Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Review Article

Relationships Between HIV-Mediated Chemokine Coreceptor Signaling, Cofilin Hyperactivation, Viral Tropism Switch and HIV-Mediated CD4 Depletion

Author(s): Sijia He and Yuntao Wu*

Volume 17, Issue 6, 2019

Page: [388 - 396] Pages: 9

DOI: 10.2174/1570162X17666191106112018

open access plus

Abstract

HIV infection causes CD4 depletion and immune deficiency. The virus infects CD4 T cells through binding to CD4 and one of the chemokine coreceptors, CXCR4 (X4) or CCR5 (R5). It has also been known that HIV tropism switch, from R5 to X4, is associated with rapid CD4 depletion, suggesting a key role of viral factors in driving CD4 depletion. However, the virological driver for HIV-mediated CD4 depletion has not been fully elucidated. We hypothesized that HIV-mediated chemokine coreceptor signaling, particularly chronic signaling through CXCR4, plays a major role in CD4 dysfunction and depletion; we also hypothesized that there is an R5X4 signaling (R5X4sig) viral subspecies, evolving from the natural replication course of R5-utilizing viruses, that is responsible for CD4 T cell depletion in R5 virus infection. To gain traction for our hypothesis, in this review, we discuss a recent finding from Cui and co-authors who described the rapid tropism switch and high pathogenicity of an HIV-1 R5 virus, CRF01_AE. We speculate that CRF01_AE may be the hypothetical R5X4sig viral species that is rapidly evolving towards the X4 phenotype. We also attempt to discuss the intricate relationships between HIV-mediated chemokine coreceptor signaling, viral tropism switch and HIV-mediated CD4 depletion, in hopes of providing a deeper understanding of HIV pathogenesis in blood CD4 T cells.

Keywords: HIV-1, gp120, CXCR4, CCR5, cofilin, chemokine, signaling, R5X4sig.

Graphical Abstract

[1]
Okoye AA, Picker LJ. CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 2013; 254(1): 54-64.
[http://dx.doi.org/10.1111/imr.12066] [PMID: 23772614]
[2]
Veazey RS, DeMaria M, Chalifoux LV, et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998; 280(5362): 427-31.
[http://dx.doi.org/10.1126/science.280.5362.427] [PMID: 9545219]
[3]
Brenchley JM, Schacker TW, Ruff LE, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 2004; 200(6): 749-59.
[http://dx.doi.org/10.1084/jem.20040874] [PMID: 15365096]
[4]
Mehandru S, Poles MA, Tenner-Racz K, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 2004; 200(6): 761-70.
[http://dx.doi.org/10.1084/jem.20041196] [PMID: 15365095]
[5]
Rodríguez B, Sethi AK, Cheruvu VK, et al. Predictive value of plasma HIV RNA level on rate of CD4 T-cell decline in untreated HIV infection. JAMA 2006; 296(12): 1498-506.
[http://dx.doi.org/10.1001/jama.296.12.1498] [PMID: 17003398]
[6]
Henry WK, Tebas P, Lane HC. Explaining, predicting, and treating HIV-associated CD4 cell loss: after 25 years still a puzzle. JAMA 2006; 296(12): 1523-5.
[http://dx.doi.org/10.1001/jama.296.12.1523] [PMID: 17003402]
[7]
Mellors JW, Muñoz A, Giorgi JV, et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997; 126(12): 946-54.
[http://dx.doi.org/10.7326/0003-4819-126-12-199706150-00003] [PMID: 9182471]
[8]
Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272(5265): 1167-70.
[http://dx.doi.org/10.1126/science.272.5265.1167] [PMID: 8638160]
[9]
Fenyö EM, Morfeldt-Månson L, Chiodi F, et al. Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J Virol 1988; 62(11): 4414-9.
[PMID: 2459416]
[10]
Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 1992; 66(3): 1354-60.
[PMID: 1738194]
[11]
Tersmette M, Gruters RA, de Wolf F, et al. Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J Virol 1989; 63(5): 2118-25.
[PMID: 2564898]
[12]
Shankarappa R, Margolick JB, Gange SJ, et al. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 1999; 73(12): 10489-502.
[PMID: 10559367]
[13]
Blaak H, van’t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H. In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline. Proc Natl Acad Sci USA 2000; 97(3): 1269-74.
[http://dx.doi.org/10.1073/pnas.97.3.1269] [PMID: 10655520]
[14]
Nwankwo N, Seker H. HIV progression to AIDS: bioinformatics approach to determining the mechanism of action. Curr HIV Res 2013; 11(1): 30-42.
[PMID: 22998236]
[15]
Philpott SM. HIV-1 coreceptor usage, transmission, and disease progression. Curr HIV Res 2003; 1(2): 217-27.
[http://dx.doi.org/10.2174/1570162033485357] [PMID: 15043204]
[16]
Reinhart TA, Qin S, Sui Y. Multiple roles for chemokines in the pathogenesis of SIV infection. Curr HIV Res 2009; 7(1): 73-82.
[http://dx.doi.org/10.2174/157016209787048537] [PMID: 19149556]
[17]
Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278(5341): 1295-300.
[http://dx.doi.org/10.1126/science.278.5341.1295] [PMID: 9360927]
[18]
Yoder A, Yu D, Dong L, et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 2008; 134(5): 782-92.
[http://dx.doi.org/10.1016/j.cell.2008.06.036] [PMID: 18775311]
[19]
Wu Y, Yoder A. Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog 2009; 5(12) e1000520
[http://dx.doi.org/10.1371/journal.ppat.1000520] [PMID: 20041213]
[20]
Cecchinato V, Bernasconi E, Speck RF, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol 2017; 198(1): 184-95.
[http://dx.doi.org/10.4049/jimmunol.1600568] [PMID: 27895171]
[21]
Deeks SG, Kitchen CM, Liu L, et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 2004; 104(4): 942-7.
[http://dx.doi.org/10.1182/blood-2003-09-3333] [PMID: 15117761]
[22]
Wu Y. The co-receptor signaling model of HIV-1 pathogenesis in peripheral CD4 T cells. Retrovirology 2009; 6: 41.
[http://dx.doi.org/10.1186/1742-4690-6-41] [PMID: 19409100]
[23]
He S, Fu Y, Guo J, et al. Cofilin hyperactivation in HIV infection and targeting the cofilin pathway using an anti-α4β7 integrin antibody. Sci Adv 2019; 5(1)eaat7911
[http://dx.doi.org/10.1126/sciadv.aat7911] [PMID: 30662943]
[24]
Cui H, Geng W, Sun H, et al. Rapid CD4+ T-cell decline is associated with coreceptor switch among MSM primarily infected with HIV-1 CRF01_AE in Northeast China. AIDS 2019; 33(1): 13-22.
[http://dx.doi.org/10.1097/QAD.0000000000001981] [PMID: 30102662]
[25]
Klatzmann D, Champagne E, Chamaret S, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984; 312(5996): 767-8.
[http://dx.doi.org/10.1038/312767a0] [PMID: 6083454]
[26]
Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984; 312(5996): 763-7.
[http://dx.doi.org/10.1038/312763a0] [PMID: 6096719]
[27]
Ashorn PA, Berger EA, Moss B. Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J Virol 1990; 64(5): 2149-56.
[PMID: 2109100]
[28]
Weiner DB, Huebner K, Williams WV, Greene MI. Human genes other than CD4 facilitate HIV-1 infection of murine cells. Pathobiology 1991; 59(6): 361-71.
[http://dx.doi.org/10.1159/000163679] [PMID: 1930688]
[29]
Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263): 872-7.
[http://dx.doi.org/10.1126/science.272.5263.872] [PMID: 8629022]
[30]
Combadiere C, Ahuja SK, Tiffany HL, Murphy PM. Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1(alpha), MIP-1(beta), and RANTES. J Leukoc Biol 1996; 60(1): 147-52.
[http://dx.doi.org/10.1002/jlb.60.1.147] [PMID: 8699119]
[31]
Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270(5243): 1811-5.
[http://dx.doi.org/10.1126/science.270.5243.1811] [PMID: 8525373]
[32]
Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: A RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272(5270): 1955-8.
[http://dx.doi.org/10.1126/science.272.5270.1955] [PMID: 8658171]
[33]
Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85(7): 1135-48.
[http://dx.doi.org/10.1016/S0092-8674(00)81313-6] [PMID: 8674119]
[34]
Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381(6584): 661-6.
[http://dx.doi.org/10.1038/381661a0] [PMID: 8649511]
[35]
Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996; 85(7): 1149-58.
[http://dx.doi.org/10.1016/S0092-8674(00)81314-8] [PMID: 8674120]
[36]
Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381(6584): 667-73.
[http://dx.doi.org/10.1038/381667a0] [PMID: 8649512]
[37]
Weissman D, Rabin RL, Arthos J, et al. Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 1997; 389(6654): 981-5.
[http://dx.doi.org/10.1038/40173] [PMID: 9353123]
[38]
Davis CB, Dikic I, Unutmaz D, et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 1997; 186(10): 1793-8.
[http://dx.doi.org/10.1084/jem.186.10.1793] [PMID: 9362541]
[39]
Spear M, Guo J, Wu Y. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways. Immunol Rev 2013; 256(1): 300-12.
[http://dx.doi.org/10.1111/imr.12106] [PMID: 24117829]
[40]
François F, Klotman ME. Phosphatidylinositol 3-kinase regulates human immunodeficiency virus type 1 replication following viral entry in primary CD4+ T lymphocytes and macrophages. J Virol 2003; 77(4): 2539-49.
[http://dx.doi.org/10.1128/JVI.77.4.2539-2549.2003] [PMID: 12551992]
[41]
Balabanian K, Harriague J, Décrion C, et al. CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes. J Immunol 2004; 173(12): 7150-60.
[http://dx.doi.org/10.4049/jimmunol.173.12.7150] [PMID: 15585836]
[42]
Cicala C, Arthos J, Censoplano N, et al. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells. Virology 2006; 345(1): 105-14.
[http://dx.doi.org/10.1016/j.virol.2005.09.052] [PMID: 16260021]
[43]
Harmon B, Campbell N, Ratner L. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog 2010; 6(6)e1000956
[http://dx.doi.org/10.1371/journal.ppat.1000956] [PMID: 20585556]
[44]
Spear M, Guo J, Turner A, et al. HIV-1 triggers WAVE2 phosphorylation in primary CD4 T cells and macrophages, mediating Arp2/3-dependent nuclear migration. J Biol Chem 2014; 289(10): 6949-59.
[http://dx.doi.org/10.1074/jbc.M113.492132] [PMID: 24415754]
[45]
Spear M, Wu Y. Arp2/3. In: Encyclopedia of AIDS. Hope TJ, Stevenson M, Richman D. New York, NY: Springer New York 2013; pp. 1-5.
[http://dx.doi.org/10.1007/978-1-4614-9610-6_71-1]
[46]
Vorster PJ, Guo J, Yoder A, et al. LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. J Biol Chem 2011; 286(14): 12554-64.
[http://dx.doi.org/10.1074/jbc.M110.182238] [PMID: 21321123]
[47]
Yi F, Guo J, Dabbagh D, et al. Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol 2017; 91(13): e02418-16.
[http://dx.doi.org/10.1128/JVI.02418-16] [PMID: 28381571]
[48]
Wu Y. Actin. In: Encyclopedia of AIDS. Hope TJ, Stevenson M, Richman D. New York, NY: Springer New York 2013; pp. 1-9.
[49]
Wu Y. Cofilin. Trafficking. In: Encyclopedia of AIDS. Hope TJ, Stevenson M, Richman D. New York, NY: Springer New York 2013; pp. 1-6.
[50]
Yin Y, Zheng K, Eid N, et al. Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J Med Chem 2015; 58(4): 1846-61.
[http://dx.doi.org/10.1021/jm501680m] [PMID: 25621531]
[51]
Spear M, Wu Y. Viral exploitation of actin: force-generation and scaffolding functions in viral infection. Virol Sin 2014; 29(3): 139-47.
[http://dx.doi.org/10.1007/s12250-014-3476-0] [PMID: 24938714]
[52]
Guo J, Xu X, Rasheed TK, et al. Genistein interferes with SDF-1- and HIV-mediated actin dynamics and inhibits HIV infection of resting CD4 T cells. Retrovirology 2013; 10: 62.
[http://dx.doi.org/10.1186/1742-4690-10-62] [PMID: 23782904]
[53]
Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology 2012; 9(1): 45.
[http://dx.doi.org/10.1186/1742-4690-9-45] [PMID: 22640593]
[54]
Xu X, Guo J, Vorster P, Wu Y. Involvement of LIM kinase 1 in actin polarization in human CD4 T cells. Commun Integr Biol 2012; 5(4): 381-3.
[http://dx.doi.org/10.4161/cib.20165] [PMID: 23060964]
[55]
Wang W, Guo J, Yu D, Vorster PJ, Chen W, Wu Y. A dichotomy in cortical actin and chemotactic actin activity between human memory and naive T cells contributes to their differential susceptibility to HIV-1 infection. J Biol Chem 2012; 287(42): 35455-69.
[http://dx.doi.org/10.1074/jbc.M112.362400] [PMID: 22879601]
[56]
Wu Y, Yoder A, Yu D, et al. Cofilin activation in peripheral CD4 T cells of HIV-1 infected patients: a pilot study. Retrovirology 2008; 5: 95.
[http://dx.doi.org/10.1186/1742-4690-5-95] [PMID: 18928553]
[57]
Bamburg JR, Harris HE, Weeds AG. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett 1980; 121(1): 178-82.
[http://dx.doi.org/10.1016/0014-5793(80)81292-0] [PMID: 6893966]
[58]
Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 1999; 15: 185-230.
[http://dx.doi.org/10.1146/annurev.cellbio.15.1.185] [PMID: 10611961]
[59]
Pavlov D, Muhlrad A, Cooper J, Wear M, Reisler E. Actin filament severing by cofilin. J Mol Biol 2007; 365(5): 1350-8.
[http://dx.doi.org/10.1016/j.jmb.2006.10.102] [PMID: 17134718]
[60]
Carlier MF, Laurent V, Santolini J, et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 1997; 136(6): 1307-22.
[http://dx.doi.org/10.1083/jcb.136.6.1307] [PMID: 9087445]
[61]
Galkin VE, Orlova A, VanLoock MS, Shvetsov A, Reisler E, Egelman EH. ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments. J Cell Biol 2003; 163(5): 1057-66.
[http://dx.doi.org/10.1083/jcb.200308144] [PMID: 14657234]
[62]
Hitchcock-Degregori SE. Chemotaxis: Cofilin in the driver’s seat. Curr Biol 2006; 16(24): R1030-2.
[http://dx.doi.org/10.1016/j.cub.2006.11.011] [PMID: 17174909]
[63]
Samstag Y, Eibert SM, Klemke M, Wabnitz GH. Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 2003; 73(1): 30-48.
[http://dx.doi.org/10.1189/jlb.0602272] [PMID: 12525560]
[64]
Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112(4): 453-65.
[http://dx.doi.org/10.1016/S0092-8674(03)00120-X] [PMID: 12600310]
[65]
McGough A, Pope B, Chiu W, Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 1997; 138(4): 771-81.
[http://dx.doi.org/10.1083/jcb.138.4.771] [PMID: 9265645]
[66]
Yang N, Higuchi O, Ohashi K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998; 393(6687): 809-12.
[http://dx.doi.org/10.1038/31735] [PMID: 9655398]
[67]
Arber S, Barbayannis FA, Hanser H, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998; 393(6687): 805-9.
[http://dx.doi.org/10.1038/31729] [PMID: 9655397]
[68]
Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 2000; 30(12): 3422-31.
[http://dx.doi.org/10.1002/1521-4141(2000012)30:12<3422:AID-IMMU3422>3.0.CO;2-J] [PMID: 11093160]
[69]
Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 2002; 108(2): 233-46.
[http://dx.doi.org/10.1016/S0092-8674(01)00638-9] [PMID: 11832213]
[70]
Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 2005; 7(1): 21-9.
[http://dx.doi.org/10.1038/ncb1201] [PMID: 15580268]
[71]
Wabnitz GH, Nebl G, Klemke M, Schröder AJ, Samstag Y. Phosphatidylinositol 3-kinase functions as a Ras effector in the signaling cascade that regulates dephosphorylation of the actin-remodeling protein cofilin after costimulation of untransformed human T lymphocytes. J Immunol 2006; 176(3): 1668-74.
[http://dx.doi.org/10.4049/jimmunol.176.3.1668] [PMID: 16424196]
[72]
Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010; 20(4): 187-95.
[http://dx.doi.org/10.1016/j.tcb.2010.01.001] [PMID: 20133134]
[73]
Nishita M, Aizawa H, Mizuno K. Stromal cell-derived factor 1alpha activates LIM kinase 1 and induces cofilin phosphorylation for T-cell chemotaxis. Mol Cell Biol 2002; 22(3): 774-83.
[http://dx.doi.org/10.1128/MCB.22.3.774-783.2002] [PMID: 11784854]
[74]
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7: 68.
[http://dx.doi.org/10.3389/fimmu.2016.00068] [PMID: 27014258]
[75]
Lee KH, Meuer SC, Samstag Y. Cofilin: A missing link between T cell co-stimulation and rearrangement of the actin cytoskeleton. Eur J Immunol 2000; 30(3): 892-9.
[http://dx.doi.org/10.1002/1521-4141(200003)30:3<892:AID-IMMU892>3.0.CO;2-U] [PMID: 10741406]
[76]
Samstag Y, Eckerskorn C, Wesselborg S, Henning S, Wallich R, Meuer SC. Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin. Proc Natl Acad Sci USA 1994; 91(10): 4494-8.
[http://dx.doi.org/10.1073/pnas.91.10.4494] [PMID: 8183936]
[77]
Samstag Y, Henning SW, Bader A, Meuer SC. Dephosphorylation of pp19: a common second signal for human T cell activation mediated through different accessory molecules. Int Immunol 1992; 4(11): 1255-62.
[http://dx.doi.org/10.1093/intimm/4.11.1255] [PMID: 1472477]
[78]
Eibert SM, Lee KH, Pipkorn R, et al. Cofilin peptide homologs interfere with immunological synapse formation and T cell activation. Proc Natl Acad Sci USA 2004; 101(7): 1957-62.
[http://dx.doi.org/10.1073/pnas.0308282100] [PMID: 14762171]
[79]
Samstag Y, Bader A, Meuer SC. A serine phosphatase is involved in CD2-mediated activation of human T lymphocytes and natural killer cells. J Immunol 1991; 147(3): 788-94.
[PMID: 1677669]
[80]
Wülfing C, Davis MM. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 1998; 282(5397): 2266-9.
[http://dx.doi.org/10.1126/science.282.5397.2266] [PMID: 9856952]
[81]
Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med 1995; 181(2): 577-84.
[http://dx.doi.org/10.1084/jem.181.2.577] [PMID: 7836913]
[82]
Haynes BF, Montefiori DC. Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev Vaccines 2006; 5(3): 347-63.
[http://dx.doi.org/10.1586/14760584.5.3.347] [PMID: 16827619]
[83]
Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 2007; 110(13): 4161-4.
[http://dx.doi.org/10.1182/blood-2007-06-097907] [PMID: 17881634]
[84]
Cameron PU, Saleh S, Sallmann G, et al. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci USA 2010; 107(39): 16934-9.
[http://dx.doi.org/10.1073/pnas.1002894107] [PMID: 20837531]
[85]
Ramratnam B, Mittler JE, Zhang L, et al. The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat Med 2000; 6(1): 82-5.
[http://dx.doi.org/10.1038/71577] [PMID: 10613829]
[86]
Santosuosso M, Righi E, Lindstrom V, Leblanc PR, Poznansky MC. HIV-1 envelope protein gp120 is present at high concentrations in secondary lymphoid organs of individuals with chronic HIV-1 infection. J Infect Dis 2009; 200(7): 1050-3.
[http://dx.doi.org/10.1086/605695] [PMID: 19698075]
[87]
Khoury G, Anderson JL, Fromentin R, et al. Persistence of integrated HIV DNA in CXCR3 + CCR6 + memory CD4+ T cells in HIV-infected individuals on antiretroviral therapy. AIDS 2016; 30(10): 1511-20.
[http://dx.doi.org/10.1097/QAD.0000000000001029] [PMID: 26807971]
[88]
Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12(12): 1365-71.
[http://dx.doi.org/10.1038/nm1511] [PMID: 17115046]
[89]
Gordon SN, Klatt NR, Bosinger SE, et al. Severe depletion of mucosal CD4+ T cells in AIDS-free simian immunodeficiency virus-infected sooty mangabeys. J Immunol 2007; 179(5): 3026-34.
[http://dx.doi.org/10.4049/jimmunol.179.5.3026] [PMID: 17709517]
[90]
Pandrea IV, Gautam R, Ribeiro RM, et al. Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J Immunol 2007; 179(5): 3035-46.
[http://dx.doi.org/10.4049/jimmunol.179.5.3035] [PMID: 17709518]
[91]
Resch W, Hoffman N, Swanstrom R. Improved success of phenotype prediction of the human immunodeficiency virus type 1 from envelope variable loop 3 sequence using neural networks. Virology 2001; 288(1): 51-62.
[http://dx.doi.org/10.1006/viro.2001.1087] [PMID: 11543657]
[92]
Jensen MA, Li FS, van ’t Wout AB, et al. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 2003; 77(24): 13376-88.
[http://dx.doi.org/10.1128/JVI.77.24.13376-13388.2003] [PMID: 14645592]
[93]
Jensen MA, Coetzer M, van ’t Wout AB, Morris L, Mullins JI. A reliable phenotype predictor for human immunodeficiency virus type 1 subtype C based on envelope V3 sequences. J Virol 2006; 80(10): 4698-704.
[http://dx.doi.org/10.1128/JVI.80.10.4698-4704.2006] [PMID: 16641263]
[94]
Fouchier RA, Groenink M, Kootstra NA, et al. Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol 1992; 66(5): 3183-7.
[PMID: 1560543]
[95]
Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373(6510): 117-22.
[http://dx.doi.org/10.1038/373117a0] [PMID: 7529365]
[96]
Jensen MA, van’t Wout AB. Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev 2003; 5(2): 104-12.
[PMID: 12876899]
[97]
Pillai S, Good B, Richman D, Corbeil J. A new perspective on V3 phenotype prediction. AIDS Res Hum Retroviruses 2003; 19(2): 145-9.
[http://dx.doi.org/10.1089/088922203762688658] [PMID: 12643277]
[98]
Brumme ZL, Dong WW, Yip B, et al. Clinical and immunological impact of HIV envelope V3 sequence variation after starting initial triple antiretroviral therapy. AIDS 2004; 18(4): F1-9.
[http://dx.doi.org/10.1097/00002030-200403050-00001] [PMID: 15090786]
[99]
Huang CC, Lam SN, Acharya P, et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 2007; 317(5846): 1930-4.
[http://dx.doi.org/10.1126/science.1145373] [PMID: 17901336]
[100]
Yokoyama M, Nomaguchi M, Doi N, Kanda T, Adachi A, Sato H. In silico analysis of HIV-1 env-gp120 Reveals structural bases for viral adaptation in growth-restrictive cells. Front Microbiol 2016; 7: 110.
[http://dx.doi.org/10.3389/fmicb.2016.00110] [PMID: 26903989]
[101]
Kwon YD, Pancera M, Acharya P, et al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol 2015; 22(7): 522-31.
[http://dx.doi.org/10.1038/nsmb.3051] [PMID: 26098315]
[102]
Julien JP, Cupo A, Sok D, et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 2013; 342(6165): 1477-83.
[http://dx.doi.org/10.1126/science.1245625] [PMID: 24179159]
[103]
Lyumkis D, Julien JP, de Val N, et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 2013; 342(6165): 1484-90.
[http://dx.doi.org/10.1126/science.1245627] [PMID: 24179160]
[104]
Guttman M, Kahn M, Garcia NK, Hu SL, Lee KK. Solution structure, conformational dynamics, and CD4-induced activation in full-length, glycosylated, monomeric HIV gp120. J Virol 2012; 86(16): 8750-64.
[http://dx.doi.org/10.1128/JVI.07224-11] [PMID: 22674993]
[105]
Munro JB, Gorman J, Ma X, et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 2014; 346(6210): 759-63.
[http://dx.doi.org/10.1126/science.1254426] [PMID: 25298114]
[106]
Neogi U, Prarthana SB, D’Souza G, et al. Co-receptor tropism prediction among 1045 Indian HIV-1 subtype C sequences: Therapeutic implications for India. AIDS Res Ther 2010; 7: 24.
[http://dx.doi.org/10.1186/1742-6405-7-24] [PMID: 20646329]
[107]
Zhang C, Xu S, Wei J, Guo H. Predicted co-receptor tropism and sequence characteristics of China HIV-1 V3 loops: implications for the future usage of CCR5 antagonists and AIDS vaccine development. Int J Infect Dis 2009; 13(5): e212-6.
[http://dx.doi.org/10.1016/j.ijid.2008.12.010] [PMID: 19217335]
[108]
Li X, Zhu K, Li W, et al. Coreceptor usage of Chinese HIV-1 and impact of X4/DM transmission clusters among recently infected men who have sex with men. Medicine (Baltimore) 2016; 95(39) e5017
[http://dx.doi.org/10.1097/MD.0000000000005017] [PMID: 27684870]
[109]
Jiao Y, Song Y, Kou B, et al. Primary CXCR4 co-receptor use in acute HIV infection leads to rapid disease progression in the AE subtype. Viral Immunol 2012; 25(4): 262-7.
[http://dx.doi.org/10.1089/vim.2012.0035] [PMID: 22783935]
[110]
Raymond S, Delobel P, Rogez S, et al. Genotypic prediction of HIV-1 CRF01-AE tropism. J Clin Microbiol 2013; 51(2): 564-70.
[http://dx.doi.org/10.1128/JCM.02328-12] [PMID: 23224099]
[111]
Verhofstede C, Nijhuis M, Vandekerckhove L. Correlation of coreceptor usage and disease progression. Curr Opin HIV AIDS 2012; 7(5): 432-9.
[http://dx.doi.org/10.1097/COH.0b013e328356f6f2] [PMID: 22871636]

© 2024 Bentham Science Publishers | Privacy Policy