Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Estimate of Hyperconjugation Strength in Alkylaromatics and Unsaturated Hydrocarbons Derived from Refractometric Data

Author(s): Boris A. Zaitsev*

Volume 23, Issue 23, 2019

Page: [2598 - 2613] Pages: 16

DOI: 10.2174/1385272823666191108100747

Price: $65

Abstract

A retrospective view of exaltation of refraction observed for many unsaturated and aromatic compounds demonstrates that this physical phenomenon is undeservedly considered only as a qualitative measure of conjugation. This mini-review discusses numerous papers by the author that have been published earlier in inaccessible periodicals and collections of scientific papers. Using a great number of illustrations, the author shows that this parameter can be successfully used for quantitative estimate of resonance effects in organic and polymer chemistry. The methods for derivation of strictly additive atomic and group refraction constants are described; these constants were subsequently used as a tool that allowed quantitative estimation of resonance effects in mono-, di-, tri- and polyalkylbenzenes, alkylnaphthalenes, some alkyl derivatives of unsaturated hydrocarbons. These effects cause strictly fixed increase in refraction of carbon atoms in different structural modifications (graphene, fullerene, diamond) and in polycyclic aromatic hydrocarbons. The relevant results regarding quantitative estimation of degree of steric inhibition of resonance in sterically hindered ortho-dialkylbenzenes, 1,2,3- trialkyl-, 1,2,3,4-tetraalkyl-, and 1,2,3,4,5-polyalkylbenzenes accumulated by the author are summarized.

Keywords: Molar refraction, optical exaltation, resonance effects, hyperconjugation, condensed aromatic systems, alkyl aromatics, unsaturated hydrocarbons.

Graphical Abstract

[1]
Feixas, F.; Matito, E.; Poater, J.; Solà, M. Understanding conjugation and hyperconjugation from electronic delocalization measures. J. Phys. Chem. A, 2011, 115(45), 13104-13113.
[http://dx.doi.org/10.1021/jp205152n]
[2]
Alabugin, I.V.; Gilmore, K.M.; Peterson, P.W. Hyperconjugation. WIREs Comput. Mol. Sci., 2011, 1, 109-141.
[http://dx.doi.org/10.1002/wcms.6]
[3]
Fernández, I.; Frenking, G. Direct estimate of aromaticity with the energy decomposition analysis. Direct estimate of aromaticity with the energy decomposition analysis., Open Org. Chem. J, 2011, 5(Suppl. 1-M5), 79-86.
[http://dx.doi.org/10.2174/1874364101105010079]]
[4]
Smith, M.B.; March, J. Delocalized chemical bonding, hyperconjugation In. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Ed.; Wiley & Sons, 2013, 2, 48-95.
[5]
Milad, R.; Shi, J.; Aguirre, A.; Cardone, A.; Milián-Medina, B.; Farinola, G.M.; Abderrabba, M.; Gierschner, J. Effective conjugation in conjugated polymers with strongly twisted backbones: A case study on fluorinated MEHPPV. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(28), 6900-6906.
[http://dx.doi.org/10.1039/C6TC01720G]
[6]
Leclerc, M.; Morin, J.-F. A Review of “Design and Synthesis of Conjugated Polymers”. Wiley-VCH, Verlag GmbH & Co.: Weinheim, 2010.
[http://dx.doi.org/10.1080/15421406.2012.688457]]
[7]
Joffe, B.V. Refraktometritscheskie Metodi Khimii ("Refractometric methods of chemistry"). 2nd Ed.; Chemistry: Leningrad branch, 1974.
[8]
Joffe, B.V. Refraktometritscheskie Metodi Khimii ("Refractometric methods of chemistry"). 3nd Ed.; Chemistry: Leningrad branch, 1983.
[9]
Batsonov, S. Refractometry & Chemical Structure, Consultants Bureau: New York. 1961.
[10]
Batsanov, S.S. Refractometry and Chemical Structure; Van Nostrand: Princeton, 1966.
[11]
Batsanov, S.S. Structurnaya Refraktometriya (“Structural Refractometry”), 2nd ed; Vyschaya Shkola: Moscow, 1976.
[12]
Reinhard, M.; Drefahl, A. Handbook for estimating physicochemical properties of organic compounds. A Wiley-Interscience Publ.: New York, Chichester, etc, 1999.
[http://dx.doi.org/10.1002/ep.670190106]
[13]
Katritzky, A.R.; Sild, S.; Karelson, M. General quantitative structure-property relationship treatment of the refractive index of organic compounds. J. Chem. Inf. Comput. Sci., 1998, 38, 840-844.
[http://dx.doi.org/10.1021/ci980028i]
[14]
Cao, Ch-Z.H.; Gao, S. Bond orbital-connection matrix method to predict refractive indices of alkanes. Chin. J. Chem. Phys., 2007, 20, 149-154.
[http://dx.doi.org/10.1360/cjcp2007.20(2).149.6]
[15]
Gharagheizi, F.; Ilani-Kashkouli, P.; Kamari, A.; Mohammadi, A.H.; Ramjugernath, D. Group contribution model for the prediction of refractive indices of organic compounds. J. Chem. Eng. Data, 2014, 59, 1930-1943.
[http://dx.doi.org/10.1021/je5000633]
[16]
Li, K.; Arnett, R.L.; Epstein, M.B.; Ries, R.B.; Bitler, L.P.; Lynch, J.M.; Rossini, F.D. Correlation of physical properties of normal alkyl series of compounds. J. Phys. Chem., 1956, 60, 1400-1406.
[http://dx.doi.org/10.1021/j150544a015]
[17]
Newton, I. Opticks: A treatise of the reflections, refractions, inflection and colours of light; Innys., William Innys at the West-End of St. Paul's, 2006, p. 382.
[18]
Andher, S.S.; Gadhawala, Z.M.; Chavda, M.R.; Joshi, H.D. A study of suggested formula (ADJ) of specific refraction. Res. J. Phys. Sci., 2014, 2, 1-7.
[19]
Patel, H.K.; Patel, S.G. Verification of specific refraction and molar refraction for homologous alcohol series at 30oC by suggested formula (PDJ). Adv. Appl. Sci. Res., 2015, 6(3), 165-167.
[20]
Vargas, F.M.; Chapman, W.G. Application of the one-third rule in hydrocarbon and crude oil systems. Fluid Phase Equilib., 2010, 290(1-2), 103-108.
[http://dx.doi.org/10.1016/j.fluid.2009.12.004]
[21]
Panuganti, S.R.; Vargas, F.M.; Chapman, W.G. Property scaling relations for nonpolar hydrocarbons. Ind. Eng. Chem. Res., 2013, 52(23), 8009-8020.
[http://dx.doi.org/10.1021/ie303012n]
[22]
Exner, O. Additive physical properties. I. General relationships and problem of statistical nature. Collect. Czech. Chem. Commun., 1966, 31, 3222-3251.
[http://dx.doi.org/10.1135/cccc19663222]
[23]
Zaitsev, B.A. Molecular refraction and structural effects. I. On problem of additivity of molecular refraction of organic substances. Reactsionnaya sposobnosnt’ organicheskich soedinenij “Organic reactivity”. (Org. Reactivity) - Reactivity of Organic Compounds, Tartu State University: Tartu, 1969, 62(20), 398-413.
[24]
Eisenlohr, F. Die Spectrochemie der organischer Verbindungen; Stuttgart, 1912.
[25]
Vogel, A. Physical properties and chemical constitution. Part XXIII. Miscellaneous compounds. Investigation of so-called coordinate or dative link in esters of oxy-acids and in nitro-paraffins by molecular refractivity determinations. Atomic, structural, and group parachors and refractivities. J. Chem. Soc., 1948, 1833-1855.
[http://dx.doi.org/10.1039/jr9480001833]
[26]
Krevelen, D.W.; Te Nijenhuis, K. Properties of polymers, Elsevier. 2009, pp. 60-65; 293-294.
[http://dx.doi.org//10.1016/B978-0-08-054819-7.00001-7]
[27]
Palm, V.A. Vvedenie v teoreticheskuyu organicheskuyu chimiyu (Introduction to the theoretical organic chemistry); Vyschaya Shkola Publ.: Moscow, 1974, pp. 202-204.
[28]
Zaitsev, B.A. New additive scheme for calculating the molecular refraction and dispersion for different wavelengths. Bulletin of the academy of sciences of the USSR, Division of chemical science. Russ. Chem. Bull., 1976, 25(5), 1003-1009.
[http://dx.doi.org/10.1007/BF00921980]
[29]
Huggins, M.L. Densities and refractive indices of unsaturated hydrocarbons. J. Am. Chem. Soc., 1941, 63(4), 916-920.
[http://dx.doi.org/10.1021/ja01849a005]
[30]
Tatevskiy, V.M. Chemical Structure of Hydrocarbons and Regularity in their Physico-Chemical Properties; Moscow State University Publ.: Moscow, 1953.
[31]
Kremann, R.; Pestemer, M. Zusammenhange zwischen physikalischen Eigenschaften und chemischer Constitution; Verlag von T. Steinkopff: Dresden, und Leipzig, 1937.
[32]
Becker, H. Einfuhrung in die Elektronentheorie organisch-chemischer Reactionen; VEB Deutscher Verlag der Wissenschaften: Berlin, 1964.
[33]
Downey, P.M.; Butler, G.B. The relationship between optical exaltation and polymerizability of olefins. Correlation of exaltation with copolymerization. SPE Transactions, 1963, 3, 50-56.
[http://dx.doi.org/10.1002/pen.760030111]
[34]
Zaitsev, B.A. Correlation of the refraction exaltation of styrene derivatives with Q-parameter of Alfrey-Price. Polymer Sci. USSR, 1967, 9(11), 2649-2654.
[http://dx.doi.org/10.1016/0032-3950(67)90362-0]
[35]
Alfrey, T.A.; Price, C.C. Relative reactivities in vinyl copolymerization. J. Polym. Sci., Polym. Phys. Ed., 1947, 2(1), 101-106.
[http://dx.doi.org/10.1002/pol.1947.120020112]
[36]
Alfrey, T.; Bohrer, J.J.; Mark, H. Copolymerization; Intersci. Publ.: New York, 1952.
[37]
Zaitsev, B.A. Synthesis, Free-Radical Copolymerization, and Quantitative Structure-Reactivity- Property Relationships Investigation of Styrene and a- Methylstyrene Derivatives. Ph.D. Thesis, The Institute of Macromolecular Compounds of the Academy of Sciences of USSR: Leningrad, November. 1968.
[38]
Zaitsev, B.A. Optical exaltation and effects substituents in aromatic compounds. Org. Reactivity, 1967, 4, 338-353.
[39]
Zaitsev, B.A., II Correlation of exaltation of meta- and para-substituted benzene derivatives with σ-constants of substituents. Org. Reactivity, 1967, 4, 354-362.
[40]
Zaitsev, B.A., III Correlation of exaltation of monosubstituted benzene derivatives with σ-constants and UV -spectra. Some problems evaluating resonance between π-electron systems. Org. Reactivity, 1967, 4(4(14)), 726-739.
[41]
Hansch, C.; Leo, A.; Taft, R.W. A Survey of Hammett substituent constants and resonance and field parameters. Chem. Rev., 1991, 97(2), 165-195.
[http://dx.doi.org/10.1021/cr00002a004]
[42]
Zaitsev, B.A. Molecular refraction and structural effects. II. Increments of molecular refractions of double and triple bonds free from non-additive contributions. Org. Reactivity, 1969, 6(2 (20)), 414-439.
[43]
Zaitsev, B.A.; Uzbekova, A.Kh. III Phenyl group refraction constant free from non-additive contributions. Org. Reactivity, 1969, 6(4(22)), 1023-1033.
[44]
Zaitsev, B.A., IV Additive values of refraction constants of nitrogen and amino group. Org. Reactivity, 1969, 6(4 (22)), 1034-1044.
[45]
Zaitsev, B.A.V. Additive value of refraction constant of carbonyl group. Org. Reactivity, 1969, 6(4 (22)), 1045-1055.
[46]
Zaitsev, B.A. Molecular refraction and structural effects. VI. Quantitative evaluation of the degree of conjugation in unsaturated aliphatic and multinuclear aromatic hydrocarbons on the basis of refraction exaltation. Org. Reactivity, 1970, 7(4(26)), 1016-1037.
[47]
Zaitsev, B.A. Determination of the conformations of certain unsaturated aromatic hydrocarbons by a refractometric method. Russ. Chem. Bull., 1973, 22(9), 1917-1921.
[http://dx.doi.org/10.1007/BF00929375]
[48]
Zaitsev, B.A. Determination of the conformations of certain aromatic ketones by a refractometric method. Russ. Chem. Bull., 1974, 23(4), 747-753.
[http://dx.doi.org/10.1007/BF00923493]
[49]
Zaitsev, B.A. Refractometric study of the effect of conjugation and conformations of polytolanes. Polymer Sci. USSR, 1975, 17(12), 3171-3177.
[http://dx.doi.org/10.1016/0032-3950(75)90349-4]
[50]
Zaitsev, B.A. Determination of the conformations of conjugated systems of the diphenyl type by a refractometric method. Russ. Chem. Bull., 1974, 23(12), 2629-2635.
[http://dx.doi.org/10.1007/BF00923694]
[51]
Zaitsev, B.A. Determination of conformations of some o-alkylnitrobenzenes based on refraction exaltation. Russ. Chem. Bull., 1975, 24(10), 2208-2210.
[http://dx.doi.org/10.1007/BF00929759]
[52]
Zaitsev, B.A. Molecular refraction and effects of structure. Communication 8. Additivity of the exaltations of the refraction of organic molecules with interrupted conjugation between parts. Russ. Chem. Bull., 1972, 21(11), 2339-2344.
[http://dx.doi.org/10.1007/BF00850065]
[53]
Zaitsev, B.A. Molecular refraction and structural effects. VII. Effect of hyperconjugation on molecular refraction. Org. Reactivity, 1972, 9(1(31)), 65-78.
[54]
Rossini, F.D.; Pitzer, K.S.; Arnett, R.L.; Braun, R.M.; Pimentel, G.C. Selected values of physical and thermodynamic properties of hydrocarbons and related compounds. Amer. Petrol. Institute, Res. Project 44., 1953.
[55]
Dreisbach, R.R. Physical properties of chemical compounds. Amer. Chem. Soc.: Washington, 1955-1961, 1-3
[56]
Forziati, A.F. Refractive index as a function of wavelength for sixty API-NBS hydrocarbons. J. Res. Natl. Bur. Stand., 1950, 44, 373-385.
[http://dx.doi.org/10.6028/jres.044.033]
[57]
Camin, D.L.; Forziati, A.F.; Rossini, F.D. Physical properties of n-hexadecane, n-decyleyclopentane, n-decylcyclohexane, 1-hexadecene and n-decylbenzene. J. Phys. Chem., 1954, 58(5), 440-442.
[http://dx.doi.org/10.1021/j150515a015]
[58]
Camin, D.L.; Rossini, F.D. Physical properties of fourteen API research hydrocarbons, C9 to C15. J. Phys. Chem., 1955, 59(11), 1173-1179.
[http://dx.doi.org/10.1021/j150533a014]
[59]
American Petroleum Institute. Research Project 58A, Annu. Rep, 1963.
[60]
Bryce-Smith, D.; Turner, E.E. Alkali organometal compounds. Part I. The reaction of benzylsodium with alkyl halides. J. Chem. Soc., 1950, 1975-1979.
[http://dx.doi.org/10.1039/jr9500001975]
[61]
Zhang, Y.; Dong, H.; Yue, Y.; Wu, C. Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 2,4,6,8-tetramethyl-2,4,6,8-tetraethenylcyclotetrasiloxane with aromatic hydrocarbons. J. Chem. Thermodyn., 2013, 57, 114-130.
[http://dx.doi.org/10.1016/j.jct.2012.08.010]
[62]
Schiessler, R.W. The density and refractive index of n-Octylbenzene. American Petroleum Institute, Research Project 42, 12th meeting., https://materials.springer.com/springer-materials-interactive-properties2019.
[63]
Schmidt, A.W.; Schoeller, V. Über physikalische Daten von p-Alkyltoluolen. Berichte, 1941, 74(2), 258-263.
[http://dx.doi.org/10.1002/cber.19410740216]
[64]
Cumulative Tabulation of Freezing Points, Boiling Points, Refractive Indices and Densities, Research Project 45, https://materials.springer.com/springer-materials-interactive-properties2019.
[65]
Welsh, C.E.; Hennion, G.F. The Preparation of Some p-Dialkylbenzenes. J. Am. Chem. Soc., 1941, 63(10), 2603-2604.
[http://dx.doi.org/10.1021/ja01855a019]
[66]
Fields, E.K. Synthesis of 4-Aryl-1,2-dithiole-3-thiones by reaction of cumenes with sulfur. J. Am. Chem. Soc., 1955, 77(16), 4255-4257.
[http://dx.doi.org/10.1021/ja01621a027]
[68]
Birch, S.F.; Dean, R.A.; Fidler, F.A.; Lowry, R.A. The Preparation of the C10 monocyclic aromatic hydrocarbons. J. Am. Chem. Soc., 1949, 71(4), 1362-1369.
[http://dx.doi.org/10.1021/ja01172a064]
[69]
Boelhouwer, J.W.M.; Nederbragt, G.W.; Verberg, G. Viscosity data of organic liquids. Appl. Sci. Res., 1951, 2(1), 249-268.
[http://dx.doi.org/10.1007/BF00411987]
[70]
Wibaut, J.P.; Paulis, B. 1,3,5-Triacetylbenzene as a base material for the preparation of symmetrical trialkylbenzenes. Recl. Trav. Chim. Pays Bas, 1958, 77(8), 782-791.
[http://dx.doi.org/10.1002/recl.19580770813]
[71]
McCaulay, D.A.; Lien, A.P.; Launer, P.J. Disproportionation of Alkylbenzenes. III. Spectral characteristics and other physical properties of symmetrical trialkylbenzenes. proof of structure of 1,3,5-tri-t-butylbenzene. J. Am. Chem. Soc., 1954, 76(9), 2354-2357.
[http://dx.doi.org/10.1021/ja01638a020]
[72]
Weast, R.C. Handbook of Chemistry and Physics, 64th Ed.; CRC Press: Florida. 1983-84.
[73]
Smith, L.I.; Guss, C.O. Polyalkylbenzenes. XXVIII. Physical properties of the tetraethylbenzenes. J. Am. Chem. Soc., 1940, 62(10), 2630-2631.
[http://dx.doi.org/10.1021/ja01867a014]
[74]
Morrell, S.H.; Pickering, L.S.; Smith, J.C. 1-Methylnaphtalene, https://materials.springer.com/springer-materials-interactive-properties2019.
[75]
Davis, R.T.; Schiessler, R.W. Use of Monochromator in Refractometry. Anal. Chem., 1955, 27(11), 1824.
[http://dx.doi.org/10.1021/ac60107a049]
[76]
Arrowsmith, G.B.; Jeffery, G.H.; Vogel, A.I. Physical properties and chemical constitution. Part XLI. Naphthalene compounds. J. Chem. Soc., 1965, 2072-2078.
[http://dx.doi.org/10.1039/jr9650002072]
[77]
Penn. State Univ., 1968, 2-n-Alkylnaphtalenes, https://materials.springer. com/springer-materials-interactive-properties2019.
[78]
Levi, L.R.; Nicholls, V.V. Formation of styrenes - by pyrolysis of aromatic or heterocyclic aldehyde-aliphatic acid anhydride mixtures over morden bentonite. Ind. Eng. Chem., 1958, 50(7), 1005-1008.
[http://dx.doi.org/10.1021/ie50583a027]
[79]
Dreisbach, R.R.; Martin, R.A. Physical data on some organic compounds. Ind. Eng. Chem., 1949, 41(12), 2875-2878.
[http://dx.doi.org/10.1021/ie50480a053]
[80]
Ferstanding, L.L.; Butler, J.C.; Straus, A.E. p-t-Butylstyrene and its polymers. J. Am. Chem. Soc., 1954, 76(22), 5779-5780.
[http://dx.doi.org/10.1021/ja01651a047]
[81]
Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; , 1965, Vol. 2, .
[82]
CRC Handbook of Chemistry and Physics (Internet Version 2005).,, 2005.
[83]
Wohlfarth, Ch.; Wohlfahrt, B. Pure organic liquids. Landolt-Börnstein - Group IV Physical Chemistry. SpringerMaterials, 1996, 18B
[http://dx.doi.org/10.1007/10639283_1]
[84]
Lide, D.R., Ed.; CRC Handbook of Chemistry and Physics; , 2005.
[85]
Hiratsuka, M.; Nakamori, H.; Kogo, Y.; Sakurai, M.; Ohtake, N.; Saitoh, H. Correlation between optical properties and hardness of diamond-like carbon films. J. Solid Mech. and Mat. Eng., 2013, 7(2), 187- 198.10.1299/jmmp.7.187. [http://dx.doi.org/]
[86]
Weber, J.W.; Calado, V.E.M.; van de Sanden, C.M. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett., 2010, 97091904
[http://dx.doi.org/10.1063/1.3475393]
[87]
Yadav, B.C.; Kumar, R. Structure, properties and applications of fullerenes. Int. J. Nanotech. and Appl., 2008, 2(1), 15-24.
[88]
Otyepkova, T.; Nevecna, J.; Kulhanek, J.; Exner, O. Ortho effect and steric inhibition of resonance: Basicities of methyl-substituted acetophenones. J. Phys. Org. Chem., 2003, 16(10), 721-725.
[http://dx.doi.org/10.1002/poc.642]
[89]
Van Beccum, H.; Vercade, P.E.; Wepster, B.M. A simple re-evaluation of the Hammett σ relation. Rec. trav. Chim., 1959, 78(10), 815-850.
[http://dx.doi.org/10.1002/recl.19590781009]
[90]
Coulson, C.A. Valence, 2nd Ed; Oxford Univ. Press: London, 1952.
[91]
Anderson, J.E.; Cooksey, C.J. Peri-interactions in naphthalene derivatives. rotation in 1,8-disubstituted naphthalenes. J. Chem. Soc. Chem. Commun., 1975, (23), 942-943.
[http://dx.doi.org/10.1039/c39750000942]
[92]
Balasubramaniyan, V. Peri interactions in naphthalene derivatives. Chem. Rev., 1966, 66(6), 567-641.
[http://dx.doi.org/10.1021/cr60244a001]
[93]
Prosen, J.; Rossini, F.D. Heats of formation, hydrogenation, and combustion of the monoolefin hydrocarbons through the hexenes, and of the higher l-alkenes, in the gaseous state at 25°C. J. Res. Natl. Bur. Stand., 1946, 36(3), 269-275.
[http://dx.doi.org/10.6028/jres.036.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy