Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Perspective

Dissecting the Biological Effects of Isoflurane through the Mechanistic Target of Rapamycin (mTOR) and microRNAs (miRNAs)

Author(s): Kenneth Maiese

Volume 16, Issue 5, 2019

Page: [403 - 404] Pages: 2

DOI: 10.2174/1567202616999191024151901

Next »
[1]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[2]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: On target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[3]
Dorvash M, Farahmandnia M, Tavassoly I. A systems biology roadmap to decode mTOR control system in cancer. Interdiscip Sci 2019. [Epub ahead of print].
[4]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[5]
Maiese K. Molecules to medicine with mTOR: Translating critical pathways into novel therapeutic strategies. 1st ed. Elsevier and Academic Press 2016.
[6]
Maiese K. Novel treatment strategies for the nervous system: Circadian clock genes, non-coding RNAs, and forkhead transcription factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[7]
Li Q, Mathena RP, Eregha ON, Mintz CD. Effects of early exposure of isoflurane on chronic pain via the mammalian target of rapamycin signal pathway. Int J Mol Sci 2019; 20(20) E5102
[8]
Lee SH, Lee JJ, Kim GH, Kim JA, Cho HS. Role of reactive oxygen species at reperfusion stage in isoflurane preconditioning-induced neuroprotection. Brain Res 2019; 1723 146405
[9]
Xi JS, Wang YF, Long XX, Ma Y. Mangiferin potentiates neuroprotection by isoflurane in neonatal hypoxic brain injury by reducing oxidative stress and activation of Phosphatidylinositol-3-Kinase/Akt/Mammalian target of Rapamycin (PI3K/Akt/mTOR) signaling. Med Sci Monit 2018; 24: 7459-68.
[10]
Maiese K. MicroRNAs and SIRT1: A strategy for stem cell renewal and clinical development? J Transl Sci 2015; 1(3): 55-7.
[11]
Maiese K. Harnessing the power of SIRT1 and non-coding RNAs in vascular disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[12]
Maiese K. Disease onset and aging in the world of circular RNAs. J Transl Sci 2016; 2(6): 327-9.
[13]
Beretta GL, Corno C, Zaffaroni N, Perego P. Role of FoxO proteins in cellular response to antitumor agents. Cancers 2019; 11(1): 90.
[14]
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2019. [Epub ahead of print].
[15]
Maiese K. MicroRNAs for the treatment of dementia and Alzheimer’s disease. Curr Neurovasc Res 2019; 16(1): 1-2.
[16]
Wang L, Wu W, Chen J, Li Y, Xu M, Cai Y. miR122 and miR199 synergistically promote autophagy in oral lichen planus by targeting the Akt/mTOR pathway. Int J Mol Med 2019; 43(3): 1373-81.
[17]
Jung CJ, Iyengar S, Blahnik KR, et al. Human ESC self-renewal promoting microRNAs induce epithelial-mesenchymal transition in hepatocytes by controlling the PTEN and TGFbeta tumor suppressor signaling pathways. Mol Cancer Res 2012; 10(7): 979-91.
[18]
Li N, Yue L, Wang J, Wan Z, Bu W. MicroRNA-24 alleviates isoflurane-induced neurotoxicity in rat hippocampus via attenuation of oxidative stress. Biochem Cell Biol 2019. [Epub ahead of print].
[19]
Liu HJ, Liu B. Inhibition of MicroRNA-23 contributes to the isoflurane-mediated cardioprotection against oxidative stress. Cardiovasc Toxicol 2018; 18(5): 450-8.

© 2024 Bentham Science Publishers | Privacy Policy