Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress

Author(s): Natalia Forbot, Paulina Bolibok, Marek Wiśniewski and Katarzyna Roszek*

Volume 20, Issue 4, 2020

Page: [294 - 307] Pages: 14

DOI: 10.2174/1389557519666191029162150

Price: $65

Abstract

The concept of nanoscale materials and their applications in industrial technologies, consumer goods, as well as in novel medical therapies has rapidly escalated in the last several years. Consequently, there is a critical need to understand the mechanisms that drive nanomaterials biocompatibility or toxicity to human cells and tissues.

The ability of nanomaterials to initiate cellular pathways resulting in oxidative stress has emerged as a leading hypothesis in nanotoxicology. Nevertheless, there are a few examples revealing another face of nanomaterials - they can alleviate oxidative stress via decreasing the level of reactive oxygen species. The fundamental structural and physicochemical properties of carbonaceous nanomaterials that govern these anti-oxidative effects are discussed in this article. The signaling pathways influenced by these unique nanomaterials, as well as examples of their applications in the biomedical field, e.g. cell culture, cell-based therapies or drug delivery, are presented. We anticipate this emerging knowledge of intrinsic anti-oxidative properties of carbon nanomaterials to facilitate the use of tailored nanoparticles in vivo.

Keywords: Nanomaterials, carbonaceous nanomaterials, free radicals scavengers, reactive oxygen species, anti-oxidative activity, nanotoxicology.

Graphical Abstract

[1]
Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 9452-9476.
[2]
Brenneisen, P.; Reichert, A.S. Nanotherapy and Reactive Oxygen Species (ROS) in cancer: A novel perspective. Antioxidants, 2018, 7(2), 31-39.
[PMID: 29470419]
[3]
Castro, E.; Hernandez Garcia, A.; Zavala, G.; Echegoyen, L. Fullerenes in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6523-6535.
[PMID: 29225883]
[4]
Dulany, K.; Goins, A.; Kelley, A.; Allen, J.B. Fabrication of a free radical scavenging nanocomposite scaffold for bone tissue regeneration. Regen. Eng. Transl. Med., 2018, 4(4), 257-267.
[5]
Galano, A. Carbon nanotubes: Promising agents against free radicals. Nanoscale, 2010, 2(3), 373-380.
[PMID: 20644818]
[6]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res. Int., 2013,. 2013578290
[PMID: 24195076]
[7]
Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell. Physiol., 2018, 234(1), 298-319.
[http://dx.doi.org/10.1002/jcp.26899] [PMID: 30078182]
[8]
Narayanan, K.B.; Park, H.H. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv. Colloid Interface Sci., 2013, 201-202, 30-42.
[PMID: 24206941]
[9]
Sims, C.M.; Hanna, S.K.; Heller, D.A.; Horoszko, C.P.; Johnson, M.E.; Montoro Bustos, A.R.; Reipa, V.; Riley, K.R.; Nelson, B.C. Redox-active nanomaterials for nanomedicine applications. Nanoscale, 2017, 9(40), 15226-15251.
[PMID: 28991962]
[10]
Christensen, I.L.; Sun, Y-P.; Juzenas, P. Carbon dots as antioxidants and prooxidants. J. Biomed. Nanotechnol., 2011, 7(5), 667-676.
[PMID: 22195484]
[11]
Fu, P.P.; Xia, Q.; Hwang, H-M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 64-75.
[PMID: 24673904]
[12]
Havrdova, M.; Hola, K.; Skopalik, J.; Tomankova, K.; Petr, M.; Cepe, K.; Polakov, K.; Tucek, J.; Bourlinos, A.B.; Zboril, R. Toxicity of carbon dots - Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon, 2016, 99, 238-248.
[13]
Jiang, J.; Oberdörster, G.; Elder, A.; Gelein, R.; Mercer, P.; Biswas, P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008, 2(1), 33-42.
[PMID: 20827377]
[14]
Lahir, Y.K. Effects of nanomaterials on oxidative stress and protein oxidation in biological system: Biochemical and biological aspects. Adv. Clin. Toxicol., 2016, 1(1)000104
[15]
Liu, Y.; Zhao, Y.; Sun, B.; Chen, C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res., 2013, 46(3), 702-713.
[PMID: 22999420]
[16]
Shvedova, A.A.; Pietroiusti, A.; Fadeel, B.; Kagan, V.E. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol. Appl. Pharmacol., 2012, 261(2), 121-133.
[http://dx.doi.org/10.1016/j.taap.2012.03.023] [PMID: 22513272]
[17]
Stone, V.; Donaldson, K. Nanotoxicology: Signs of stress. Nat. Nanotechnol., 2006, 1(1), 23-24.
[http://dx.doi.org/10.1038/nnano.2006.69] [PMID: 18654137]
[18]
Chiang, L.Y.; Lu, F-J.; Lin, J-T. Free radical scavenging activity of water-soluble fullerenols. J. Chem. Soc. Chem. Commun., 1995, 0, 1283-1284.
[19]
Cheng, X.; Ni, X.; Wu, R.; Chong, Y.; Gao, X.; Ge, C.; Yin, J-J. Evaluation of the structure-activity relationship of carbon nanomaterials as antioxidants. Nanomedicine (Lond.), 2018, 13(7), 733-747.
[http://dx.doi.org/10.2217/nnm-2017-0314] [PMID: 29542368]
[20]
Das, B.; Dadhich, P.; Pal, P.; Srivas, P.K.; Bankoti, K.; Dhara, S. Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 6839-6847.
[21]
Fenoglio, I.; Tomatis, M.; Lison, D.; Muller, J.; Fonseca, A.; Nagy, J.B.; Fubini, B. Reactivity of carbon nanotubes: Free radical generation or scavenging activity? Free Radic. Biol. Med., 2006, 40(7), 1227-1233.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.11.010] [PMID: 16545691]
[22]
Ferreira, C.A.; Ni, D.; Rosenkrans, Z.T.; Cai, W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res., 2018, 11(10), 4955-4984.
[http://dx.doi.org/10.1007/s12274-018-2092-y] [PMID: 30450165]
[23]
Galano, A. Carbon Nanotubes as Free-Radical Scavengers. J. Phys. Chem. C, 2008, 112, 8922-8927.
[http://dx.doi.org/10.1021/jp801379g]
[24]
Karakoti, A.; Singh, S.; Dowding, J.M.; Seal, S.; Self, W.T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev., 2010, 39(11), 4422-4432.
[http://dx.doi.org/10.1039/b919677n] [PMID: 20717560]
[25]
Nymark, P.; Jensen, K.A.; Suhonen, S.; Kembouche, Y.; Vippola, M.; Kleinjans, J.; Catalán, J.; Norppa, H.; van Delft, J.; Briedé, J.J. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Part. Fibre Toxicol., 2014, 11, 4.
[PMID: 24438343]
[26]
Rizzo, C.; Arcudi, F.; Đorđević, L.; Dintcheva, N.T.; Noto, R.; D’Anna, F.; Prato, M. Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and radical scavenging activity. ACS Nano, 2018, 12(2), 1296-1305.
[PMID: 29283554]
[27]
Tsuruoka, S.; Matsumoto, H.; Koyama, K.; Akiba, E.; Yanagisawa, T.; Cassee, F.R.; Saito, N.; Usui, Y.; Kobayashi, S.; Porter, D.W.; Castranova, V.; Endo, M. Radical scavenging reaction kinetics with multiwalled carbon nanotubes. Carbon N Y, 2015, 83, 232-239.
[PMID: 27030782]
[28]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 802-813.
[PMID: 28115205]
[29]
Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol., 2017, 11, 240-253.
[http://dx.doi.org/10.1016/j.redox.2016.12.011] [PMID: 28012439]
[30]
Markovic, Z.; Trajkovic, V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials, 2008, 29(26), 3561-3573.
[PMID: 18534675]
[31]
Nielsen, G.D.; Roursgaard, M.; Jensen, K.A.; Poulsen, S.S.; Larsen, S.T. In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin. Pharmacol. Toxicol., 2008, 103(3), 197-208.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00266.x] [PMID: 18684229]
[32]
Grębowski, J.; Kaźmierska, P.; Krokosz, A. Fullerenol - properties and applications in biomedical sciences. Postepy Hig. Med. Dosw., 2013, 67, 859-872.
[PMID: 24018451]
[33]
Rondags, A.; Yuen, W.Y.; Jonkman, M.F.; Horváth, B. Fullerene C60 with cytoprotective and cytotoxic potential: Prospects as a novel treatment agent in dermatology? Exp. Dermatol., 2017, 26(3), 220-224.
[http://dx.doi.org/10.1111/exd.13172] [PMID: 27541937]
[34]
Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem., 2003, 38(11-12), 913-923.
[http://dx.doi.org/10.1016/j.ejmech.2003.09.005] [PMID: 14642323]
[35]
Zhu, X.; Sollogoub, M.; Zhang, Y. Biological applications of hydrophilic C60 derivatives (hC60s)- a structural perspective. Eur. J. Med. Chem., 2016, 115, 438-452.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.024] [PMID: 27049677]
[36]
Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett., 2005, 5(12), 2578-2585.
[PMID: 16351219]
[37]
Chistyakov, V.A.; Smirnova, Y.O.; Prazdnova, E.V.; Soldatov, A.V. Possible mechanisms of fullerene C60 antioxidant action. BioMed Res. Int., 2013, •••2013821498
[http://dx.doi.org/10.1155/2013/821498] [PMID: 24222918]
[38]
Andrievsky, G.V.; Bruskov, V.I.; Tykhomyrov, A.A.; Gudkov, S.V. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radic. Biol. Med., 2009, 47(6), 786-793.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.016] [PMID: 19539750]
[39]
Bozdaganyan, M.E.; Orekhov, P.S.; Shaytan, A.K.; Shaitan, K.V. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: Relation to their antioxidant effect. PLoS One, 2014, 9(7), e102487
[PMID: 25019215]
[40]
Bogdanović, V.; Stankov, K.; Icević, I.; Zikic, D.; Nikolić, A.; Solajić, S.; Djordjević, A.; Bogdanović, G. Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J. Radiat. Res. (Tokyo), 2008, 49(3), 321-327.
[http://dx.doi.org/10.1269/jrr.07092] [PMID: 18285660]
[41]
Ye, S.; Chen, M.; Jiang, Y.; Chen, M.; Zhou, T.; Wang, Y.; Hou, Z.; Ren, L. Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. Int. J. Nanomedicine, 2014, 9, 2073-2087.
[http://dx.doi.org/10.2147/IJN.S56973] [PMID: 24812508]
[42]
Wang, Z.; Gao, X.; Zhao, Y. Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation. J. Phys. Chem. A, 2018, 122(41), 8183-8190.
[http://dx.doi.org/10.1021/acs.jpca.8b06340] [PMID: 30244577]
[43]
Wakimoto, T.; Uchida, K.; Mimura, K.; Kanagawa, T.; Mehandjiev, T.R.; Aoshima, H.; Kokubo, K.; Mitsuda, N.; Yoshioka, Y.; Tsutsumi, Y.; Kimura, T.; Yanagihara, I. Hydroxylated fullerene: A potential anti-inflammatory and antioxidant agent for preventing mouse preterm birth. Am. J. Obstet. Gynecol., 2015, 213(5), 708.e1-708.e9.
[PMID: 26196453]
[44]
Petrovic, D.; Seke, M.; Borovic, M.L.; Jovic, D.; Borisev, I.; Srdjenovic, B.; Rakocevic, Z.; Pavlovic, V.; Djordjevic, A. Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats. Exp. Mol. Pathol., 2018, 104(3), 199-211.
[http://dx.doi.org/10.1016/j.yexmp.2018.04.005] [PMID: 29727604]
[45]
Liu, Q.; Zhang, X.; Zhang, X.; Zhang, G.; Zheng, J.; Guan, M.; Fang, X.; Wang, C.; Shu, C. C70-carboxyfullerenes as efficient antioxidants to protect cells against oxidative-induced stress. ACS Appl. Mater. Interfaces, 2013, 5(21), 11101-11107.
[http://dx.doi.org/10.1021/am4033372] [PMID: 24150592]
[46]
Dugan, L.L.; Lovett, E.G.; Quick, K.L.; Lotharius, J.; Lin, T.T.; O’Malley, K.L. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord., 2001, 7(3), 243-246.
[http://dx.doi.org/10.1016/S1353-8020(00)00064-X] [PMID: 11331193]
[47]
Ali, S.S.; Hardt, J.I.; Dugan, L.L. SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: A structure-activity study. Nanomedicine (Lond.), 2008, 4(4), 283-294.
[http://dx.doi.org/10.1016/j.nano.2008.05.003] [PMID: 18656425]
[48]
Yin, J.J.; Lao, F.; Fu, P.P.; Wamer, W.G.; Zhao, Y.; Wang, P.C.; Qiu, Y.; Sun, B.; Xing, G.; Dong, J.; Liang, X.J.; Chen, C. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30(4), 611-621.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.061] [PMID: 18986699]
[49]
Iohara, D.; Umezaki, Y.; Anraku, M.; Uekama, K.; Hirayama, F. In Vitro and In Vivo evaluation of hydrophilic C60(OH)10/2-Hydroxypropyl-β-cyclodextrin nanoparticles as an antioxidant. J. Pharm. Sci., 2016, 105(9), 2959-2965.
[http://dx.doi.org/10.1016/j.xphs.2016.04.033] [PMID: 27317367]
[50]
Brown, A.P.; Chung, E.J.; Urick, M.E.; Shield, W.P., III; Sowers, A.L.; Thetford, A.; Shankavaram, U.T.; Mitchell, J.B.; Citrin, D.E. Evaluation of the fullerene compound DF-1 as a radiation protector. Radiat. Oncol., 2010, 5, 34.
[PMID: 20459795]
[51]
Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorg. Med. Chem. Lett., 2009, 19(18), 5293-5296.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.149] [PMID: 19683919]
[52]
Lee, K.C.; Chen, Y.L.; Wang, C.C.; Huang, J.H.; Cho, E.C. Refluxed esterification of fullerene-conjugated P25 TiO2 promotes free radical scavenging capacity and facilitates antiaging potentials in human cells. ACS Appl. Mater. Interfaces, 2019, 11(1), 311-319.
[PMID: 30540433]
[53]
Xiao, L.; Takada, H.; Maeda, K.; Haramoto, M.; Miwa, N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother., 2005, 59(7), 351-358.
[http://dx.doi.org/10.1016/j.biopha.2005.02.004] [PMID: 16087310]
[54]
Rajavel, K.; Gomathi, R.; Manian, S.; Kumar, R.T.R. Characterization of tannic acid- and gallic acid-functionalized single- and multiwalled carbon nanotubes and an in vitro evaluation of their antioxidant properties. J. Taibah Univ. Sci., 2016, 11(5), 469-477.
[55]
Crouzier, D.; Follot, S.; Gentilhomme, E.; Flahaut, E.; Arnaud, R.; Dabouis, V.; Castellarin, C.; Debouzy, J.C. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology, 2010, 272(1-3), 39-45.
[PMID: 20381574]
[56]
Francisco-Marquez, M.; Galano, A.; Martı’nez, A. On the free radical scavenging capability of carboxylated single-walled carbon nanotubes. J. Phys. Chem. C, 2010, 114, 6363-6370.
[http://dx.doi.org/10.1021/jp100065t]
[57]
Zeynalow, E.B.; Friedrich, J.F. Anti-radical activity of fullerenes and carbon nanotubes in reactions of radical polymerization and polymer thermal/thermo-oxidative degradation. Mater. Test., 2007, 49(5), 265-270.
[http://dx.doi.org/10.3139/120.100812]
[58]
Galano, A.; Francisco-Marquez, M.; Martı’nez, A. Influence of point defects on the Free-radical scavenging capability of single-walled carbon nanotubes. J. Phys. Chem. C, 2010, 114, 8302-8308.
[59]
González-Durruthy, M.; Monserrat, J.M.; Alberici, L.C.; Naal, Z.; Curti, C.; González-Díaz, H. Mitoprotective activity of oxidized carbon nanotubes against mitochondrial swelling induced in multiple experimental conditions and predictions with new expected-value perturbation theory. RSC Advances, 2015, 5(125), 103229-103245.
[http://dx.doi.org/10.1039/C5RA14435C]
[60]
Xu, Z-Q.; Lan, J-Y.; Jin, J-C.; Dong, P.; Jiang, F-L.; Liu, Y. Highly photoluminescent Nitrogen-Doped carbon nanodots and their protective effects against oxidative stress on cells. ACS Appl. Mater. Interfaces, 2015, 7(51), 28346-28352.
[http://dx.doi.org/10.1021/acsami.5b08945] [PMID: 26641543]
[61]
Li, D.; Na, X.; Wang, H.; Xie, Y.; Cong, S.; Song, Y.; Xu, X.; Zhu, B.W.; Tan, M. Fluorescent carbon dots derived from maillard reaction products: Their properties, Biodistribution, Cytotoxicity, and antioxidant activity. J. Agric. Food Chem., 2018, 66(6), 1569-1575.
[http://dx.doi.org/10.1021/acs.jafc.7b05643] [PMID: 29360356]
[62]
Zhang, W.; Chavez, J.; Zeng, Z.; Bloom, B.; Sheardy, A.; Ji, Z.; Yin, Z.; Waldeck, D.H.; Jia, Z.; Wei, J. Antioxidant capacity of nitrogen and sulfur codoped carbon nanodots. ACS Appl. Nano Mater., 2018, 1, 2699-2708.
[63]
Wang, Y.; Kong, W.; Wang, L.; Zhang, J.Z.; Li, Y.; Liu, X.; Li, Y. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Phys. Chem. Chem. Phys., 2019, 21(3), 1336-1343.
[64]
Das, B.; Pal, P.; Dadhich, P.; Dutta, J.; Dhara, S. In Vivo cell tracking, reactive oxygen species scavenging, and antioxidative gene down regulation by long-term exposure of biomass-derived carbon dots. ACS Biomater. Sci. Eng., 2019, 5(1), 346-356.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01101]
[65]
Ruiz, V.; Yate, L.; García, I.; Cabanero, G.; Grande, H-J. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon, 2017, 116, 366-374.
[http://dx.doi.org/10.1016/j.carbon.2017.01.090]
[66]
Fukuzumi, S. Nanocarbons as electron donors and acceptors in photoinduced Electron-Transfer reactions. ECS J. Solid State Sci. Technol., 2017, 6, M3055-M3061.
[http://dx.doi.org/10.1149/2.0061706jss]
[67]
Qiu, Y.; Wang, Z.; Owens, A.C.E.; Kulaots, I.; Chen, Y.; Kane, A.B.; Hurt, R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 2014, 6(20), 11744-11755.
[http://dx.doi.org/10.1039/C4NR03275F] [PMID: 25157875]
[68]
Suresh, D.; Udayabhanu, A.; Nagabhushana, H.; Sharma, S.C. Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties. Mater. Lett., 2015, 142, 4-6.
[69]
Suresh, D.; Nethravathi, P.C.; Udayabhanu, A.; Nagabhushana, H.; Sharma, S.C. Spinach assisted green reduction of graphene oxide and its antioxidant and dye absorption properties. Ceram. Int., 2015, 41, 4810-4813.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.036]
[70]
Bolibok, P.; Roszek, K.; Wiśniewski, M. Graphene oxide-mediated protection from photodamage. J. Phys. Chem. Lett., 2018, 9(12), 3241-3244.
[http://dx.doi.org/10.1021/acs.jpclett.8b01349] [PMID: 29804452]
[71]
Schubert, D.; Dargusch, R.; Raitano, J.; Chan, S.W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun., 2006, 342(1), 86-91.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.129] [PMID: 16480682]
[72]
Ghaznavi, H.; Najafi, R.; Mehrzadi, S.; Hosseini, A.; Tekyemaroof, N.; Shakeri-Zadeh, A.; Rezayat, M.; Sharifi, A.M. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol. Res., 2015, 37(7), 624-632.
[http://dx.doi.org/10.1179/1743132815Y.0000000037] [PMID: 25786672]
[73]
Obulesu, M.; Jhansilakshmi, M. Neuroprotective role of nanoparticles against Alzheimer’s disease. Curr. Drug Metab., 2016, 17(2), 142-149.
[http://dx.doi.org/10.2174/138920021702160114160341] [PMID: 26806041]
[74]
Estevez, A.Y.; Erlichman, J.S. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine (Lond.), 2014, 9(10), 1437-1440.
[http://dx.doi.org/10.2217/nnm.14.87] [PMID: 25253491]
[75]
Heckman, K.L.; DeCoteau, W.; Estevez, A.; Reed, K.J.; Costanzo, W.; Sanford, D.; Leiter, J.C.; Clauss, J.; Knapp, K.; Gomez, C.; Mullen, P.; Rathbun, E.; Prime, K.; Marini, J.; Patchefsky, J.; Patchefsky, A.S.; Hailstone, R.K.; Erlichman, J.S. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano, 2013, 7(12), 10582-10596.
[PMID: 24266731]
[76]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A.; Khan, M.A.; Alrokayan, S.A. Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. J. Colloid Interface Sci., 2015, 457, 370-377.
[http://dx.doi.org/10.1016/j.jcis.2015.07.034] [PMID: 26196721]
[77]
Wiśniewski, M.; Bieniek, A.; Roszek, K.; Czarnecka, J.; Bolibok, P.; Ferrer, P.; da Silva, I.; Terzyk, A.P. Cystine-based MBioF for maintaining the antioxidant-oxidant balance in airway diseases. ACS Med. Chem. Lett., 2018, 9(12), 1280-1284.
[PMID: 30613340]
[78]
Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev., 2013, 65(15), 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[79]
Wiśniewski, M. Gauden. P.A. The HSAB principle as a means to interpret the reactivity of carbon nanotubes. Appl. Surf. Sci., 2009, 255, 4782-4786.
[http://dx.doi.org/10.1016/j.apsusc.2008.11.090]
[80]
Gauden, P.A.; Wiśniewski, M. Studies of the reactivity of carbon nanotubes towards alkali cations basing on the HSAB theory. Catal. Today, 2010, 150, 147-150.
[81]
D’Rozario, R.S.; Wee, C.L.; Wallace, E.J.; Sansom, M.S. The interaction of C60 and its derivatives with a lipid bilayer via molecular dynamics simulations. Nanotechnology, 2009, 20(11), 115102
[PMID: 19420432]
[82]
Bjelaković, M.S.; Kop, T.J.; Đorđević, J.; Milić, D.R. Fulleropeptide esters as potential self-assembled antioxidants. Beilstein J. Nanotechnol., 2015, 6, 1065-1071.
[http://dx.doi.org/10.3762/bjnano.6.107] [PMID: 26171283]
[83]
Park, J.; Kim, B.; Han, J.; Oh, J.; Park, S.; Ryu, S.; Jung, S.; Shin, J.Y.; Lee, B.S.; Hong, B.H.; Choi, D.; Kim, B.S. Graphene oxide flakes as a cellular adhesive: Prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano, 2015, 9(5), 4987-4999.
[PMID: 25919434]
[84]
Ali, S.S.; Hardt, J.I.; Quick, K.L.; Kim-Han, J.S.; Erlanger, B.F.; Huang, T.T.; Epstein, C.J.; Dugan, L.L. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med., 2004, 37(8), 1191-1202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.07.002] [PMID: 15451059]
[85]
Samuel, E.L.; Marcano, D.C.; Berka, V.; Bitner, B.R.; Wu, G.; Potter, A.; Fabian, R.H.; Pautler, R.G.; Kent, T.A.; Tsai, A.L.; Tour, J.M. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc. Natl. Acad. Sci. USA, 2015, 112(8), 2343-2348.
[http://dx.doi.org/10.1073/pnas.1417047112] [PMID: 25675492]
[86]
Jalilov, A.S.; Nilewski, L.G.; Berka, V.; Zhang, C.; Yakovenko, A.A.; Wu, G.; Kent, T.A.; Tsai, A.L.; Tour, J.M. Perylene diimide as a precise graphene-like superoxide dismutase mimetic. ACS Nano, 2017, 11(2), 2024-2032.
[PMID: 28112896]
[87]
Surh, Y.J.; Kundu, J.K.; Na, H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med., 2008, 74(13), 1526-1539.
[http://dx.doi.org/10.1055/s-0028-1088302] [PMID: 18937164]
[88]
Ye, S.; Zhou, T.; Cheng, K.; Chen, M.; Wang, Y.; Jiang, Y.; Yang, P. Carboxylic acid fullerene (C60) derivatives attenuated neuroinflammatory responses by modulating mitochondrial dynamics. Nanoscale Res. Lett., 2015, 10(1), 953.
[PMID: 26058514]
[89]
Hao, T.; Zhou, J.; Lü, S.; Yang, B.; Wang, Y.; Fang, W.; Jiang, X.; Lin, Q.; Li, J.; Wang, C. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression. Int. J. Nanomedicine, 2016, 11, 269-283.
[PMID: 26848263]
[90]
Yang, X.; Li, C-J.; Wan, Y.; Smith, P.; Shang, G.; Cui, Q. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells. Int. J. Nanomedicine, 2014, 9, 4023-4031.
[http://dx.doi.org/10.2147/IJN.S66785] [PMID: 25187705]
[91]
Zhou, Z.; Xu, Z.; Wang, F.; Lu, Y.; Yin, P.; Jiang, C.; Liu, Y.; Li, H.; Yu, X.; Sun, Y. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: Combination of vitamin C and graphene foams. Oncotarget, 2016, 7(44), 71998-72010.
[http://dx.doi.org/10.18632/oncotarget.12456] [PMID: 27713129]
[92]
Dal Bosco, L.; Weber, G.E.; Parfitt, G.M.; Cordeiro, A.P.; Sahoo, S.K.; Fantini, C.; Klosterhoff, M.C.; Romano, L.A.; Furtado, C.A.; Santos, A.P.; Monserrat, J.M.; Barros, D.M. PLoS One, 2015, .100129156
[http://dx.doi.org/10.1371/journal.pone.0129156]
[93]
Lee, J.K.; Sayers, B.C.; Chun, K.S.; Lao, H.C.; Shipley-Phillips, J.K.; Bonner, J.C.; Langenbach, R. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Part. Fibre Toxicol., 2012, 9, 14.
[http://dx.doi.org/10.1186/1743-8977-9-14] [PMID: 22571318]
[94]
Huq, R.; Samuel, E.L.G.; Sikkema, W.K.A.; Nilewski, L.G.; Lee, T.; Tanner, M.R.; Khan, F.S.; Porter, P.C.; Tajhya, R.B.; Patel, R.S.; Inoue, T.; Pautler, R.G.; Corry, D.B.; Tour, J.M.; Beeton, C. Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Sci. Rep., 2016, 6, 33808.
[http://dx.doi.org/10.1038/srep33808] [PMID: 27654170]
[95]
Chen, Y-W.; Hwang, K.C.; Yen, C-C.; Lai, Y.L. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287(1), R21-R26.
[http://dx.doi.org/10.1152/ajpregu.00310.2003] [PMID: 15191925]
[96]
Lai, Y-L.; Murugan, P.; Hwang, K.C. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci., 2003, 72(11), 1271-1278.
[http://dx.doi.org/10.1016/S0024-3205(02)02374-3] [PMID: 12570927]
[97]
Lee, H.J.; Park, J.; Yoon, O.J.; Kim, H.W.; Lee, D.Y.; Kim, D.H.; Lee, W.B.; Lee, N-E.; Bonventre, J.V.; Kim, S.S. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol., 2011, 6(2), 121-125.
[http://dx.doi.org/10.1038/nnano.2010.281] [PMID: 21278749]
[98]
Vani, J.R.; Mohammadi, M.T.; Foroshani, M.S.; Jafari, M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J., 2016, 15, 378-390.
[PMID: 27540350]
[99]
Umezaki, Y.; Iohara, D.; Anraku, M.; Ishitsuka, Y.; Irie, T.; Uekama, K.; Hirayama, F. Preparation of hydrophilic C60(OH)10/2-hydroxypropyl-β-cyclodextrin nanoparticles for the treatment of a liver injury induced by an overdose of acetaminophen. Biomaterials, 2015, 45, 115-123.
[PMID: 25662501]
[100]
Kwon, H.J.; Cha, M-Y.; Kim, D.; Kim, D.K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-Targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano, 2016, 10(2), 2860-2870.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[101]
Satoh, M.; Takayanagi, I. Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. J. Pharmacol. Sci., 2006, 100(5), 513-518.
[http://dx.doi.org/10.1254/jphs.CPJ06002X] [PMID: 16682790]
[102]
Fumelli, C.; Marconi, A.; Salvioli, S.; Straface, E.; Malorni, W.; Offidani, A.M.; Pellicciari, R.; Schettini, G.; Giannetti, A.; Monti, D.; Franceschi, C.; Pincelli, C. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol., 2000, 115(5), 835-841.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00140.x] [PMID: 11069621]
[103]
Lichota, A.; Krokosz, A. [Fullerenols in therapy and diagnosis of cancer] Med. Pr., 2016, 67(6), 817-831.
[http://dx.doi.org/10.13075/mp.5893.00466] [PMID: 28005089]
[104]
Saleem, J.; Wang, L.; Chen, C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20)e1800525
[http://dx.doi.org/10.1002/adhm.201800525] [PMID: 30073803]
[105]
Mehra, N.K.; Jain, A.K.; Nahar, M. Carbon nanomaterials in oncology: An expanding horizon. Drug Discov. Today, 2018, 23(5), 1016-1025.
[http://dx.doi.org/10.1016/j.drudis.2017.09.013] [PMID: 28965869]
[106]
Jacevic, V.; Djordjevic, A.; Srdjenovic, B.; Milic-Tores, V.; Segrt, Z.; Dragojevic-Simic, V.; Kuca, K. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Pathol., 2017, 102(2), 360-369.
[http://dx.doi.org/10.1016/j.yexmp.2017.03.005] [PMID: 28315688]
[107]
Prylutska, S.; Grynyuk, I.; Matyshevska, O.; Prylutskyy, Y.; Evstigneev, M.; Scharff, P.; Ritter, U. C60 fullerene as synergistic agent in tumor-inhibitory Doxorubicin treatment. Drugs R D., 2014, 14(4), 333-340.
[PMID: 25504158]
[108]
Bajek, A.; Olkowska, J.; Drewa, T. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration. Postepy Hig. Med. Dosw., 2011, 65, 124-132.
[http://dx.doi.org/10.5604/17322693.933878] [PMID: 21358000]
[109]
Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface, 2006, 3(10), 589-601.
[http://dx.doi.org/10.1098/rsif.2006.0124] [PMID: 16971328]
[110]
Tabata, Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface, 2009, 6(Suppl. 3), S311-S324.
[http://dx.doi.org/10.1098/rsif.2008.0448.focus] [PMID: 19324684]
[111]
Liu, H.; Yang, X.; Zhang, Y.; Dighe, A.; Li, X.; Cui, Q. Fullerol antagonizes dexamethasone-induced oxidative stress and adipogenesis while enhancing osteogenesis in a cloned bone marrow mesenchymal stem cell. J. Orthop. Res., 2012, 30(7), 1051-1057.
[http://dx.doi.org/10.1002/jor.22054] [PMID: 22570221]
[112]
Liu, Q.; Cui, Q.; Li, X.J.; Jin, L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect. Tissue Res., 2014, 55(2), 71-79.
[http://dx.doi.org/10.3109/03008207.2013.877894] [PMID: 24409811]
[113]
Prylutskyy, Y.I.; Vereshchaka, I.V.; Maznychenko, A.V.; Bulgakova, N.V.; Gonchar, O.O.; Kyzyma, O.A.; Ritter, U.; Scharff, P.; Tomiak, T.; Nozdrenko, D.M.; Mishchenko, I.V.; Kostyukov, A.I.C. 60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J. Nanobiotechnology, 2017, 15(1), 8-19.
[http://dx.doi.org/10.1186/s12951-016-0246-1] [PMID: 28086894]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy