Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Preventive Effects of Mallotus japonicus Cortex Extracts on Dextran Sulfate Sodium-Induced Ulcerative Colitis in C57 BL/6J Mice

Author(s): Yoshiyuki Kimura*

Volume 10, Issue 2, 2020

Page: [177 - 185] Pages: 9

DOI: 10.2174/2210315509666191106112622

open access plus

Abstract

Background: The cortex of Mallotus japonicus (Euphorbiaceae) has traditionally been used to treat gastric ulcers, duodenal ulcers, and gastric hyperacidity in Japan. A large number of studies have recently focused on its effects on Inflammatory Bowel Disease (IBD).

Objective: The aim of the present study was to examine the effects of M. japonicus (MJ) extracts on large intestinal diarrhea and inflammation using Inflammatory Bowel Disease (IBD) mouse models.

Methods: The present study used 3% Dextran Sulfate Sodium (DSS)-treated colitis models. Red blood cell, platelet, and leukocyte counts in addition to hematocrit (Ht), hemoglobin (Hb), and colonic cytokine and chemokine levels were measured in DSS-treated C57BL/6J mice during the experimental period.

Results: The Disease Activity Index (DAI) was lower in 3% DSS-treated mice orally administered MJ (200 and 500 mg/kg) than in mice administered 3% DSS only. Furthermore, MJ inhibited decreases in red blood cell and platelet counts as well as Hb and Ht levels in DSS-treated mice. Colon histology using direct fast scarlet staining revealed that MJ prevented mucosal membrane ulceration and eosinophil infiltration of the mucosal membrane induced by the DSS treatment. Increases in colonic Monocyte Chemoattractant Protein 1 (MCP)-1, interleukin (IL)-1β, and Tumor Necrosis Factor (TNF)-α levels in DSS-treated mice were reduced by orally administered MJ extracts.

Conclusion: The present results suggest that M. japonicus cortex extracts are an effective treatment for IBD through the inhibition of increases in colonic IL-1β, TNF-α, and MCP-1 levels and eosinophil infiltration of the colon in DSS-treated mice.

Keywords: Mallotus japonicus cortex, dextran sulfate sodium, inflammatory bowel disease, interleukin-1β, tumor necrosis factor-α, monocyte chemoattractant protein 1, eosinophil infiltration.

Graphical Abstract

[1]
Yoshida, T.; Seno, K.; Takayama, Y.; Okuda, T. Bergenin derivatives from Mallotus japonicus. Phytochemistry, 1982, 21, 1180-1182.
[http://dx.doi.org/10.1016/S0031-9422(00)82451-6]
[2]
Okuda, T.; Seno, K. Mallotusinic acid, mallotinic acid, new hydrolysable tannins from Mallotus japonicus. Tetrahedron Lett., 1978, 19(2), 139-148.
[http://dx.doi.org/10.1016/S0040-4039(01)85066-8]
[3]
Saijo, R.; Nonaka, G.; Nishioka, I. Tannins and related compounds. LXXXIV. Isolation and characterization of five new hydrolyzable tannins from the bark of Mallotus japonicus. Chem. Pharm. Bull. (Tokyo), 1989, 37(8), 2063-2070.
[http://dx.doi.org/10.1248/cpb.37.2063] [PMID: 2598308]
[4]
Okabe, H.; Yamauchi, T. Studies on the constituents of Mallotus japonicus Muell. Arg. II. A corotoxigenin trioside from the seeds. Chem. Pharm. Bull. (Tokyo), 1976, 24, 2886-2888.
[http://dx.doi.org/10.1248/cpb.24.2886]
[5]
Arisawa, M. Constituents of the pericarps of Mallotus japonicus (Euphorbiaceae). Yakugaku Zasshi, 2003, 123(4), 217-224.
[http://dx.doi.org/10.1248/yakushi.123.217] [PMID: 12704862]
[6]
Huong, P.T.T.; Diep, C.N.; Dat, L.D.; Tu, V.A.; Ngoc, N.T.; Thao, N.P.; Nam, N.H.; Cuong, N.X.; Thanh, T.K.; Thin, N.N.; Kiem, P.V.; Minh, C.V. Chemical constituemts of Mallotus japonicus. Vietnam J. Chem., 2012, 50, 183-186.
[7]
Jayakody, R.S.; Wijewardhane, P.; Herath, C.; Perera, S. Bergenin: A computationally proven promising scaffold for novel galectin-3 inhibitors. J. Mol. Model., 2018, 24(10), 302.
[http://dx.doi.org/10.1007/s00894-018-3831-4] [PMID: 30276553]
[8]
Tabata, H.; Katsube, T.; Tsuma, T.; Ohta, Y.; Imawaka, N.; Utsumi, T. Isolation and evaluation of the radical-scavenging activity of the antioxidants in the leaves of an edible plant, Mallotus japonicus. Food Chem., 2008, 109(1), 64-71.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.017] [PMID: 26054265]
[9]
Katsube, T.; Tabata, H.; Ohta, Y.; Yamasaki, Y.; Anuurad, E.; Shiwaku, K.; Yamane, Y. Screening for antioxidant activity in edible plant products: Comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu assay. J. Agric. Food Chem., 2004, 52(8), 2391-2396.
[http://dx.doi.org/10.1021/jf035372g] [PMID: 15080652]
[10]
Zhang, Y.H.; Fang, L.H.; Lee, M.K.; Ku, B.S. In vitro inhibitory effects of bergenin and norbergenin on bovine adrenal tyrosine hydroxylase. Phytother. Res., 2003, 17(8), 967-969.
[http://dx.doi.org/10.1002/ptr.1292] [PMID: 13680837]
[11]
Nakane, H.; Arisawa, M.; Fujita, A.; Koshimura, S.; Ono, K. Inhibition of HIV-reverse transcriptase activity by some phloroglucinol derivatives. FEBS Lett., 1991, 286(1-2), 83-85.
[http://dx.doi.org/10.1016/0014-5793(91)80946-Z] [PMID: 1713859]
[12]
Min, B.S.; Kim, Y.H.; Tomiyama, M.; Nakamura, N.; Miyashiro, H.; Otake, T.; Hattori, M. Inhibitory effects of Korean plants on HIV-1 activities. Phytother. Res., 2001, 15(6), 481-486.
[http://dx.doi.org/10.1002/ptr.751] [PMID: 11536375]
[13]
Arisawa, M.; Fujita, A.; Saga, M.; Hayashi, T.; Morita, N.; Kawano, N.; Koshimura, S. Studies on cytotoxic constituents in pericarps of Mallotus japonicus, Part II. J. Nat. Prod., 1986, 49(2), 298-302.
[http://dx.doi.org/10.1021/np50044a016] [PMID: 3734813]
[14]
Fujita, A.; Hayashi, T.; Arisawa, M.; Shimizu, M.; Morita, N.; Kikuchi, T.; Tezuka, Y. Studies on cytotoxic constituents in pericarps of Mallotus japonicus, Part III. J. Nat. Prod., 1988, 51(4), 708-712.
[http://dx.doi.org/10.1021/np50058a007] [PMID: 3210017]
[15]
Arisawa, M.; Fujita, A.; Morita, N.; Koshimura, S. Cytotoxic and antitumor constituents in pericarps of Mallotus japonicus. Planta Med., 1990, 56(4), 377-379.
[http://dx.doi.org/10.1055/s-2006-960987] [PMID: 2236292]
[16]
Satomi, Y.; Arisawa, M.; Nishino, H.; Iwashima, A. Antitumor-promoting activity of mallotojaponin, a major constituent of pericarps of Mallotus japonicus. Oncology, 1994, 51(3), 215-219.
[http://dx.doi.org/10.1159/000227336] [PMID: 8196903]
[17]
Ishii, R.; Horie, M.; Saito, K.; Arisawa, M.; Kitanaka, S. Inhibitory effects of phloroglucinol derivatives from Mallotus japonicus on nitric oxide production by a murine macrophage-like cell line, RAW 264.7, activated by lipopolysaccharide and interferon-γ. Biochim. Biophys. Acta, 2001, 1568(1), 74-82.
[http://dx.doi.org/10.1016/S0304-4165(01)00203-3] [PMID: 11731088]
[18]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Choi, J.; Kim, S.H.; Chang, M.J. Effects of bergenin, the major constituent of Mallotus japonicus against D-galactosamine-induced hepatotoxicity in rats. Pharmacology, 2001, 63(2), 71-75.
[http://dx.doi.org/10.1159/000056115] [PMID: 11490198]
[19]
Lim, H.K.; Kim, H.S.; Kim, S.H.; Chang, M.J.; Rhee, G.S.; Choi, J. Protective effects of acetylbergenin against carbon tetrachloride-induced hepatotoxicity in rats. Arch. Pharm. Res., 2001, 24(2), 114-118.
[http://dx.doi.org/10.1007/BF02976478] [PMID: 11339630]
[20]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Oh, S.; Jang, C.G.; Choi, J.; Kim, S.H.; Chang, M.J. Effects of acetylbergenin against D -galactosamine-induced hepatotoxicity in rats. Pharmacol. Res., 2000, 42(5), 471-474.
[http://dx.doi.org/10.1006/phrs.2000.0730] [PMID: 11023710]
[21]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Oh, S.; Choi, J. Hepatoprotective effects of bergenin, a major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated rats. J. Ethnopharmacol., 2000, 72(3), 469-474.
[http://dx.doi.org/10.1016/S0378-8741(00)00260-9] [PMID: 10996288]
[22]
Lim, H.K.; Kim, H.S.; Chung, M.W.; Kim, Y.C. Protective effects of bergenin, the major constituent of Mallotus japonicus, on D-galactosamine-intoxicated rat hepatocytes. J. Ethnopharmacol., 2000, 70(1), 69-72.
[http://dx.doi.org/10.1016/S0378-8741(99)00138-5] [PMID: 10720791]
[23]
Kim, H.S.; Lim, H.K.; Chung, M.W.; Kim, Y.C. Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. J. Ethnopharmacol., 2000, 69(1), 79-83.
[http://dx.doi.org/10.1016/S0378-8741(99)00137-3] [PMID: 10661887]
[24]
Okada, T.; Suzuki, T.; Hasobe, S.; Kisara, K. Bergenin. 1. Antiulcerogenic activities of bergenin. Nippon Yakurigaku Zasshi, 1973, 69(2), 369-378.
[http://dx.doi.org/10.1254/fpj.69.369] [PMID: 4807887]
[25]
Abe, K.; Sakai, K.; Uchida, M. Effects of bergenin on experimental ulcers--prevention of stress induced ulcers in rats. Gen. Pharmacol., 1980, 11(4), 361-368.
[http://dx.doi.org/10.1016/0306-3623(80)90100-7] [PMID: 7399254]
[26]
Goel, R.K.; Maiti, R.N.; Manickam, M.; Ray, A.B. Antiulcer activity of naturally occurring pyrano-coumarin and isocoumarins and their effect on prostanoid synthesis using human colonic mucosa. Indian J. Exp. Biol., 1997, 35(10), 1080-1083.
[PMID: 9475044]
[27]
Ali, E.; Arshad, N.; Bukhari, N.I.; Tahir, M.N.; Zafar, S.; Hussain, A.; Parveen, S.; Qamar, S.; Shehzadi, N.; Hussain, K. Linking traditional anti-ulcer use of rhizomes of Bergenia ciliata (Haw.) to its anti-Helicobacter pylori constituents. Nat. Prod. Res., 2018, 26, 1-4.
[http://dx.doi.org/10.1080/14786419.2018.1488711] [PMID: 30362366]
[28]
Japan Intractable Diseases Information Center Report. Inflammatory diseases (IBD) (Designated intractable disease no.97), Tokyo, Japan. 2017.
[29]
Damião, A.O.M.C.; de Azevedo, M.F.C.; Carlos, A.S.; Wada, M.Y.; Silva, T.V.M.; Feitosa, F.C. Conventional therapy for moderate to severe inflammatory bowel disease: A systematic literature review. World J. Gastroenterol., 2019, 25(9), 1142-1157.
[http://dx.doi.org/10.3748/wjg.v25.i9.1142] [PMID: 30863001]
[30]
Khare, V.; Krnjic, A.; Frick, A.; Gmainer, C.; Asboth, M.; Jimenez, K.; Lang, M.; Baumgartner, M.; Evstatiev, R.; Gasche, C. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci. Rep., 2019, 9(1), 2842.
[http://dx.doi.org/10.1038/s41598-019-39401-0] [PMID: 30809073]
[31]
Papamichael, K.; Lin, S.; Moore, M.; Papaioannou, G.; Sattler, L.; Cheifetz, A.S. Infliximab in inflammatory bowel disease. Ther. Adv. Chronic Dis., 2019, 102040622319838443
[http://dx.doi.org/10.1177/2040622319838443] [PMID: 30937157]
[32]
Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol., 2014, 104, 25.
[PMID: 24510619]
[33]
Morris, G.P.; Beck, P.L.; Herridge, M.S.; Depew, W.T.; Szewczuk, M.R.; Wallace, J.L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989, 96(3), 795-803.
[http://dx.doi.org/10.1016/0016-5085(89)90904-9] [PMID: 2914642]
[34]
Hoshii, Y.; Yamashita, M. Medical Technology (Separate Vol.) New all of dyeing methods: Direct fast scarlet (DFS) stain; Ishiyaku Pub. Inc.: Tokyo, 1999, p. 33.
[35]
Saga, S. Eosinophil granule stain by DFS. Kensa to Gijutsu, 2019, 47(4), 499-502.
[36]
Mehta, P.; Furuta, G.T. Eosinophils in gastrointestinal disorders-eosinophilic gastrointestinal disease, celiac disease, inflammatory bowel diseases and parasitic infections. Immunol. Allergy Clin. North Am., 2015, 35(3), 413-437.
[http://dx.doi.org/10.1016/j.iac.2015.04.003] [PMID: 26209893]
[37]
Wang, Z.; Adachi, S.; Kong, L.; Watanabe, D.; Nakanishi, Y.; Ohteki, T.; Hoshi, N.; Kodama, Y. Role of eosinophils in a murine model of inflammatory bowel disease. Biochem. Biophys. Res. Commun., 2019, 511(1), 99-104.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.056] [PMID: 30771903]
[38]
Filippone, R.T.; Sahakian, L.; Apostolopoulos, V.; Nurgali, K. Eosinophils in inflammatory bowel disease. Inflamm. Bowel Dis., 2019, 25(7), 1140-1151.
[http://dx.doi.org/10.1093/ibd/izz024] [PMID: 30856253]
[39]
Loktionov, A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol., 2019, 25(27), 3503-3526.
[http://dx.doi.org/10.3748/wjg.v25.i27.3503] [PMID: 31367153]
[40]
Wang, K.; Li, Y-F.; Lv, Q.; Li, X-M.; Dai, Y.; Wei, Z-F. Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Front. Pharmacol., 2018, 8, 1-18.
[http://dx.doi.org/10.3389/fphar.2017.00981]

© 2024 Bentham Science Publishers | Privacy Policy