Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Gingerol Derivatives as 14α-demethylase Inhibitors: Design and Development of Natural, Safe Antifungals for Immune-compromised Patients

Author(s): Sweta Sharma and Arpita Yadav*

Volume 17, Issue 7, 2020

Page: [918 - 928] Pages: 11

DOI: 10.2174/1570180816666191025105752

Price: $65

Abstract

Background: Currently, clinically used drugs for internal fungal infections have severe side effects. Patients suffering from severe fungal infections and those at a constant risk of developing such infections require long-term administration of safe antifungals.

Objective: This work deals with the design and development of safe, non-toxic antifungals derived from natural compounds for immune-compromised patients, such as HIV patients, who are at a constant risk of developing internal fungal infections.

Methods: Molecular modeling, docking and molecular dynamics simulation studies were performed on the main constituents of ginger and their derivatives to study their capability to inhibit 14α- demethylase enzyme.

Results: Ergosterol is the key component of the fungal cell membrane for its integrity and rigidity, synthesized from lanosterol catalyzed by 14α-demethylase enzyme. In our studies, it is determined that 6-gingerol, 6-paradol, 6-shogaol and their imidazole and triazole derivatives can inhibit the synthesis of ergosterol thus weakening the fungal cell membranes. The triazole derivative of 6-gingerol forms enhanced binding interactions with the active site residues of 14α-demethylase, carries an affinity for catalytically required cofactor heme and forms a stable complex with time without the probability of premature expulsion. Thus, this compound inhibits the formation of ergosterol leading to weakened fungal cell membranes and eventually death of fungal cells.

Conclusion: The triazole derivative of 6-gingerol is recommended as a lead compound for the development of non-toxic antifungals.

Keywords: Ginger, 6-gingerol, shogaol, paradol, imidazole derivative, triazole derivative, 14α-demethylase, inhibition, nontoxic antifungal.

Graphical Abstract

[1]
Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K., Jr; Calandra, T.F.; Edwards, J.E., Jr; Filler, S.G.; Fisher, J.F.; Kullberg, B.J.; Ostrosky-Zeichner, L.; Reboli, A.C.; Rex, J.H.; Walsh, T.J.; Sobel, J.D. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(5), 503-535.
[http://dx.doi.org/10.1086/596757] [PMID: 19191635]
[2]
Friggeri, L.; Hargrove, T.Y.; Rachakonda, G.; Blobaum, A.L.; Fisher, P.; de Oliveira, G.M.; da Silva, C.F.; Soeiro, M.N.C.; Nes, W.D.; Lindsley, C.W.; Villalta, F.; Guengerich, F.P.; Lepesheva, G.I. Sterol 14α-demethylase structure-based optimization of drug candidates for human infections with the protozoan Trypanosomatidae. J. Med. Chem., 2018, 61(23), 10910-10921.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01671] [PMID: 30451500]
[3]
FDA limits usage of Nizoral (ketoconazole) oral tablets due to potentially fatal liver injury and risk of drug interactions and adrenal gland problems, U.S. department of Health and Hu-man Service. https://www.fda.gov/Drugs/DrugSafety/ucm362415.htm2013.
[4]
Charlier, C.; Hart, E.; Lefort, A.; Ribaud, P.; Dromer, F.; Denning, D.W.; Lortholary, O. Fluconazole for the management of invasive candidiasis: where do we stand after 15 years? J. Antimicrob. Chemother., 2006, 57(3), 384-410.
[http://dx.doi.org/10.1093/jac/dki473] [PMID: 16449304]
[5]
Chandrasekar, P.H.; Sobel, J.D. Micafungin: a new echinocandin. Clin. Infect. Dis., 2006, 42(8), 1171-1178.
[http://dx.doi.org/10.1086/501020] [PMID: 16575738]
[6]
Holmberg, K.; Meyer, R.D. Fungal infections in patients with AIDS and AIDS-related complex. Scand. J. Infect. Dis., 1986, 18(3), 179-192.
[http://dx.doi.org/10.3109/00365548609032326] [PMID: 3526530]
[7]
Latijnhouwers, M.; de Wit, P.J.; Govers, F. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol., 2003, 11(10), 462-469.
[http://dx.doi.org/10.1016/j.tim.2003.08.002] [PMID: 14557029]
[8]
Ross, R.P.; Morgan, S.; Hill, C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol., 2002, 79(1-2), 3-16.
[http://dx.doi.org/10.1016/S0168-1605(02)00174-5] [PMID: 12382680]
[9]
Rajmane, V.S.; Rajmane, S.T.; Mohite, S.T.; Raje, V.V. Study of candida blood stream: Infections in surgical intensive care unit patients and susceptibility profile of the isolates. J. Krishna Institute of Medical Sciences University, 2015, 4(3), 82-88.
[10]
Rex, J.H.; Rinaldi, M.G.; Pfaller, M.A. Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother., 1995, 39(1), 1-8.
[http://dx.doi.org/10.1128/AAC.39.1.1] [PMID: 7695288]
[11]
Sreiotzki, H.; Parisi, S.; Steinfeld, U.; Tenzer, I.; Poirey, S.; Gisi, U. Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates. Pest Manag. Sci., 2000, 56, 833-841.
[http://dx.doi.org/10.1002/1526-4998(200010)56:10<833:AID-PS200>3.0.CO;2-Q]
[12]
Schnabel, G.; Jones, A.L. The 14α-demethylase(CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology, 2001, 91(1), 102-110.
[http://dx.doi.org/10.1094/PHYTO.2001.91.1.102] [PMID: 18944284]
[13]
Monk, B.C.; Keniya, M.V.; Sabherwal, M.; Wilson, R.K.; Graham, D.O.; Hassan, H.F.; Chen, D.; Tyndall, J.D.A. Azole resistance reduces susceptibility to the tetrazole antifungal VT-1161. Antimicrob. Agents Chemother., 2018, 63(1), 1-19.
[http://dx.doi.org/10.1128/AAC.02114-18] [PMID: 30397057]
[14]
Guedes-da-Silva, F.H.; Batista, D.D.G.J.; Da Silva, C.F.; Pavão, B.P.; Batista, M.M.; Moreira, O.C.; Souza, L.R.Q.; Britto, C.; Rachakonda, G.; Villalta, F.; Lepesheva, G.I.; Soeiro, M.N.C. Successful aspects of the coadministration of sterol 14α-demethylase inhibitor VFV and benznidazole in experimental mouse models of Chagas disease caused by the drug-resistant strains of Trypanosoma cruzi. ACS Infect. Dis., 2019, 5(3), 365-371.
[http://dx.doi.org/10.1021/acsinfecdis.8b00253] [PMID: 30625275]
[15]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 2015, 117, 554-568.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.012] [PMID: 26228533]
[16]
Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 2010, 15(6), 4324-4333.
[http://dx.doi.org/10.3390/molecules15064324] [PMID: 20657444]
[17]
Santiago Jesudoss, V.A.; Antony Santiago, S.V.; Subramanian, K.V.P. Zingerone (ginger extract): Antioxidant potential for efficacy in gastrointestinal and liver disease in gastrointestinal tissue: Oxidative stress and dietary antioxidants, Chapter 21,; J, GraciaSancho; Josepa, salvado, Eds.; , 2017, pp. 289-297. Academic press
[18]
Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equllibrium geometries and transition states. J. Comput. Chem., 1996, 17(1), 49-56.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49:AID-JCC5>3.0.CO;2-0]
[19]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A.; Peralta, J.E., Jr; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian, Inc., Wallingford CT. , 2016.
[20]
Monk, B.C.; Tomasiak, T.M.; Keniya, M.V.; Huschmann, F.U.; Tyndall, J.D.A.; O’Connell, J.D., III; Cannon, R.D.; McDonald, J.G.; Rodriguez, A.; Finer-Moore, J.S.; Stroud, R.M. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3865-3870.
[http://dx.doi.org/10.1073/pnas.1324245111] [PMID: 24613931]
[21]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a laarckian genetic algorithm and on empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[22]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Molinspiration, an open source software for predicting ADME properties is available at www.molinspiration.comdeveloped by Molinspiration Cheminformatics, Nova ulica, Slovak Republic..
[24]
Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregerson, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E. Scalable Algorithms for molecular dynamics simulations on commodity clusters Proceedings of the ACM/IEEE conference on supercomputing (SC06) ACM,, 2006, , pp. 11-17.
[http://dx.doi.org/10.1109/SC.2006.54]
[25]
Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys., 1994, 101, 4177-4189.
[http://dx.doi.org/10.1063/1.467468]
[26]
Tuckerman, M.; Berne, B.J.; Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 1992, 97(3), 1990-2001.
[http://dx.doi.org/10.1063/1.463137]
[27]
Riaz, H.; Begum, A.; Atif Raza, S.; Khan, Z.M.; Yousaf, H.; Tariq, A. Antimicrobial property and phytochemical study of ginger found in local area of Punjab, Pakistan. Int. Curr. Pharm. J., 2015, 4(7), 405-409.
[http://dx.doi.org/10.3329/icpj.v4i7.23591]
[28]
Karuppiah, P.; Rajaram, S. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pac. J. Trop. Biomed., 2012, 2(8), 597-601.
[http://dx.doi.org/10.1016/S2221-1691(12)60104-X] [PMID: 23569978]
[29]
Rawal, P.; Adhikari, R.S. Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f. sp. lycopersici. Adv. Appl. Sci. Res., 2016, 7(2), 5-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy