[1]
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’ disease. Neurobiol Aging 21: 383-421.(2000);
[2]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353-6.(2002);
[3]
Rogers J, Webster S, Lue LF, Brachova L, Civin WH, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17: 681-6.(1996);
[4]
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 8: 26.(2011);
[5]
Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci 19: 928-39.(1999);
[6]
Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26: 349-54.(2005);
[7]
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseran F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14: 388-405.(2015);
[8]
Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13: 2911-25.(2009);
[9]
Eikelenboom P, van Gool WA. Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm 111: 281-94.(2004);
[10]
McGeer PL, McGeer EG. NSAIDS and Alzheimer’s disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28: 639-47.(2006);
[11]
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 4: 203-16.(2011);
[12]
Piton M, Hirtz C, Desmetz C, Milhau J, Dominique A, et al. Alzheimer’s disease: Advances in drug development. J Alzheimers Dis 65: 3-13.(2018);
[13]
Ransohoff RM. All (animal) models (of neurodegeneration) are wrong. Are they also useful? J Exp Med 215: 2955-8.(2018);
[14]
Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: a matter of blood-brain barrier dysfunction. J Exp Med 214: 3151-60.(2017);
[15]
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85: 296-302.(2015);
[16]
Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer’s disease. J Alzheimers Dis 32: 599-608.(2012);
[17]
Strickland S. Blood will out: vascular contributions to Alzheimer’s disease. J Clin Invest 128: 556-63.(2018);
[18]
Ryu JK, Cho T, Choi HB, Jantaratnotai N, McLarnon JG. Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer’s disease. J Neuroinflammation 12: 144.(2015);
[19]
McLarnon JG, Ryu JK. Relevance of Aβ1-42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alzheimer Res 5: 475-80.(2008);
[20]
Pogue AI, Lukiw WJ. Angiogenic signaling in Alzheimer’s disease. Neuroreport 15: 1507-10.(2004);
[21]
Ryu JK, McLarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis 29: 254-66.(2008);
[23]
Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B. Evidence of angiogenic vessels in Alzheimer’s disease. J Neural Transm 116: 587-97.(2009);
[24]
Jantaratnotai N, Schwab C, Ryu JK, McGeer PL, McLarnon JG. Converging perturbed vasculature and microglial clusters characterize Alzheimer disease brain. Curr Alzheimer Res 7: 1-12.(2010);
[25]
Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One 6 e23789(2011);
[26]
Ujiie M, Dickstein D, Carlow D, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10: 463-70.(2003);
[27]
Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 9: 62.(2012);
[28]
Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, et al. Minocycline prevents nigtostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. PNAS 90: 14669-74.(2001);
[29]
Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseh C, et al. Ischiropoulos H, Przedborski S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci 22: 1763-71.(2002);
[30]
Tomas-Camardiel M, Rite I, Herrera AJ, et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier and damage in the nigral dopaminergic system. Neurobiol Dis 16: 190-201.(2004);
[31]
Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington’s disease. Nat Med 6: 797-801.(2000);
[32]
Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13496-500.(1999);
[33]
Ryu JK, Franciosi S, Sattayaprasert P, Kim SU, McLarnon JG. Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 48: 85-90.(2004);
[34]
Ryu JK, McLarnon JG. Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood-brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp Neurol 198: 552-7.(2006);
[35]
Seabrook TJ, Jiang L, Maier M, Lemere CA. Minocycline affects microglial activation, Abeta deposition, and behavior in APP-tg mice. Glia 5: 776-82.(2006);
[36]
Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J 23: 739-50.(2009);
[37]
Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Kim HS, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacol 32: 2393-404.(2007);
[38]
D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082-5.(1994);
[39]
Calabrese L, Fleischer AB. Thalidomide: current and potential clinical applications. Am J Med 108: 487-95.(2000);
[40]
Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J, et al. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. Nat Neurosci 26: 2467-73.(2006);
[41]
Neymotin A, Petri S, Calingasan NY, Wille E, Schafer P, Stewart C, et al. Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 220: 191-7.(2009);
[43]
Teo SK, Stirling DI, Zeldis JB. Thalidomide as a novel therapeutic agent: new uses for an old product. Drug Discov Today 10: 107-14.(2005);
[44]
Tweedie D, Ferguson RA, Fishman K, Frankola KA, Van Praag H, Holloway HW, et al. Tumor necrosis factor-α synthesis inhibitor 3,6′-dithiothalidomide attenuates markers of inflammation, Alzheimer’s pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease. J Neuroinflammation 9: 106.(2012);
[45]
He P, Cheng X, Staufenbiel M, Li R, Shen Y. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer’s disease. PLoS One 8 e55091(2013);
[46]
Decourt B, Drumm-Gurnee D, Wilson J, Jacobson S, Belden C, et al. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide: Results from a double-blind, placebo-controlled trial. Curr Alzheimer Res 14: 403-11.(2017);
[47]
Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology 76: 863-9.(2011);
[48]
Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16: 523-30.(1995);
[49]
Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC. Reduced incidence of AD with NSAID but not H2 receptor antagonist: the Cache County study. Neurology 59: 880-6.(2002);
[50]
Veld SC, Miller DR, Kowall NW, Felson DT. Protective effects of NSAIDS on the development of Alzheimer’s disease. Neurology 70: 1672-7.(2008);
[51]
Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48: 626-32.(1997);
[52]
Int Veldt BA, Ruttenburg A, Hofman A. Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345: 1515-21.(2001);
[53]
McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126: 479-97.(2013);
[54]
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20: 5709-14.(2000);
[55]
Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, et al. NSAIDS and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J Clin Invest 112: 440-9.(2003);
[56]
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV7171 transgenic mice. Brain 128: 1442-53.(2005);
[57]
Cohen PR. Neutrophilic dermatoses: a review of current treatment options. Am J Clin Dermatol 10: 301-12.(2009);
[58]
Hong TM, Teng LJ, Shun CT, Peng MC, Tsai JC. Induced interleukin-8 expression in gliomas by tumor-associated macrophages. J Neurooncol 93: 289-301.(2009);
[59]
Kast RE, Scheuerle A, Wirtz CR, Karpel-Massler G, Halatsch ME. The rationale of targeting neutrophils with dapsone during glioblastoma treatment. Anticancer Agents Med Chem 11(8): 756-61.(2011);
[60]
McGeer PL, Harada N, Kimura H, McGeer EG, Schulzer M. Prevalence of dementia amongst elderly Japanese with leprosy: apparent effect of chronic drug therapy. Dement Geriatr Cogn Disord 3: 146-9.(1992);
[61]
Goto M, Kimura T, Hagio S, Ueda K, Kitajima S. Neuropathological analysis of dementia in a Japanese leprosarum. Dementia 6: 157-61.(1995);
[62]
Zhan R, Zhao M, Zhou T, Chen Y, Yu W, Zhao L, et al. Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation. Cell Death Dis 9: 680.(2018);
[63]
Grammas P, Ovase R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 22: 837-42.(2001);
[64]
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14: 133-50.(2018);
[65]
Galimberti D, Schoonenboom N, Scarpini E, Scheltens P. Chemokines in serum and cerebrospinal fluid of Alzheimer’s disease patients. Ann Neurol 53: 547-8.(2003);
[66]
Xia M, Qin S, McNamara M, Mackay C, Hyman BT. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am J Pathol 150: 1267-74.(1997);
[67]
Walker DG, Lue LF, Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol Aging 22: 957-66.(2001);
[68]
Franciosi S, Choi HB, Kim SU, McLarnon JG. IL-8 enhancement of amyloid-beta (Aβ1-42)-induced expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol 159: 66-74.(2005);
[69]
Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18: 794-9.(2015);
[70]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 26: 735-9.(2017);
[71]
Brogden RN, Speight TM, Avery GS. Minocycline: a review of its antibacterial and pharmacokinetic properties and therapeutic use. Drugs 9: 251-91.(1975);
[72]
Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol 169: 337-52.(2013);
[73]
Muscal JA, Sun Y, Nuchtern JG, Dauser RC, McGuffey LH, Gibson BW, et al. Plasma and cerebrospinal fluid pharmacokinetics of thalidomide and lenalidomide in nonhuman primates. Cancer Chemother Pharmacol 69: 943-7.(2012);
[74]
Palumbo A, Facon T, Sonneveld P, Bladè J, Offidani M, Gay F, et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111: 3968-77.(2008);
[75]
Parepally JM, Mandula H, Smith QK. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen and indomethacin. Pharm Res 23: 873-81.(2006);
[76]
Adams SS, Bough RG, Cliffe EE, Lessel B, Mills RFN. Absorption, distribution and toxicity of ibuprofen. Toxicol Appl Pharmacol 15: 310-30.(1969);
[77]
Murray JF Jr, Gordon GR, Peters JH. Tissue levels of dapsone and monoacetyl-dapsone in Lewis rats receiving dietary dapsone. Proc West Pharmacol Soc 17: 150-4.(1974);
[78]
Coleman MD. Dapsone: modes of action, toxicity and possible strategies for increasing patient tolerance. Br J Dermatol 129: 507-13.(1993);
[79]
Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2: 23.(2005);
[80]
Moir RD, Lathe R. T RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 14: 1602-14.(2018);
[81]
Paouri E, Georgopoulos S. Systemic and CNS inflammation crosstalk: implications for Alzheimer’s disease. Curr Alzheimer Res 16: 559-74.(2019);
[82]
Bazzari FH, Abdallah DM, El-Abhar HS. Pharmacological intervention to attenuate AD progression: the story so far. Curr Alzheimer Res 16: 261-77.(2019);