Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Phospholipase Cγ Signaling in Bone Marrow Stem Cell and Relevant Natural Compounds Therapy

Author(s): Chang Liu, Yuan He, Xiaobing Xu and Baorong He*

Volume 15, Issue 7, 2020

Page: [579 - 587] Pages: 9

DOI: 10.2174/1574888X14666191107103755

Price: $65

Abstract

Excessive bone resorption has been recognized play a major role in the development of bone-related diseases such as osteoporosis, rheumatoid arthritis, Paget's disease of bone, and cancer. Phospholipase Cγ (PLCγ) family members PLCγ1 and PLCγ2 are critical regulators of signaling pathways downstream of growth factor receptors, integrins, and immune complexes and play a crucial role in osteoclast. Ca2+ signaling has been recognized as an essential pathway to the differentiation of osteoclasts. With growing attention and research about natural occurring compounds, the therapeutic use of natural active plant-derived products has been widely recognized in recent years. In this review, we summarized the recent research on PLCγ signaling in bone marrow stem cells and the use of several natural compounds that were proven to inhibit RANKL-mediated osteoclastogenesis via modulating PLCγ signaling pathways.

Keywords: Phospholipase Cγ signaling, calcium signaling, osteoclast, natural occurring compounds, bone marrow stem cell, osteoporosis.

[1]
Anagnostis P, Gkekas NK, Potoupnis M, Kenanidis E, Tsiridis E, Goulis DG. New therapeutic targets for osteoporosis. Maturitas 2019; 120: 1-6.
[http://dx.doi.org/10.1016/j.maturitas.2018.11.010] [PMID: 30583758]
[2]
Jeong BC, Kim JH, Kim K, Kim I, Seong S, Kim N. ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Bone 2017; 95: 33-40.
[http://dx.doi.org/10.1016/j.bone.2016.11.005] [PMID: 27829167]
[3]
Yasuma T, Oi S, Choh N, et al. Synthesis of peptide aldehyde derivatives as selective inhibitors of human cathepsin L and their inhibitory effect on bone resorption. J Med Chem 1998; 41(22): 4301-8.
[http://dx.doi.org/10.1021/jm9803065] [PMID: 9784105]
[4]
Fuji H, Ohmae S, Noma N, et al. Necrostatin-7 suppresses RANK-NFATc1 signaling and attenuates macrophage to osteoclast differentiation. Biochem Biophys Res Commun 2018; 503(2): 544-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.153] [PMID: 29800570]
[5]
Tomomura M, Suzuki R, Shirataki Y, et al. Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling. PLoS One 2015; 10(6): e0130174
[http://dx.doi.org/10.1371/journal.pone.0130174] [PMID: 26083531]
[6]
Limbert C, Ebert R, Schilling T, et al. Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2010; 19(5): 679-91.
[http://dx.doi.org/10.1089/scd.2009.0241] [PMID: 19895235]
[7]
Amouzegar A, Dey BR, Spitzer TR. Peripheral Blood or Bone Marrow Stem Cells? Practical Considerations in Hematopoietic Stem Cell Transplantation. Transfus Med Rev 2019; 33(1): 43-50.
[http://dx.doi.org/10.1016/j.tmrv.2018.11.003] [PMID: 30528986]
[8]
Storek J, Geddes M, Khan F, et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol 2008; 30(4): 425-37.
[http://dx.doi.org/10.1007/s00281-008-0132-5] [PMID: 18949477]
[9]
Wang Q, Zhang W, He G, Sha H, Quan Z. Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells. Mol Med Rep 2016; 14(6): 5551-5.
[http://dx.doi.org/10.3892/mmr.2016.5953] [PMID: 27878275]
[10]
Allers C, Lasala GP, Minguell JJ. Presence of osteoclast precursor cells during ex vivo expansion of bone marrow-derived mesenchymal stem cells for autologous use in cell therapy. Cytotherapy 2014; 16(4): 454-9.
[http://dx.doi.org/10.1016/j.jcyt.2013.08.006] [PMID: 24176545]
[11]
Lecourt S, Mouly E, Freida D, et al. A prospective study of bone marrow hematopoietic and mesenchymal stem cells in type 1 Gaucher disease patients. PLoS One 2013; 8(7): e69293
[http://dx.doi.org/10.1371/journal.pone.0069293] [PMID: 23935976]
[12]
Caetano-Lopes J, Canhão H, Fonseca JE. Osteoblasts and bone formation. Acta Reumatol Port 2007; 32(2): 103-10.
[PMID: 17572649]
[13]
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7(4): 292-304.
[http://dx.doi.org/10.1038/nri2062] [PMID: 17380158]
[14]
Son A, Kim MS, Jo H, Byun HM, Shin DM. Effects of inosi-tol 1,4,5-triphosphate on osteoclast differentiation in RANKL-induced osteoclastogenesis. Korean J Physiol Pharmacol 2012; 16(1): 31-6.
[http://dx.doi.org/10.4196/kjpp.2012.16.1.31] [PMID: 22416217]
[15]
Yang YM, Kim MS, Son A, et al. Alteration of RANKL-induced osteoclastogenesis in primary cultured osteoclasts from SERCA2+/- mice. J Bone Miner Res 2009; 24(10): 1763-9.
[http://dx.doi.org/10.1359/jbmr.090420] [PMID: 19419309]
[16]
Kim H, Kim T, Jeong BC, et al. Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation. Cell Metab 2013; 17(2): 249-60.
[http://dx.doi.org/10.1016/j.cmet.2013.01.002] [PMID: 23395171]
[17]
An J, Hao D, Zhang Q, et al. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int Immunopharmacol 2016; 36: 118-31.
[http://dx.doi.org/10.1016/j.intimp.2016.04.024] [PMID: 27131574]
[18]
Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009; 231(1): 241-56.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00821.x] [PMID: 19754901]
[19]
Wang YY, Lin SY, Chen WY, et al. Glechoma hederacea extracts attenuate cholestatic liver injury in a bile duct-ligated rat model. J Ethnopharmacol 2017; 204: 58-66.
[http://dx.doi.org/10.1016/j.jep.2017.04.011] [PMID: 28416441]
[20]
Kong L, Ma R, Yang X, et al. Psoralidin suppresses osteoclastogenesis in BMMs and attenuates LPS-mediated osteolysis by inhibiting inflammatory cytokines. Int Immunopharmacol 2017; 51: 31-9.
[http://dx.doi.org/10.1016/j.intimp.2017.07.003] [PMID: 28779592]
[21]
Kong L, Wang B, Yang X, et al. Picrasidine I from Picrasma Quassioides Suppresses Osteoclastogenesis via Inhibition of RANKL Induced Signaling Pathways and Attenuation of ROS Production. Cell Physiol Biochem 2017; 43(4): 1425-35.
[http://dx.doi.org/10.1159/000481874] [PMID: 29017159]
[22]
Kong L, Zhao Q, Wang X, Zhu J, Hao D, Yang C. Angelica sinensis extract inhibits RANKL-mediated osteoclastogenesis by down-regulated the expression of NFATc1 in mouse bone marrow cells. BMC Complement Altern Med 2014; 14: 481.
[http://dx.doi.org/10.1186/1472-6882-14-481] [PMID: 25496242]
[23]
Kong L, Yang C, Yu L, et al. Pyrroloquinoline quinine inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice. PLoS One 2013; 8(4): e61013
[http://dx.doi.org/10.1371/journal.pone.0061013] [PMID: 23613773]
[24]
Rahman N, Jeon M, Kim YS. Methyl gallate, a potent antioxidant inhibits mouse and human adipocyte differentiation and oxidative stress in adipocytes through impairment of mitotic clonal expansion. Biofactors 2016; 42(6): 716-26.
[http://dx.doi.org/10.1002/biof.1310] [PMID: 27412172]
[25]
Lee H, Lee H, Kwon Y, et al. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J Immunol 2010; 185(11): 6698-705.
[http://dx.doi.org/10.4049/jimmunol.1001373] [PMID: 21048105]
[26]
Baek JM, Kim JY, Lee CH, Yoon KH, Lee MS. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss. Int J Mol Sci 2017; 18(3): E581
[http://dx.doi.org/10.3390/ijms18030581] [PMID: 28272351]
[27]
Tzeng HE, Tsai CH, Ho TY, et al. Radix Paeoniae Rubra stimulates osteoclast differentiation by activation of the NF-κB and mitogen-activated protein kinase pathways. BMC Complement Altern Med 2018; 18(1): 132.
[http://dx.doi.org/10.1186/s12906-018-2196-7] [PMID: 29688864]
[28]
Cao H, Zhu K, Qiu L, et al. Critical role of AKT protein in myeloma-induced osteoclast formation and osteolysis. J Biol Chem 2013; 288(42): 30399-410.
[http://dx.doi.org/10.1074/jbc.M113.469973] [PMID: 24005670]
[29]
Shinohara M, Koga T, Okamoto K, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 2008; 132(5): 794-806.
[http://dx.doi.org/10.1016/j.cell.2007.12.037] [PMID: 18329366]
[30]
Haynes RK, Ho WY, Chan HW, et al. Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. Angew Chem Int Ed Engl 2004; 43(11): 1381-5.
[http://dx.doi.org/10.1002/anie.200352343] [PMID: 15368412]
[31]
Cao J, Wang W, Li Y, et al. Artesunate attenuates unilateral ureteral obstruction-induced renal fibrosis by regulating the expressions of bone morphogenetic protein-7 and uterine sensitization-associated gene-1 in rats. Int Urol Nephrol 2016; 48(4): 619-29.
[http://dx.doi.org/10.1007/s11255-016-1232-0] [PMID: 26865179]
[32]
Mao ZG, Zhou J, Wang H, et al. Artesunate inhibits cell proliferation and decreases growth hormone synthesis and secretion in GH3 cells. Mol Biol Rep 2012; 39(5): 6227-34.
[http://dx.doi.org/10.1007/s11033-011-1442-6] [PMID: 22215215]
[33]
Wei CM, Liu Q, Song FM, et al. Artesunate inhibits RANKL-induced osteoclastogenesis and bone resorption in vitro and prevents LPS-induced bone loss in vivo. J Cell Physiol 2018; 233(1): 476-85.
[http://dx.doi.org/10.1002/jcp.25907] [PMID: 28294321]
[34]
Zeng X, Zhang Y, Wang S, et al. Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca2+-NFATc1 signaling pathway and prevents ovariectomy-induced bone loss. Biochem Pharmacol 2017; 124: 57-68.
[http://dx.doi.org/10.1016/j.bcp.2016.10.007] [PMID: 27789216]
[35]
Zeng XZ, He LG, Wang S, et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37(2): 255-63.
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[36]
Udagawa N, Takahashi N. [Possible role of receptor activator of NF-kappa B ligand(RANKL) in osteoclast differentiation and function] Nihon Rinsho 2002; 60(Suppl. 3): 672-8.
[PMID: 11979968]
[37]
Song F, Zhou L, Zhao J, et al. Eriodictyol inhibits RANKL-induced osteoclast formation and function via inhibition of NFATc1 activity. J Cell Physiol 2016; 231(9): 1983-93.
[http://dx.doi.org/10.1002/jcp.25304] [PMID: 26754483]
[38]
Pollier J, Goossens A. Oleanolic acid. Phytochemistry 2012; 77: 10-5.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.022] [PMID: 22377690]
[39]
Choi JK, Oh HM, Lee S, et al. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model. Toxicol Appl Pharmacol 2013; 269(1): 72-80.
[http://dx.doi.org/10.1016/j.taap.2013.03.001] [PMID: 23499868]
[40]
Kim E, Noh K, Lee SJ, et al. Simultaneous determination of 3-O-acetyloleanolic acid and oleanolic acid in rat plasma using liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal 2016; 118: 96-100.
[http://dx.doi.org/10.1016/j.jpba.2015.10.030] [PMID: 26520257]
[41]
Choi JK, Kim SW, Kim DS, et al. Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes. Toxicol Appl Pharmacol 2016; 290: 1-9.
[http://dx.doi.org/10.1016/j.taap.2015.11.005] [PMID: 26570984]
[42]
Zhao D, Li X, Zhao Y, et al. Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmacol Sci 2018; 137(1): 76-85.
[http://dx.doi.org/10.1016/j.jphs.2018.03.007] [PMID: 29703642]
[43]
Yeon JT, Kim KJ, Choi SW, et al. Anti-osteoclastogenic activity of praeruptorin A via inhibition of p38/Akt-c-Fos-NFATc1 signaling and PLCγ-independent Ca2+ oscillation. PLoS One 2014; 9(2): e88974
[http://dx.doi.org/10.1371/journal.pone.0088974] [PMID: 24586466]
[44]
Kim JY, Cheon YH, Oh HM, et al. Oleanolic acid acetate inhibits osteoclast differentiation by downregulating PLCγ2-Ca(2+)-NFATc1 signaling, and suppresses bone loss in mice. Bone 2014; 60: 104-11.
[http://dx.doi.org/10.1016/j.bone.2013.12.013] [PMID: 24361669]
[45]
Chun JM, Lee AY, Kim JS, Choi G, Kim SH. Protective Effects of Peucedanum japonicum Extract against Osteoarthritis in an Animal Model Using a Combined Systems Approach for Compound-Target Prediction. Nutrients 2018; 10(6): E754
[http://dx.doi.org/10.3390/nu10060754] [PMID: 29891807]
[46]
Chun JM, Lee AR, Kim HS, et al. Peucedanum japonicum extract attenuates allergic airway inflammation by inhibiting Th2 cell activation and production of pro-inflammatory mediators. J Ethnopharmacol 2018; 211: 78-88.
[http://dx.doi.org/10.1016/j.jep.2017.09.006] [PMID: 28919220]
[47]
Hisamoto M, Kikuzaki H, Ohigashi H, Nakatani N. Antioxidant compounds from the leaves of Peucedanum japonicum thunb. J Agric Food Chem 2003; 51(18): 5255-61.
[http://dx.doi.org/10.1021/jf0262458] [PMID: 12926867]
[48]
Chen CC, Agrawal DC, Lee MR, et al. Influence of LED light spectra on in vitro somatic embryogenesis and LC-MS analysis of chlorogenic acid and rutin in Peucedanum japonicum Thunb.: a medicinal herb. Bot Stud (Taipei, Taiwan) 2016; 57(1): 9.
[http://dx.doi.org/10.1186/s40529-016-0124-z] [PMID: 28597418]
[49]
Nukitrangsan N, Okabe T, Toda T, Inafuku M, Iwasaki H, Oku H. Effect of Peucedanum japonicum Thunb extract on high-fat diet-induced obesity and gene expression in mice. J Oleo Sci 2012; 61(2): 89-101.
[http://dx.doi.org/10.5650/jos.61.89] [PMID: 22277893]
[50]
Yang YM, Jung HH, Lee SJ, Choi HJ, Kim MS, Shin DM. TRPM7 Is Essential for RANKL-Induced Osteoclastogenesis. Korean J Physiol Pharmacol 2013; 17(1): 65-71.
[http://dx.doi.org/10.4196/kjpp.2013.17.1.65] [PMID: 23440520]
[51]
Kim MS, Yang YM, Son A, et al. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 2010; 285(10): 6913-21.
[http://dx.doi.org/10.1074/jbc.M109.051557] [PMID: 20048168]
[52]
Park SH, Kim JY, Cheon YH, et al. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice. Phytother Res 2016; 30(4): 604-12.
[http://dx.doi.org/10.1002/ptr.5565] [PMID: 26792397]
[53]
Oh SJ, Gu DR, Jin SH, Park KH, Lee SH. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling. Biochem Biophys Res Commun 2016; 475(1): 125-32.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.055] [PMID: 27179783]
[54]
Kim JM, Erkhembaatar M, Lee GS, et al. Peucedanum japonicum Thunb. ethanol extract suppresses RANKL-mediated osteoclastogenesis. Exp Ther Med 2017; 14(1): 410-6.
[http://dx.doi.org/10.3892/etm.2017.4480] [PMID: 28672947]
[55]
Cao B, Dai X, Wang W. Knockdown of TRPV4 suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca2+ -calcineurin-NFATc1 pathway. J Cell Physiol 2019; 234(5): 6831-41.
[http://dx.doi.org/10.1002/jcp.27432] [PMID: 30387123]
[56]
Kim EJ, Lee H, Kim MH, Yang WM. Inhibition of RANKL-stimulated osteoclast differentiation by Schisandra chinensis through down-regulation of NFATc1 and c-fos expression. BMC Complement Altern Med 2018; 18(1): 270.
[http://dx.doi.org/10.1186/s12906-018-2331-5] [PMID: 30285722]
[57]
Wu MH, Lin CL, Chiou HL, et al. Praeruptorin A Inhibits Human Cervical Cancer Cell Growth and Invasion by Suppressing MMP-2 Expression and ERK1/2 Signaling. Int J Mol Sci 2017; 19(1): E10
[http://dx.doi.org/10.3390/ijms19010010] [PMID: 29267213]
[58]
Yeon JT, Choi SW, Ryu BJ, et al. Praeruptorin A inhibits in vitro migration of preosteoclasts and in vivo bone erosion, possibly due to its potential to target calmodulin. J Nat Prod 2015; 78(4): 776-82.
[http://dx.doi.org/10.1021/np501017z] [PMID: 25734761]
[59]
Zhou X, Bi H, Jin J, et al. Effects of praeruptorin A and praeruptorin C, a racemate isolated from Peucedanum praeruptorum, on MRP2 through the CAR pathway. Planta Med 2013; 79(17): 1641-7.
[http://dx.doi.org/10.1055/s-0033-1350955] [PMID: 24214834]
[60]
Xiong YY, Wang JS, Wu FH, Li J, Kong LY. The effects of (±)-Praeruptorin A on airway inflammation, remodeling and transforming growth factor-β1/Smad signaling pathway in a murine model of allergic asthma. Int Immunopharmacol 2012; 14(4): 392-400.
[http://dx.doi.org/10.1016/j.intimp.2012.08.019] [PMID: 22974581]
[61]
Liang S, Zhang H, Du Y, et al. RANK Deficiency Ameliorates Podocyte Injury by Suppressing Calcium/Calcineurin/NFATc1 Signaling. Kidney Blood Press Res 2018; 43(4): 1149-59.
[http://dx.doi.org/10.1159/000492049] [PMID: 30036881]
[62]
Murakami A, Matsuda M, Harada Y, Hirata M. Phospholipase C-related, but catalytically inactive protein (PRIP) up-regulates osteoclast differentiation via calcium-calcineurin-NFATc1 signaling. J Biol Chem 2017; 292(19): 7994-8006.
[http://dx.doi.org/10.1074/jbc.M117.784777] [PMID: 28341745]
[63]
Yoon SH, Lee Y, Kim HJ, et al. Lyn inhibits osteoclast differentiation by interfering with PLCgamma1-mediated Ca2+ signaling. FEBS Lett 2009; 583(7): 1164-70.
[http://dx.doi.org/10.1016/j.febslet.2009.03.005] [PMID: 19285079]
[64]
An HM, Li GW, Lin C, et al. Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity. Pharmazie 2014; 69(5): 391-5.
[PMID: 24855834]
[65]
Xu X, Liu N, Wang Y, et al. Tatarinan O, a lignin-like compound from the roots of Acorus tatarinowii Schott inhibits osteoclast differentiation through suppressing the expression of c-Fos and NFATc1. Int Immunopharmacol 2016; 34: 212-9.
[http://dx.doi.org/10.1016/j.intimp.2016.03.001] [PMID: 26971224]
[66]
Luo XH, Zhang YY, Chen XY, Sun ML, Li S, Wang HB. Lignans from the roots of Acorus tatarinowii Schott ameliorate β amyloid-induced toxicity in transgenic Caenorhabditis elegans. Fitoterapia 2016; 108: 5-8.
[http://dx.doi.org/10.1016/j.fitote.2015.11.010] [PMID: 26586617]
[67]
Zhang Y, Wang Z, Xie X, et al. Tatarinan N inhibits osteoclast differentiation through attenuating NF-κB, MAPKs and Ca2+-dependent signaling. Int Immunopharmacol 2018; 65: 199-211.
[http://dx.doi.org/10.1016/j.intimp.2018.09.030] [PMID: 30316078]
[68]
Wang W, Gao Y, Zheng W, Li M, Zheng X. Phenobarbital inhibits osteoclast differentiation and function through NF-κB and MAPKs signaling pathway. Int Immunopharmacol 2019; 69: 118-25.
[http://dx.doi.org/10.1016/j.intimp.2019.01.033] [PMID: 30703706]
[69]
Zhou L, Song F, Liu Q, et al. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways. Int J Mol Sci 2015; 16(11): 27087-96.
[http://dx.doi.org/10.3390/ijms161125998] [PMID: 26580592]
[70]
Park KH, Park B, Yoon DS, et al. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun Signal 2013; 11: 74.
[http://dx.doi.org/10.1186/1478-811X-11-74] [PMID: 24088289]
[71]
Hsu J, Zhang J, Kitson C, et al. Development of a pharmacodynamic assay based on PLCγ2 phosphorylation for quantifying spleen tyrosine kinase (SYK)-Bruton’s tyrosine kinase (BTK) signaling. J Biomol Screen 2013; 18(8): 890-8.
[http://dx.doi.org/10.1177/1087057113489881] [PMID: 23704133]
[72]
Park JH, Lee NK, Lee SY. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells 2017; 40(10): 706-13.
[PMID: 29047262]
[73]
Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol 2018; 1: 29.
[http://dx.doi.org/10.1038/s42003-018-0028-4] [PMID: 30271915]
[74]
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94(1): 81-140.
[http://dx.doi.org/10.1152/physrev.00023.2013] [PMID: 24382884]
[75]
Dupont G, Combettes L, Bird GS, Putney JW. Calcium oscillations. Cold Spring Harb Perspect Biol 2011; 3(3): a004226
[http://dx.doi.org/10.1101/cshperspect.a004226] [PMID: 21421924]
[76]
Yeon JT, Kim KJ, Chun SW, et al. KCNK1 inhibits osteoclastogenesis by blocking the Ca2+ oscillation and JNK-NFATc1 signaling axis. J Cell Sci 2015; 128(18): 3411-9.
[http://dx.doi.org/10.1242/jcs.170738] [PMID: 26208638]
[77]
Kuroda Y, Hisatsune C, Mizutani A, Ogawa N, Matsuo K, Mikoshiba K. Cot kinase promotes Ca2+ oscillation/calcineurin-independent osteoclastogenesis by stabilizing NFATc1 protein. Mol Cell Biol 2012; 32(14): 2954-63.
[http://dx.doi.org/10.1128/MCB.05611-11] [PMID: 22615493]
[78]
Kim J, Song S, Lee I, et al. Anti-inflammatory activity of constituents from Glechoma hederacea var. longituba. Bioorg Med Chem Lett 2011; 21(11): 3483-7.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.002] [PMID: 21530248]
[79]
Kumarasamy Y, Cox PJ, Jaspars M, Nahar L, Sarker SD. Biological activity of Glechoma hederacea. Fitoterapia 2002; 73(7-8): 721-3.
[http://dx.doi.org/10.1016/S0367-326X(02)00237-X] [PMID: 12490241]
[80]
Hwang JK, Erkhembaatar M, Gu DR, et al. Glechoma hederacea Suppresses RANKL-mediated Osteoclastogenesis. J Dent Res 2014; 93(7): 685-90.
[http://dx.doi.org/10.1177/0022034514536579] [PMID: 24850617]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy