S, et al. Transmembrane signaling changes with aging. Ann N Y Acad Sci 1992; 673: 165-71.
[87]
Fulop T Jr, Barabas G, Varga Z, Jozsef C, Csabina S, Szucs S, et al. Age-dependent changes in transmembrane signalling: identification of G proteins in human lymphocytes and polymorphonuclear leukocytes. Cell Signal 1993; 5(5): 593-603.
[http://dx.doi.org/10.1016/0898-6568(93)90054-P]
[88]
Fulop T Jr, Douziech N, Jacob MP, Hauck M, Wallach J, Robert L. Age-related alterations in the signal transduction pathways of the elastin-laminin receptor. Pathol Biol (Paris) 2001; 49(4): 339-48.
[http://dx.doi.org/10.1016/S0369-8114(01)00143-2]
[89]
Fulop T Jr, Douziech N, Larbi A, Dupuis G. The role of lipid rafts in T lymphocyte signal transduction with aging. Ann N Y Acad Sci 2002; 973: 302-4.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04655.x]
[90]
Beckman I, Dimopoulos K, Xu XN, Bradley J, Henschke P, Ahern M. T cell activation in the elderly: evidence for specific deficiencies in T cell/accessory cell interactions. Mech Ageing Dev 1990; 51(3): 265-76.
[http://dx.doi.org/10.1016/0047-6374(90)90076-R] [PMID: 2106602]
[91]
Lung TL, Saurwein-Teissl M, Parson W, Schönitzer D, Grubeck-Loebenstein B. Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 2000; 18(16): 1606-12.
[http://dx.doi.org/10.1016/S0264-410X(99)00494-6] [PMID: 10689136]
[92]
Frasca D. Senescent B cells in aging and age-related diseases: their role in the regulation of antibody responses. Exp Gerontol 2018; 107: 55-8.
[http://dx.doi.org/10.1016/j.exger.2017.07.002] [PMID: 28687479]
[93]
Frasca D, Diaz A, Romero M, Blomberg BB. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol 2017; 87(Pt A): 113-20.
[94]
Frasca D, Blomberg BB. Aging affects human B cell responses. J Clin Immunol 2011; 31(3): 430-5.
[http://dx.doi.org/10.1007/s10875-010-9501-7] [PMID: 21318330]
[95]
Jasiulewicz A, Lisowska KA, Pietruczuk K, Frąckowiak J, Fulop T, Witkowski JM. Homeostatic ‘bystander’ proliferation of human peripheral blood B cells in response to polyclonal T-cell stimulation in vitro. Int Immunol 2015; 27(11): 579-88.
[http://dx.doi.org/10.1093/intimm/dxv032] [PMID: 25995267]
[96]
Fulop T, Witkowski JM, Le Page A, Fortin C, Pawelec G, Larbi A. Intracellular signalling pathways: targets to reverse immunosenescence. Clin Exp Immunol 2017; 187(1): 35-43.
[http://dx.doi.org/10.1111/cei.12836] [PMID: 27364690]
[97]
Pawelec G, Larbi A. Immunity and ageing in man: annual review 2006/2007. Exp Gerontol 2008; 43(1): 34-8.
[98]
Pawelec G. Immunity and ageing in man. Exp Gerontol 2006; 41(12): 1239-42.
[http://dx.doi.org/10.1016/j.exger.2006.09.005]
[99]
Naylor K, Li G, Vallejo AN, et al. The influence of age on T cell generation and TCR diversity. J Immunol 2005; 174(11): 7446-52.
[100]
Lau EYM, Carroll EC, Callender LA, et al. Type 2 diabetes is associated with the accumulation of senescent T cells. Clin Exp Immunol 2019; 197(2): 205-13.
[http://dx.doi.org/10.1111/cei.13344] [PMID: 31251396]
[101]
Callender LA, Carroll EC, Bober EA, Henson SM. Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Res Rev 2018; 47: 24-30.
[http://dx.doi.org/10.1016/j.arr.2018.06.001] [PMID: 29902528]
[102]
Callender LA, Carroll EC, Beal RWJ, et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 2018; 17(1)
[http://dx.doi.org/10.1111/acel.12675] [PMID: 29024417]
[103]
Rajagopalan S. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol 2014; 11(5): 460-6.
[http://dx.doi.org/10.1038/cmi.2014.53] [PMID: 24998350]
[104]
Rajagopalan S, Long EO. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci USA 2012; 109(50): 20596-601.
[http://dx.doi.org/10.1073/pnas.1208248109] [PMID: 23184984]
[105]
Zhang C, Wang Y, Wang D, Zhang J, Zhang F. NSAID exposure and risk of Alzheimer’s disease: an updated meta-analysis from cohort studies. Front Aging Neurosci 2018; 10: 83.
[http://dx.doi.org/10.3389/fnagi.2018.00083] [PMID: 29643804]
[106]
Remondini D, Salvioli S, Francesconi M, et al. Complex patterns of gene expression in human T cells during in vivo aging. Mol Biosyst 2010; 6(10): 1983-92.
[http://dx.doi.org/10.1039/c004635c] [PMID: 20686723]
[107]
Darzynkiewicz Z, Zhao H, Halicka HD, et al. In search of antiaging modalities: evaluation of mTOR- and ROS/DNA damage-signaling by cytometry. Cytometry A 2014; 85(5): 386-99.
[http://dx.doi.org/10.1002/cyto.a.22452] [PMID: 24677687]
[108]
Halicka HD, Zhao H, Li J, et al. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging (Albany NY) 2012; 4(12): 952-65.
[http://dx.doi.org/10.18632/aging.100521] [PMID: 23363784]
[109]
Le Page A, Dupuis G, Larbi A, Witkowski JM, Fülöp T. Signal transduction changes in CD4+ and CD8+ T cell subpopulations with aging. Exp Gerontol 2018; 105: 128-39.
[http://dx.doi.org/10.1016/j.exger.2018.01.005] [PMID: 29307735]
[110]
Bachi AL, Rios FJ, Vaisberg PH, et al. Neuro-immuno-endocrine modulation in marathon runners. Neuroimmunomodulation 2015; 22(3): 196-202.
[http://dx.doi.org/10.1159/000363061] [PMID: 25170624]
[111]
Rettori E, De Laurentiis A, Dees WL, Endruhn A, Rettori V. Host neuro-immuno-endocrine responses in periodontal disease. Curr Pharm Des 2014; 20(29): 4749-59.
[http://dx.doi.org/10.2174/1381612820666140130204043] [PMID: 24588827]
[112]
Loheswaran G, Kapadia M, Gladman M, et al. Altered neuroendocrine status at the onset of CNS lupus-like disease. Brain Behav Immun 2013; 32: 86-93.
[http://dx.doi.org/10.1016/j.bbi.2013.02.006] [PMID: 23466502]
[113]
Pietruczuk K, Lisowska KA, Grabowski K, Landowski J, Cubała WJ, Witkowski JM. Peripheral blood lymphocyte subpopulations in patients with bipolar disorder type II. Sci Rep 2019; 9(1): 5869.
[http://dx.doi.org/10.1038/s41598-019-42482-6] [PMID: 30971748]
[114]
Pietruczuk K, Lisowska KA, Grabowski K, Landowski J, Witkowski JM. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci Rep 2018; 8(1): 3327.
[http://dx.doi.org/10.1038/s41598-018-21769-0] [PMID: 29463875]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy