Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Macromolecular Prodrugs Containing Organoiron-Based Compounds in Cancer Research: A Review

Author(s): Elie Hembe Mukaya and Xavier Yangkou Mbianda*

Volume 20, Issue 9, 2020

Page: [726 - 738] Pages: 13

DOI: 10.2174/1389557519666191107142926

Price: $65

Abstract

Among the methods used for the treatment of cancer, chemotherapy is widely used, and it is by far one of the most unpleasant procedures given to a patient because of its severe side effects; while being necessary. One of the major problems in cancer chemotherapy is the limited selectivity of most of the drugs in current clinical use. Following administration, the active agent is distributed over the entire body and reaches not only the target cells or tissues but also interacts with healthy cells. In an attempt to overcome the side effects of anticancer drugs, the modification of the anticancer bioactive compounds has been a topic of active research for years. Numerous delivery systems such as drugcontaining liposomes, microencapsulation, nanoparticles, and water-soluble polymers have been used for the delivery of bioactive compounds to the site of action. Water-soluble polymeric conjugates and co-conjugates have remained the most outstanding delivery technique. This review will discuss the development of polymeric conjugates and co-conjugates of ferrocene in cancer research.

Keywords: Ferrocene, ferrocenyl, water-soluble polymer, macromolecular conjugate, macromolecular co-conjugate, cancer.

Graphical Abstract

[1]
Huo, J.; Du, X.L.; Lairson, D.R.; Chan, W.; Jiang, J.; Buchholz, T.A.; Guadagnolo, B.A. Utilization of surgery, chemotherapy, radiation therapy, and hospice at the end of life for patients diagnosed with metastatic melanoma. Am. J. Clin. Oncol., 2015, 38(3), 235-241.
[http://dx.doi.org/10.1097/COC.0b013e31829378f9] [PMID: 23648436]
[2]
Chen, V.E.; Gillespie, E.F.; Zakeri, K.; Murphy, J.D.; Yashar, C.M.; Lu, S.; Einck, J.P. Pathologic response after neoadjuvant chemotherapy predicts locoregional control in patients with triple negative breast cancer. Adv. Radiat. Oncol., 2017, 2(2), 105-109.
[http://dx.doi.org/10.1016/j.adro.2017.01.012] [PMID: 28740920]
[3]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[4]
John, V.; Mashru, S.; Lichtman, S. Pharmacological factors influencing anticancer drug selection in the elderly. Drugs Aging, 2003, 20(10), 737-759.
[http://dx.doi.org/10.2165/00002512-200320100-00003] [PMID: 12875610]
[5]
Rozencweig, M.; von Hoff, D.D.; Slavik, M.; Muggia, F.M. Cis-diamminedichloroplatinum (II). A new anticancer drug. Ann. Intern. Med., 1977, 86(6), 803-812.
[http://dx.doi.org/10.7326/0003-4819-86-6-803] [PMID: 326117]
[6]
Oladimeji, F.A.; Adegbola, A.J.; Onyeji, C.O. Appraisal of bioenhancers in improving oral bioavailability: Applications to herbal medicinal products. J. Pharmaceut. Res. Int., 2018, 24
[7]
Lichtman, M.A.; Kaushansky, K.; Prchal, J.T.; Levi, M.M.; Burns, L.J.; Armitage, J. Williams manual of hematology; McGraw Hill Professional, 2017.
[8]
Swarts, J. Syntheses, electrochemistry and cytotoxicity of ferrocene‐containing polyaspartamides as water‐soluble polymeric drug carrier/drug conjugates. Macromolecular Symposia; Wiley Online Library, 2002, pp. 123-128.
[9]
Shah, A.B.; Rejniak, K.A.; Gevertz, J.L. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Math. Biosci. Eng., 2016, 13(6), 1185-1206.
[http://dx.doi.org/10.3934/mbe.2016038] [PMID: 27775375]
[10]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[11]
Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics, 2011, 3(1), 53-72.
[http://dx.doi.org/10.3390/pharmaceutics3010053] [PMID: 24310425]
[12]
Singh, R.; Lillard, J.W. Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[13]
Soni, G.; Yadav, K.S. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm. J., 2016, 24(2), 133-139.
[http://dx.doi.org/10.1016/j.jsps.2014.04.001] [PMID: 27013905]
[14]
Rausch, M. Metallocene chemistry—a decade of progress. Can. J. Chem., 1963, 41, 1289-1314.
[http://dx.doi.org/10.1139/v63-182]
[15]
Popp, F.D.; Roth, S.; Kirby, J. Synthesis of potential antineoplastic agents. IX. Some cycloalkyl mustards and related compounds1-3. J. Med. Chem., 1963, 6, 83-85.
[http://dx.doi.org/10.1021/jm00337a022] [PMID: 14174039]
[16]
Babin, V.; Raevskii, P.; Shitkov, K.; Snegur, L.; Nekrasov, S.Y. Antitumor activity of metallocenes. Mendeleev Chem. J., 1995, 39, 17-23.
[17]
Köpf, H.; Köpf-Maier, P. Titanocene dichloride--the first metallocene with cancerostatic activity. Angew. Chem. Int. Ed. Engl., 1979, 18(6), 477-478.
[http://dx.doi.org/10.1002/anie.197904771] [PMID: 111586]
[18]
Köpf-Maier, P.; Leitner, M.; Voigtländer, R.; Köpf, H. Molybdocen-dichlorid als Antitumor-Agens. Z. Naturforsch., C. Biosci., 1979, 34(12), 1174-1176.
[http://dx.doi.org/10.1515/znc-1979-1215] [PMID: 161840]
[19]
Köpf‐Maier, P.; Köpf, H.; Neuse, E.W. Ferrocenium salts—the first antineoplastic iron compounds. Angew. Chem. Int. Ed. Engl., 1984, 23, 456-457.
[http://dx.doi.org/10.1002/anie.198404561]
[20]
Neuse, E.W.; Kanzawa, F. Evaluation of the activity of some water‐soluble ferrocene and ferricenium compounds against carcinoma of the lung by the human tumor clonogenic assay. Appl. Organomet. Chem., 1990, 4, 19-26.
[http://dx.doi.org/10.1002/aoc.590040105]
[21]
Wenzel, M.; Wu, Y.; Liss, E.; Neuse, E.W. Stabilität des Ferricinium-Kations und seine cytostatische Wirkung. Z. Natforsch. C J. Biosci., 1988, 43(11-12), 963-966.
[http://dx.doi.org/10.1515/znc-1988-11-1227] [PMID: 3245882]
[22]
Caldwell, G.; Meirim, M.G.; Neuse, E.W.; van Rensburg, C.E. Antineoplastic activity of polyaspartamide–ferrocene conjugates. Appl. Organomet. Chem., 1998, 12, 793-799.
[http://dx.doi.org/10.1002/(SICI)1099-0739(199812)12:12<793:AID-AOC714>3.0.CO;2-C]
[23]
Kealy, T.; Pauson, P. A new type of organo-iron compound. Nature, 1951, 168, 1039.
[http://dx.doi.org/10.1038/1681039b0]
[24]
Pladziewicz, J.; Brenner, M. Partitioning of ferrocenium ions between multiple redox sites on spinach plastocyanin. Inorg. Chem., 1987, 26, 3629-3634.
[http://dx.doi.org/10.1021/ic00268a042]
[25]
Carlson, B.W.; Miller, L.L.; Neta, P.; Grodkowski, J. Oxidation of NADH involving rate-limiting one-electron transfer. J. Am. Chem. Soc., 1984, 106, 7233-7239.
[http://dx.doi.org/10.1021/ja00335a062]
[26]
Rosenblum, M. Chemistry of the iron group metallocenes: Ferrocene, ruthenocene, osmocene; Interscience Publishers, 1965.
[27]
Paolino, D.; Sinha, P.; Fresta, M.; Ferrari, M. Drug delivery systems.Encycloped. Med. Dev. Instrument.,, 2006.
[28]
Benita, S. manufacture, characterization, and applications of solid lipid nanoparticles as drug delivery systems. Microencapsulation,CRC Press,, 2005, 238-293.
[29]
Peracchia, M.; Gref, R.; Minamitake, Y. Poly (ethylene glycol)-coated nanospheres: Potential carriers for intravenous drug administration. J. Control. Release, 1997, 46, 223-231.
[http://dx.doi.org/10.1016/S0168-3659(96)01597-0]
[30]
Feng, L.; Mumper, R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett., 2013, 334(2), 157-175.
[http://dx.doi.org/10.1016/j.canlet.2012.07.006] [PMID: 22796606]
[31]
Ringsdorf, H. Structure and properties of pharmacologically active polymers., Journal of Polymer Science: Polymer Symposia; Wiley Online Library,. 1975, 135-153.
[32]
Neri, P.; Antoni, G.; Benvenuti, F.; Cocola, F.; Gazzei, G. Synthesis of alpha beta-poly((2-hydroxyethyl)-DL-aspartamide), a new plasma expander. J. Med. Chem., 1973, 16(8), 893-897.
[http://dx.doi.org/10.1021/jm00266a006] [PMID: 4745831]
[33]
Neri, P.; Antoni, G. Alpha, Beta-poly (2-hydroxyethyl)-DL-aspartamide; Wiley, 1982.
[34]
Danusso, F.; Ferruti, P. Synthesis of tertiary amine polymers. Polymer (Guildf.), 1970, 11, 88-113.
[http://dx.doi.org/10.1016/0032-3861(70)90029-7]
[35]
Ferruti, P.; Marchisio, M.A.; Duncan, R. Poly (amido‐amine): Biomedical Applications. Macromol. Rapid Commun., 2002, 23, 332-355.
[http://dx.doi.org/10.1002/1521-3927(20020401)23:5/6<332:AID-MARC332>3.0.CO;2-I]
[36]
Komane, L.; Mukaya, E.; Neuse, E.; Van Rensburg, C. Macromolecular antiproliferative agents featuring dicarboxylato-chelated platinum. J. Inorg. Organomet. Polym. Mater., 2008, 18, 111-123.
[http://dx.doi.org/10.1007/s10904-007-9175-7]
[37]
Greco, F.; Vicent, M.J. Polymer-drug conjugates: Current status and future trends. Front. Biosci., 2008, 13, 2744-2756.
[http://dx.doi.org/10.2741/2882] [PMID: 17981750]
[38]
Aderibigbe, B. Polymeric prodrugs containing metal-based anticancer drugs. J. Inorg. Organomet. Polym. Mater., 2015, 25, 339-353.
[http://dx.doi.org/10.1007/s10904-015-0220-7]
[39]
Wadhwa, S.; Mumper, RJ. Polymer-drug conjugates for anticancer drug delivery. Crit. Rev.™ Therapeut. Drug Carrier Sys., 2015, 32
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010174]
[40]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[41]
Elvira, C.; Gallardo, A.; Roman, J.S.; Cifuentes, A. Covalent polymer-drug conjugates. Molecules, 2005, 10(1), 114-125.
[http://dx.doi.org/10.3390/10010114] [PMID: 18007281]
[42]
Meirim, M.G.; Neuse, E.W.; Caldwell, G. Water-Soluble polymer–ferrocene conjugates based on polyamide carriers containing intrachain-type secondary amine functions as binding sites. J. Inorg. Organomet. Polym., 1998, 8, 225-236.
[http://dx.doi.org/10.1023/A:1021436126927]
[43]
Maree, M.D.; Neuse, E.W.; Erasmus, E.; Swarts, J.C. Synthesis and anchoring of antineoplastic ferrocene and phthalocyanine derivatives on water-soluble polymeric drug carriers derived from lysine and aspartic acid. Metal-based Drugs, 2008, 2008
[http://dx.doi.org/10.1155/2008/217573]
[44]
Mukaya, H.E.; Mbianda, X.Y. Macromolecular co-conjugate of ferrocene and bisphosphonate: Synthesis, characterization and kinetic drug release study. J. Inorg. Organomet. Polym. Mater., 2015, 25, 411-418.
[http://dx.doi.org/10.1007/s10904-015-0205-6]
[45]
Mufula, A.I.; Aderibigbe, B.; Neuse, E.W.; Mukaya, H.E. Macromolecular co-conjugates of methotrexate and ferrocene in the chemotherapy of cancer. J. Inorg. Organomet. Polym. Mater., 2012, 22, 423-428.
[http://dx.doi.org/10.1007/s10904-011-9595-2]
[46]
N’da, D. Synthesis of methotrexate and Ferrocene conjugates as potential anticancer agents. Chemistry, 2004.
[47]
Buzdar, A.U.; Hortobagyi, G.N. Recent advances in adjuvant therapy of breast cancer. Semin. Oncol., 1999, 26(4)(Suppl. 12), 21-27.
[PMID: 10482191]
[48]
Florea, A-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[49]
Mukaya, H.E. Macromolecular antineoplastic iron and platinum co-ordination compounds; Wiredspace, 2014.
[50]
Aderibigbe, B.A.; Jacques, K.D.; Neuse, E.W. Polymeric conjugates of selected aminoquinoline derivatives as potential drug adjuvants in cancer chemotherapy. J. Inorg. Organomet. Polym. Mater., 2011, 21, 336-345.
[http://dx.doi.org/10.1007/s10904-011-9461-2]
[51]
Nkazi, B.; Neuse, E.; Sadiku, E.; Aderibigbe, B. Synthesis, characterization and kinetic release profile of iron containing polymeric co-conjugates with antiproliferative activity. J. Inorg. Organomet. Polym. Mater., 2014, 24, 302-314.
[http://dx.doi.org/10.1007/s10904-013-9968-9]
[52]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[53]
Rosenberg, B. Possible mechanisms for the antitumor activity of platinum coordination complexes. Cancer Chemother.Rep., 1975, 59(3), 589-598.
[PMID: 54213]
[54]
Dabrowiak, J.C.; Bradner, W.T. 4 Platinum Antitumour Agents. Progress in medicinal chemistry; Elsevier, 1987, pp. 129-158.
[55]
Dabrowiak, J. Metals in Medicine; John Wiley & Sons: New York, NY, 2009.
[http://dx.doi.org/10.1002/9780470684986]
[56]
Harper, B.W.; Krause-Heuer, A.M.; Grant, M.P.; Manohar, M.; Garbutcheon-Singh, K.B.; Aldrich-Wright, J.R. Advances in platinum chemotherapeutics. Chemistry, 2010, 16(24), 7064-7077.
[http://dx.doi.org/10.1002/chem.201000148] [PMID: 20533453]
[57]
Cleare, M.J.; Hoeschele, J.D.; Rosenberg, B.; Van Camp, L.L. Malonato platinum anti-tumor compounds; Google Patents, 1979.
[58]
Cleare, M. Transition metal complexes in cancer chemotherapy. Coord. Chem. Rev., 1974, 12, 349-405.
[http://dx.doi.org/10.1016/S0010-8545(00)82029-9]
[59]
Cleare, M.J.; Hoeschele, J.D. Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorg. Chem., 1973, 2, 187-210.
[http://dx.doi.org/10.1016/S0006-3061(00)80249-5]
[60]
Haxton, K.J.; Burt, H.M. Polymeric drug delivery of platinum-based anticancer agents. J. Pharm. Sci., 2009, 98(7), 2299-2316.
[http://dx.doi.org/10.1002/jps.21611] [PMID: 19009590]
[61]
Cabral, H.; Nishiyama, N.; Okazaki, S.; Koyama, H.; Kataoka, K. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J. Control. Release, 2005, 101(1-3), 223-232.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.022] [PMID: 15588907]
[62]
van Zutphen, S.; Reedijk, J. Targeting platinum anti-tumour drugs: Overview of strategies employed to reduce systemic toxicity. Coord. Chem. Rev., 2005, 249, 2845-2853.
[http://dx.doi.org/10.1016/j.ccr.2005.03.005]
[63]
Fuertes, M.A.; Castilla, J.; Alonso, C.; Pérez, J.M. Cisplatin biochemical mechanism of action: From cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem., 2003, 10(3), 257-266.
[http://dx.doi.org/10.2174/0929867033368484] [PMID: 12570712]
[64]
Johnson, N.P.; Butour, J-L.; Villani, G. Metal antitumor compounds: The mechanism of action of platinum complexes. Ruthenium and Other Non-Platinum Metal Complexes in Cancer Chemotherapy; Springer, 1989, pp. 1-24.
[65]
Roberts, J.; Thomson, A. The mechanism of action of antitumor platinum compounds. Progress in nucleic acid research and molecular biology; Elsevier, 1979, pp. 71-133.
[66]
Mukaya, H.; Neuse, E.; Van Zyl, R.; Chen, C. Synthesis and preliminary bio-evaluation of polyaspartamide Co-conjugates of p-amino-salicylic acid chelated platinum (II) and ferrocene complexes. J. Inorg. Organomet. Polym. Mater., 2015, 25, 367-375.
[http://dx.doi.org/10.1007/s10904-015-0174-9]
[67]
Volk, E.L.; Farley, K.M.; Wu, Y.; Li, F.; Robey, R.W.; Schneider, E. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res., 2002, 62(17), 5035-5040.
[PMID: 12208758]
[68]
Breedveld, P.; Zelcer, N.; Pluim, D.; Sönmezer, O.; Tibben, M.M.; Beijnen, J.H.; Schinkel, A.H.; van Tellingen, O.; Borst, P.; Schellens, J.H. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: Potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res., 2004, 64(16), 5804-5811.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-4062] [PMID: 15313923]
[69]
Colleoni, M.; Rocca, A.; Sandri, M.T.; Zorzino, L.; Masci, G.; Nolè, F.; Peruzzotti, G.; Robertson, C.; Orlando, L.; Cinieri, S. de, B.F.; Viale, G.; Goldhirsch, A. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: Antitumor activity and correlation with vascular endothelial growth factor levels. Ann. Oncol., 2002, 13(1), 73-80.
[http://dx.doi.org/10.1093/annonc/mdf013] [PMID: 11863115]
[70]
Rosen, G.; Ghavimi, F.; Nirenberg, A.; Mosende, C.; Mehta, B.M. High-dose methotrexate with citrovorum factor rescue for the treatment of central nervous system tumors in children. Cancer Treat. Rep., 1977, 61(4), 681-690.
[PMID: 301781]
[71]
Jolivet, J.; Cowan, K.H.; Curt, G.A.; Clendeninn, N.J.; Chabner, B.A. The pharmacology and clinical use of methotrexate. N. Engl. J. Med., 1983, 309(18), 1094-1104.
[http://dx.doi.org/10.1056/NEJM198311033091805] [PMID: 6353235]
[72]
Cronstein, B.N. Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum., 1996, 39(12), 1951-1960.
[http://dx.doi.org/10.1002/art.1780391203] [PMID: 8961899]
[73]
Carneiro, J.R.; Sato, E.I. Double blind, randomized, placebo controlled clinical trial of methotrexate in systemic lupus erythematosus. J. Rheumatol., 1999, 26(6), 1275-1279.
[PMID: 10381042]
[74]
Meirim, M.; Neuse, E.; N’da, D. Carrier‐bound methotrexate. I. Water‐soluble polyaspartamide–methotrexate conjugates with ester links in the polymer-drug spacer. J. Appl. Polym. Sci., 2001, 82, 1844-1849.
[http://dx.doi.org/10.1002/app.2027]
[75]
N’Da, D.D.; Neuse, E.W.; Van Rensburg, C.E. Carrier-bound methotrexate. IV. Antiproliferative activity of polyaspartamide-MTX conjugates against leukemic lymphoblast cell lines. S. Afr. J. Chem., 2006, 59, 135-140.
[76]
Walsh, J.P. Paget’s disease of bone. Med. J. Aust., 2004, 181(5), 262-265.
[http://dx.doi.org/10.5694/j.1326-5377.2004.tb06265.x] [PMID: 15347275]
[77]
Russell, R.G.; Rogers, M.J. Bisphosphonates: From the laboratory to the clinic and back again. Bone, 1999, 25(1), 97-106.
[http://dx.doi.org/10.1016/S8756-3282(99)00116-7] [PMID: 10423031]
[78]
Khosla, S.; Bilezikian, J.P.; Dempster, D.W.; Lewiecki, E.M.; Miller, P.D.; Neer, R.M.; Recker, R.R.; Shane, E.; Shoback, D.; Potts, J.T. Benefits and risks of bisphosphonate therapy for osteoporosis. J. Clin. Endocrinol. Metab., 2012, 97(7), 2272-2282.
[http://dx.doi.org/10.1210/jc.2012-1027] [PMID: 22523337]
[79]
Mukaya, E.H.; Van Zyl, R.; Van Vuuren, N.J.; Yangkou Mbianda, X. Polymeric prodrugs containing neridronate and ferrocene: Synthesis, characterization, and antimalarial activity. Int. J. Polymer. Mater. Polymer. Biomat., 2018, 67, 401-409.
[http://dx.doi.org/10.1080/00914037.2017.1342248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy