Research Article

载于ZSM-5纳米沸石上的肿瘤抑制因子MiR-34a在肝细胞癌中的作用:体内和体外方法

卷 19, 期 5, 2019

页: [342 - 354] 页: 13

弟呕挨: 10.2174/1566523219666191108103739

价格: $65

摘要

背景:MicroRNA调节疗法已显示出治疗肝细胞癌(HCC)的巨大希望,但是有效的组织特异性和安全递送仍然是主要挑战。 目的:我们试图开发一种无机-有机混合载体,用于全身性递送抑癌药miR-34a,并研究所递送的miR-34a在体外和体内治疗肝癌的效率。 方法:在本研究中,将表达miR-34a的pEGP-miR克隆和表达载体与聚乙烯亚胺(PEI)静电结合,然后加载到ZSM-5沸石纳米颗粒(ZNP)上。通过GFP筛选和qRT-PCR分别对miR-34a构建体在HepG2细胞中的转染效率进行了定性和定量评估。通过体外和体内qRT-PCR研究miR-34a靶基因的表达。 结果:ZNP / PEI / miR-34a纳米制剂可以有效地传递到HepG2细胞中,具有较低的细胞毒性,表明生成的纳米沸石具有良好的生物相容性。此外,在HCC诱导的雄性Balb-c小鼠中,五次注射的ZNP / PEI / miR-34a纳米制剂的剂量不仅显着降低了甲胎蛋白水平和肝酶活性,而且还显着抑制了肿瘤的生长并改善了细胞结构,与阳性对照组相比。此外,注射的ZNP / PEI / miR-34a纳米制剂导致CD44和c-Myc水平显着下降。结果还显示,ZNP / PEI / miR-34a纳米制剂可在体内和体外抑制几种靶癌基因,包括AEG-1和SOX-9。 结论:我们的结果表明,miR-34a是HCC治疗的有力候选者,而AEG-1和SOX-9是miR-34a在HCC中的新靶向靶标。结果还表明,我们的纳米制剂可作为miR-34a修复用于HCC治疗以及通常用于安全基因递送的候选方法。

关键词: 肝细胞癌,抑癌药miRNA,替代疗法,纳米沸石,基因递送,靶向肿瘤。

« Previous
图形摘要

[1]
Mansy SS, El-Ahwany E, Mahmoud S, et al. Potential ultrastructure predicting factors for hepatocellular carcinoma in HCV infected patients. Ultrastruct Pathol 2017; 41(3): 209-26.
[http://dx.doi.org/10.1080/01913123.2017.1316330] [PMID: 28494215]
[2]
Bolhassani A, Saleh T. In: Wei M, Ed Challenges in advancing the field of cancer gene therapy: An overview of the multi-functional nanocarriers. IntechOpen 2013.
[http://dx.doi.org/10.5772/54862]
[3]
Rothschild SI. microRNA therapies in cancer. Mol Cell Ther 2014; 2(7): 7.
[http://dx.doi.org/10.1186/2052-8426-2-7] [PMID: 26056576]
[4]
Amer M, Elhefnawi M, El-Ahwany E, et al. Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span. Tumour Biol 2014; 35(11): 11301-9.
[http://dx.doi.org/10.1007/s13277-014-2445-4] [PMID: 25119594]
[5]
ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinformatics 2013; 11(6): 354-67.
[http://dx.doi.org/10.1016/j.gpb.2013.05.007] [PMID: 24287119]
[6]
Roy G, Roy P. MicroRNAs in hepatocellular carcinoma-therapeutics and beyond: A systematic review. IJS Short Reports 2017; 2(2): 10-6.
[http://dx.doi.org/10.4103/ijssr.ijssr_6_17]
[7]
Wang XP, Zhou J, Han M, et al. MicroRNA-34 a regulates liver regeneration and the development of liver cancer in rats by targeting Notch signaling pathway. Oncotarget 2017; 8(8): 13264-76.
[http://dx.doi.org/10.18632/oncotarget.14807] [PMID: 28129650]
[8]
Cai H, Zhou H, Miao Y, Li N, Zhao L, Jia L. MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. Lab Invest 2017; 97(5): 530-42.
[http://dx.doi.org/10.1038/labinvest.2017.12] [PMID: 28218742]
[9]
Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 2012; 3: 120.
[http://dx.doi.org/10.3389/fgene.2012.00120] [PMID: 22783274]
[10]
Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 2014; 13(10): 2352-60.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0209] [PMID: 25053820]
[11]
Liu Y, Zhang W, Liu K, Liu S, Ji B, Wang Y. miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma. Am J Transl Res 2016; 8(5): 2159-68.
[PMID: 27347323]
[12]
Yan JJ, Chang Y, Zhang YN, Lin JS, He XX, Huang HJ. miR-195 inhibits cell proliferation via targeting AEG-1 in hepatocellular carcinoma. Oncol Lett 2017; 13(5): 3118-26.
[http://dx.doi.org/10.3892/ol.2017.5826] [PMID: 28529562]
[13]
Ben-Shushan D, Markovsky E, Gibori H, Tiram G, Scomparin A, Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res 2014; 4(1): 38-49.
[http://dx.doi.org/10.1007/s13346-013-0160-0] [PMID: 25786616]
[14]
Cevher E, Sezer AD, Çağlar E. Gene delivery systems: Recent progress in viral and non-viral therapy Recent advances in novel drug carrier systems. IntechOpen 2012; pp. 437-70.
[http://dx.doi.org/10.5772/53392]
[15]
Appelbe OK, Kim BK, Rymut N, Wang J, Kron SJ, Yeo Y. Radiation-enhanced delivery of plasmid DNA to tumors utilizing a novel PEI polyplex. Cancer Gene Ther 2018; 25(7-8): 196-206.
[http://dx.doi.org/10.1038/s41417-017-0004-z] [PMID: 29255216]
[16]
Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 2018; 8(2): 165-77.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[17]
Kim TH, Kim M, Eltohamy M, Yun YR, Jang JH, Kim HW. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 2013; 101(6): 1651-60.
[http://dx.doi.org/10.1002/jbm.a.34466] [PMID: 23184619]
[18]
Guo YP, Long T, Song ZF, Zhu ZA. Hydrothermal fabrication of ZSM-5 zeolites: Biocompatibility, drug delivery property, and bactericidal property. J Biomed Mater Res B Appl Biomater 2014; 102(3): 583-91.
[http://dx.doi.org/10.1002/jbm.b.33037] [PMID: 24123971]
[19]
Pearce ME, Mai HQ, Lee N, Larsen SC, Salem AK. Silicalite nanoparticles that promote transgene expression. Nanotechnology 2008; 19(17)175103
[http://dx.doi.org/10.1088/0957-4484/19/17/175103] [PMID: 21825661]
[20]
Youssef H, Ibrahim D, Komarneni S. Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite. Microporous Mesoporous Mater 2008; 115(3): 527-34.
[http://dx.doi.org/10.1016/j.micromeso.2008.02.030]
[21]
Petushkov A, Intra J, Graham JB, Larsen SC, Salem AK. Effect of crystal size and surface functionalization on the cytotoxicity of silicalite-1 nanoparticles. Chem Res Toxicol 2009; 22(7): 1359-68.
[http://dx.doi.org/10.1021/tx900153k] [PMID: 19580308]
[22]
Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 2018; 120(3): 159-67.
[http://dx.doi.org/10.1016/j.acthis.2018.02.005] [PMID: 29496266]
[23]
Cho S, Jang I, Jun Y, et al. MiRGator v3.0: A microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 2013; 41: D252-7.
[PMID: 23193297]
[24]
Dweep H, Gretz N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12(8): 697.
[http://dx.doi.org/10.1038/nmeth.3485] [PMID: 26226356]
[25]
Luo M, Yang F, Huang SX, et al. Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol Res 2013; 20(11): 517-28.
[http://dx.doi.org/10.3727/096504013X13747716581336] [PMID: 24063282]
[26]
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957; 28(1): 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[27]
Carleton HM, Drury RA, Wallington EA. Carleton’s histological technique. USA: Oxford University Press 1980.
[28]
Fuhrich DG, Lessey BA, Savaris RF. Comparison of HSCORE assessment of endometrial β3 integrin subunit expression with digital HSCORE using computerized image analysis. Anal Quant Cytopathol Histpathol 2013; 35(4): 210-6.
[PMID: 24341124]
[29]
Anderson TD, Cheville NF, Meador VP. Pathogenesis of placentitis in the goat inoculated with Brucella abortus. II. Ultrastructural studies. Vet Pathol 1986; 23(3): 227-39.
[http://dx.doi.org/10.1177/030098588602300302] [PMID: 3088810]
[30]
Sun XY, Nong J, Qin K, et al. MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures. Anticancer Res 2011; 31(11): 3705-12.
[PMID: 22110190]
[31]
Thomas MB, Zhu AX. Hepatocellular carcinoma: The need for progress. J Clin Oncol 2005; 23(13): 2892-9.
[http://dx.doi.org/10.1200/JCO.2005.03.196] [PMID: 15860847]
[32]
Henry JC, Azevedo-Pouly AC, Schmittgen TD. MicroRNA replacement therapy for cancer. Pharm Res 2011; 28(12): 3030-42.
[http://dx.doi.org/10.1007/s11095-011-0548-9] [PMID: 21879389]
[33]
Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010; 18(9): 1650-6.
[http://dx.doi.org/10.1038/mt.2010.136] [PMID: 20606648]
[34]
Karagöz U, Kotmakçı M, Akbaba H, et al. Preparation and characterization of non-viral gene delivery systems with pEGFP-C1 Plasmid DNA. Braz J Pharm Sci 2018; 54(1)e00265
[http://dx.doi.org/10.1590/s2175-97902018000100265]
[35]
Ghiamkazemi S, Amanzadeh A, Dinarvand R, et al. Synthesis, and characterization, and evaluation of cellular effects of the FOL-PEG-g-PEI-GAL nanoparticles as a potential non-viral vector for gene delivery. J Nanomater 2010; 2010: 1-10.
[http://dx.doi.org/10.1155/2010/863136]
[36]
Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm Res 2006; 23(7): 1417-50.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[37]
Hendriks FC, Valencia D, Bruijnincx PC, Weckhuysen BM. Zeolite molecular accessibility and host-guest interactions studied by adsorption of organic probes of tunable size. Phys Chem Chem Phys 2017; 19(3): 1857-67.
[http://dx.doi.org/10.1039/C6CP07572J] [PMID: 28000819]
[38]
Zheng K, Yang H, Wang L, et al. Amino-functionalized mesoporous silica nanoparticles: Adsorption and protection for pcDNA3. 1 (+)-PKB-HA. J Porous Mater 2013; 20(5): 1003-8.
[http://dx.doi.org/10.1007/s10934-013-9679-1]
[39]
Miyata K, Gouda N, Takemoto H, et al. Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials 2010; 31(17): 4764-70.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.033] [PMID: 20304483]
[40]
Cotrim AP, Baum BJ. Gene therapy: Some history, applications, problems, and prospects. Toxicol Pathol 2008; 36(1): 97-103.
[http://dx.doi.org/10.1177/0192623307309925] [PMID: 18337227]
[41]
Hunter AC. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev 2006; 58(14): 1523-31.
[http://dx.doi.org/10.1016/j.addr.2006.09.008] [PMID: 17079050]
[42]
Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther 2005; 11(6): 990-5.
[http://dx.doi.org/10.1016/j.ymthe.2005.02.010] [PMID: 15922971]
[43]
Kloeckner J, Bruzzano S, Ogris M, Wagner E. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: Effect of chemical structure of polymer on biological properties. Bioconjug Chem 2006; 17(5): 1339-45.
[http://dx.doi.org/10.1021/bc060133v] [PMID: 16984145]
[44]
Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008; 2(1): 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
[45]
Shmueli RB, Bhise NS, Green JJ. Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry. J Vis Exp 2013; 1(73)e50176
[http://dx.doi.org/10.3791/50176] [PMID: 23486314]
[46]
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40(5)1010428318773675
[http://dx.doi.org/10.1177/1010428318773675] [PMID: 29775159]
[47]
Xu X, Chen W, Miao R, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget 2015; 6(6): 3988-4004.
[http://dx.doi.org/10.18632/oncotarget.2905] [PMID: 25686834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy