Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

淀粉样β-寡聚体诱导的线粒体DNA修复受损促成人类神经干细胞分化的改变。

卷 16, 期 10, 2019

页: [934 - 949] 页: 16

弟呕挨: 10.2174/1567205016666191023104036

价格: $65

conference banner
摘要

背景:在阿尔茨海默氏病(AD)中观察到的神经毒性的近端效应子淀粉样β-42低聚物(Aβ42O),除了会引起线粒体DNA(mtDNA)损伤外,还可以诱导线粒体氧化应激并损害线粒体功能。 Aβ42O还调节干细胞的增殖和分化特性。 目的:我们旨在研究Aβ42O诱导的mtDNA损伤是否参与干细胞分化的调控。 方法:采用人iPSCs衍生的神经干细胞(NSC),分别通过mitoSOX染色和长距离PCR损伤试验研究Aβ42O对活性氧(ROS)产生和DNA损伤的影响。使用线粒体分离物,通过非同源末端连接(NHEJ)体外测定法测定mtDNA修复活性,并通过Western印迹和免疫荧光测定法测定NHEJ成分的表达和定位。分别通过免疫荧光和qPCR检测Tuj-1和GFAP的表达,作为神经元和星形胶质细胞产生的指标。 结果:我们显示,在NSC中,Aβ42O处理可诱导ROS生成和mtDNA损伤,并削弱DNA末端连接活性。 NHEJ组件(例如Ku70 / 80,DNA-PKcs和XRCC4)位于线粒体中,XRCC4的沉默显着加剧了Aβ42O对mtDNA完整性的影响。相反,用植酸(IP6)预处理可特异性刺激DNA-PK依赖性末端连接,可抑制Aβ42O诱导的mtDNA损伤和神经元分化改变。 结论:Aβ42O诱导的mtDNA修复损伤可能改变细胞命运,从而将人NSC分化转移到星形细胞谱系。修复刺激抵消了Aβ420O的神经毒性,表明mtDNA修复途径是治疗AD等神经退行性疾病的潜在靶标。

关键词: 淀粉样β蛋白,线粒体,DNA损伤,DNA修复,人神经干细胞,分化。

[1]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 362(4): 329-44. (2010).
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[2]
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 120(4): 483-95. (2005).
[http://dx.doi.org/10.1016/j.cell.2005.02.001] [PMID: 15734681]
[3]
Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev 125(10-11): 811-26. (2004).
[http://dx.doi.org/10.1016/j.mad.2004.07.009] [PMID: 15541775]
[4]
Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9): 987-1002. (2005).
[http://dx.doi.org/10.1016/j.mad.2005.03.019] [PMID: 15893363]
[5]
Subba Rao K. Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neurol 3(3): 162-72. (2007).
[http://dx.doi.org/10.1038/ncpneuro0448] [PMID: 17342192]
[6]
Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA. DNA repair, mitochondria, and neurodegeneration. Neuroscience 145(4): 1318-29. (2007).
[http://dx.doi.org/10.1016/j.neuroscience.2006.08.061] [PMID: 17092652]
[7]
Majd S, Power JHT. Oxidative stress and decreased mitochondrial superoxide dismutase 2 and peroxiredoxins 1 and 4 based mechanism of concurrent activation of AMPK and mTOR in Alzheimer’s disease. Curr Alzheimer Res 15(8): 764-76. (2018).
[http://dx.doi.org/10.2174/1567205015666180223093020] [PMID: 29473507]
[8]
Mancuso M, Orsucci D, Siciliano G, Murri L. Mitochondria, mitochondrial DNA and Alzheimer’s disease. What comes first? Curr Alzheimer Res 5(5): 457-68. (2008).
[http://dx.doi.org/10.2174/156720508785908946] [PMID: 18855587]
[9]
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304(5669): 448-52. (2004).
[http://dx.doi.org/10.1126/science.1091230] [PMID: 15087549]
[10]
Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14(10): 1097-105. (2008).
[http://dx.doi.org/10.1038/nm.1868] [PMID: 18806802]
[11]
Bozner P, Grishko V, LeDoux SP, Wilson GL, Chyan YC, Pappolla MA. The amyloid beta protein induces oxidative damage of mitochondrial DNA. J Neuropathol Exp Neurol 56(12): 1356-62. (1997).
[http://dx.doi.org/10.1097/00005072-199712000-00010] [PMID: 9413284]
[12]
Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94(2): 514-9. (1997).
[http://dx.doi.org/10.1073/pnas.94.2.514] [PMID: 9012815]
[13]
Parker GC, Acsadi G, Brenner CA. Mitochondria: determinants of stem cell fate? Stem Cells Dev 18(6): 803-6. (2009).
[http://dx.doi.org/10.1089/scd.2009.1806.edi] [PMID: 19563264]
[14]
Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19(2): 232-47. (2016).
[http://dx.doi.org/10.1016/j.stem.2016.04.015] [PMID: 27237737]
[15]
Kirby DM, Rennie KJ, Smulders-Srinivasan TK, Acin-Perez R, Whittington M, Enriquez JA, et al. Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif 42(4): 413-24. (2009).
[http://dx.doi.org/10.1111/j.1365-2184.2009.00612.x] [PMID: 19552636]
[16]
Björklund A, Lindvall O. Self-repair in the brain Nature 405(6789): 892-3, 5 (2000)
[http://dx.doi.org/10.1038/35016175]
[17]
Gage FH. Mammalian neural stem cells. Science 287(5457): 1433-8. (2000).
[http://dx.doi.org/10.1126/science.287.5457.1433] [PMID: 10688783]
[18]
Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28: 223-50. (2005).
[http://dx.doi.org/10.1146/annurev.neuro.28.051804.101459] [PMID: 16022595]
[19]
Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052): 1707-10. (1992).
[http://dx.doi.org/10.1126/science.1553558] [PMID: 1553558]
[20]
Wang W, Esbensen Y, Kunke D, Suganthan R, Rachek L, Bjørås M, et al. Mitochondrial DNA damage level determines neural stem cell differentiation fate. J Neurosci 31(26): 9746-51. (2011).
[http://dx.doi.org/10.1523/JNEUROSCI.0852-11.2011] [PMID: 21715639]
[21]
Ahlqvist KJ, Hämäläinen RH, Yatsuga S, Uutela M, Terzioglu M, Götz A, et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab 15(1): 100-9. (2012).
[http://dx.doi.org/10.1016/j.cmet.2011.11.012] [PMID: 22225879]
[22]
Kukreja L, Kujoth GC, Prolla TA, Van Leuven F, Vassar R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer’s disease. Mol Neurodegener 9: 16. (2014).
[http://dx.doi.org/10.1186/1750-1326-9-16] [PMID: 24885175]
[23]
Chen Y, Dong C. Abeta40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ 16(3): 386-94. (2009).
[http://dx.doi.org/10.1038/cdd.2008.94] [PMID: 18566600]
[24]
Lee IS, Jung K, Kim IS, Park KI. Amyloid-β oligomers regulate the properties of human neural stem cells through GSK-3β signaling. Exp Mol Med 45e60 (2013).
[http://dx.doi.org/10.1038/emm.2013.125] [PMID: 24232259]
[25]
Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol 5(5)a012641 (2013).
[http://dx.doi.org/10.1101/cshperspect.a012641] [PMID: 23637283]
[26]
Morel F, Renoux M, Lachaume P, Alziari S. Bleomycin-induced double-strand breaks in mitochondrial DNA of Drosophila cells are repaired. Mutat Res 637(1-2): 111-7. (2008).
[http://dx.doi.org/10.1016/j.mrfmmm.2007.07.007] [PMID: 17825327]
[27]
Zinovkina LA. Mechanisms of mitochondrial DNA repair in mammals. Biochemistry (Mosc) 83(3): 233-49. (2018).
[http://dx.doi.org/10.1134/S0006297918030045] [PMID: 29625543]
[28]
Prasai K, Robinson LC, Scott RS, Tatchell K, Harrison L. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae. Nucleic Acids Res 45(13): 7760-73. (2017).
[http://dx.doi.org/10.1093/nar/gkx443] [PMID: 28549155]
[29]
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 75(9): 1641-55. (2018).
[http://dx.doi.org/10.1007/s00018-017-2702-y] [PMID: 29116362]
[30]
Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 12(4)e0176795 (2017).
[http://dx.doi.org/10.1371/journal.pone.0176795] [PMID: 28453550]
[31]
Thyagarajan B, Padua RA, Campbell C. Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 271(44): 27536-43. (1996).
[http://dx.doi.org/10.1074/jbc.271.44.27536] [PMID: 8910339]
[32]
Coffey G, Lakshmipathy U, Campbell C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res 27(16): 3348-54. (1999).
[http://dx.doi.org/10.1093/nar/27.16.3348] [PMID: 10454643]
[33]
Lakshmipathy U, Campbell C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res 27(4): 1198-204. (1999).
[http://dx.doi.org/10.1093/nar/27.4.1198] [PMID: 9927756]
[34]
Lu J, Li X, Wang Q, Pei G. Dopamine D2 receptor and β-arrestin 2 mediate Amyloid-β elevation induced by anti-parkinson’s disease drugs, levodopa and piribedil, in neuronal cells. PLoS One 12(3)e0173240 (2017).
[http://dx.doi.org/10.1371/journal.pone.0173240] [PMID: 28253352]
[35]
Li X, Wang Q, Hu T, Wang Y, Zhao J, Lu J, et al. A tricyclic antidepressant, amoxapine, reduces amyloid-β generation through multiple serotonin receptor 6-mediated targets. Sci Rep 7(1): 4983. (2017).
[http://dx.doi.org/10.1038/s41598-017-04144-3] [PMID: 28694424]
[36]
Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. J Radiat Res (Tokyo) 57(2): 115-20. (2016).
[http://dx.doi.org/10.1093/jrr/rrv086] [PMID: 26666690]
[37]
Furda A, Santos JH, Meyer JN, Van Houten B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 1105: 419-37. (2014).
[http://dx.doi.org/10.1007/978-1-62703-739-6_31] [PMID: 24623245]
[38]
Gao L, Guan W, Wang M, Wang H, Yu J, Liu Q, et al. Direct Generation of human neuronal cells from adult astrocytes by small molecules. Stem Cell Reports 8(3): 538-47. (2017).
[http://dx.doi.org/10.1016/j.stemcr.2017.01.014] [PMID: 28216149]
[39]
De Chiara G, Racaniello M, Mollinari C, Marcocci ME, Aversa G, Cardinale A, et al. Herpes simplex virus-type1 (HSV-1) impairs DNA repair in cortical neurons. Front Aging Neurosci 8: 242. (2016).
[http://dx.doi.org/10.3389/fnagi.2016.00242] [PMID: 27803664]
[40]
Wisnovsky S, Jean SR, Kelley SO. Author Correction: mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat Chem Biol 14(9): 901. (2018).
[http://dx.doi.org/10.1038/s41589-018-0040-5] [PMID: 29610483]
[41]
Shearman MS, Ragan CI, Iversen LL. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91(4): 1470-4. (1994).
[http://dx.doi.org/10.1073/pnas.91.4.1470] [PMID: 8108433]
[42]
Moreira PI, Santos MS, Moreno A, Oliveira C. Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 21(6): 789-800. (2001).
[http://dx.doi.org/10.1023/A:1015536808304] [PMID: 12166828]
[43]
Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80(1): 91-100. (2002).
[http://dx.doi.org/10.1046/j.0022-3042.2001.00681.x] [PMID: 11796747]
[44]
Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5(2)a012559 (2013).
[http://dx.doi.org/10.1101/cshperspect.a012559] [PMID: 23378590]
[45]
Cardinale A, Racaniello M, Saladini S, De Chiara G, Mollinari C, de Stefano MC, et al. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. J Biol Chem 287(4): 2618-31. (2012).
[http://dx.doi.org/10.1074/jbc.M111.276550] [PMID: 22139836]
[46]
Jiao C, Summerlin M, Bruzik KS, Hanakahi L. Synthesis of biotinylated inositol hexakisphosphate to study DNA double-strand break repair and affinity capture of ip6-binding proteins. Biochemistry 54(41): 6312-22. (2015).
[http://dx.doi.org/10.1021/acs.biochem.5b00642] [PMID: 26397942]
[47]
Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10(4): 385-94. (2008).
[http://dx.doi.org/10.1038/ncb1700] [PMID: 18344989]
[48]
Keogh MJ, Chinnery PF. Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 1847(11): 1401-11. (2015).
[http://dx.doi.org/10.1016/j.bbabio.2015.05.015] [PMID: 26014345]
[49]
Pereira SL, Grãos M, Rodrigues AS, Anjo SI, Carvalho RA, Oliveira PJ, et al. Inhibition of mitochondrial complex III blocks neuronal differentiation and maintains embryonic stem cell pluripotency. PLoS One 8(12)e82095 (2013).
[http://dx.doi.org/10.1371/journal.pone.0082095] [PMID: 24312632]
[50]
Sart S, Song L, Li Y. Controlling redox status for stem cell survival, expansion, and differentiation. Oxid Med Cell Longev 2015105135 (2015).
[http://dx.doi.org/10.1155/2015/105135] [PMID: 26273419]
[51]
Vieira HL, Alves PM, Vercelli A. Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog Neurobiol 93(3): 444-55. (2011).
[http://dx.doi.org/10.1016/j.pneurobio.2011.01.007] [PMID: 21251953]
[52]
Forsberg K, Wuttke A, Quadrato G, Chumakov PM, Wizenmann A, Di Giovanni S. The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci 33(36): 14318-30. (2013).
[http://dx.doi.org/10.1523/JNEUROSCI.1056-13.2013] [PMID: 24005285]
[53]
Tsatmali M, Walcott EC, Makarenkova H, Crossin KL. Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol Cell Neurosci 33(4): 345-57. (2006).
[http://dx.doi.org/10.1016/j.mcn.2006.08.005] [PMID: 17000118]
[54]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 430(7000): 631-9. (2004).
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[55]
Merlo D, Mollinari C, Racaniello M, Garaci E, Cardinale A. DNA double strand breaks: a common theme in neurodegenerative diseases. Curr Alzheimer Res 13(11): 1208-18. (2016).
[http://dx.doi.org/10.2174/1567205013666160401114915] [PMID: 27033054]
[56]
de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 51(5): 391-405. (2010).
[http://dx.doi.org/10.1002/em.20575] [PMID: 20544881]
[57]
Gerschütz A, Heinsen H, Grünblatt E, Wagner AK, Bartl J, Meissner C, et al. Neuron-specific mitochondrial DNA deletion levels in sporadic Alzheimer’s disease. Curr Alzheimer Res 10(10): 1041-6. (2013).
[http://dx.doi.org/10.2174/15672050113106660166] [PMID: 24156256]
[58]
Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 20(4): 1386-92. (2000).
[http://dx.doi.org/10.1523/JNEUROSCI.20-04-01386.2000] [PMID: 10662829]
[59]
Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1): 181-93. (2004).
[http://dx.doi.org/10.1016/j.neuron.2004.09.010] [PMID: 15450169]
[60]
Gouras GK, Almeida CG, Takahashi RH. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26(9): 1235-44. (2005).
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.05.022] [PMID: 16023263]
[61]
Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 105(35): 13145-50. (2008).
[http://dx.doi.org/10.1073/pnas.0806192105] [PMID: 18757748]
[62]
Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20(23): 4515-29. (2011).
[http://dx.doi.org/10.1093/hmg/ddr381] [PMID: 21873260]
[63]
Reddy PH, Yin X, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27(14): 2502-16. (2018).
[http://dx.doi.org/10.1093/hmg/ddy154] [PMID: 29701781]
[64]
Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl. 2): S609-31. (2010).
[http://dx.doi.org/10.3233/JAD-2010-100564] [PMID: 20463406]
[65]
Reddy PH, Manczak M, Yin X, Reddy AP. Synergistic protective effects of mitochondrial division inhibitor 1 and mitochondria-targeted small peptide SS31 in Alzheimer’s disease. J Alzheimers Dis 62(4): 1549-65. (2018).
[http://dx.doi.org/10.3233/JAD-170988] [PMID: 29400667]
[66]
Oliver DMA, Reddy PH. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96: 47-62. (2019).
[http://dx.doi.org/10.1016/j.mcn.2019.03.001] [PMID: 30877034]
[67]
Parmar HS, Houdek Z, Pesta M, Vaclava C, Dvorak P, Hatina J. Protective effect of aspirin against oligomeric Aβ42 induced mitochondrial alterations and neurotoxicity in differentiated EC P19 neuronal cells. Curr Alzheimer Res 14(8): 810-9. (2017).
[http://dx.doi.org/10.2174/1567205014666170203104757] [PMID: 28164768]
[68]
Yang W, Zhou K, Zhou Y, An Y, Hu T, Lu J, et al. Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front Aging Neurosci 10: 169. (2018).
[http://dx.doi.org/10.3389/fnagi.2018.00169] [PMID: 29922152]
[69]
Coppedè F, Migliore L. DNA damage and repair in Alzheimer’s disease. Curr Alzheimer Res 6(1): 36-47. (2009).
[http://dx.doi.org/10.2174/156720509787313970] [PMID: 19199873]
[70]
Suram A, Venugopal C, Prakasam A, Sambamurti K. Genotoxicity in Alzheimer’s disease: role of amyloid. Curr Alzheimer Res 3(4): 365-75. (2006).
[http://dx.doi.org/10.2174/156720506778249380] [PMID: 17017867]
[71]
Adamec E, Vonsattel JP, Nixon RA. DNA strand breaks in Alzheimer’s disease. Brain Res 849(1-2): 67-77. (1999).
[http://dx.doi.org/10.1016/S0006-8993(99)02004-1] [PMID: 10592288]
[72]
Martin NM. DNA repair inhibition and cancer therapy. J Photochem Photobiol B 63(1-3): 162-70. (2001).
[http://dx.doi.org/10.1016/S1011-1344(01)00213-5] [PMID: 11684463]
[73]
Mullaart E, Boerrigter ME, Ravid R, Swaab DF, Vijg J. Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol Aging 11(3): 169-73. (1990).
[http://dx.doi.org/10.1016/0197-4580(90)90542-8] [PMID: 2362649]
[74]
Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 16(8): 1008-15. (2013).
[http://dx.doi.org/10.1038/nn.3460] [PMID: 23852118]
[75]
Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS, et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol (2009).; 11(1): 92-6.
[http://dx.doi.org/10.1038/ncb1817] [PMID: 19079244]
[76]
Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16(5): 613-21. (2013).
[http://dx.doi.org/10.1038/nn.3356] [PMID: 23525040]
[77]
Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13(10): 659-71. (2012).
[http://dx.doi.org/10.1038/nrm3439] [PMID: 22992591]
[78]
Boesch P, Weber-Lotfi F, Ibrahim N, Tarasenko V, Cosset A, Paulus F, et al. DNA repair in organelles: pathways, organization, regulation, relevance in disease and aging. Biochim Biophys Acta 1813(1): 186-200. (2011).
[http://dx.doi.org/10.1016/j.bbamcr.2010.10.002] [PMID: 20950654]
[79]
Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen 51(5): 417-26. (2010).
[http://dx.doi.org/10.1002/em.20576] [PMID: 20544882]
[80]
Yang JL, Weissman L, Bohr VA, Mattson MP. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7(7): 1110-20. (2008).
[http://dx.doi.org/10.1016/j.dnarep.2008.03.012] [PMID: 18463003]
[81]
Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 27(2): 223-35. (2016).
[http://dx.doi.org/10.1091/mbc.e15-05-0260] [PMID: 26609070]
[82]
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5(9-10): 1021-9. (2006).
[http://dx.doi.org/10.1016/j.dnarep.2006.05.022] [PMID: 16807135]
[83]
Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47(4): 497-510. (2012).
[http://dx.doi.org/10.1016/j.molcel.2012.07.029] [PMID: 22920291]
[84]
Sharma S. Age-related nonhomologous end joining activity in rat neurons. Brain Res Bull 73(1-3): 48-54. (2007).
[http://dx.doi.org/10.1016/j.brainresbull.2007.02.001] [PMID: 17499636]
[85]
Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7(18): 2902-6. (2008).
[http://dx.doi.org/10.4161/cc.7.18.6679] [PMID: 18769152]
[86]
Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA 109(29): 11800-5. (2012).
[http://dx.doi.org/10.1073/pnas.1200583109] [PMID: 22753495]
[87]
Roth DB, Porter TN, Wilson JH. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5(10): 2599-607. (1985).
[http://dx.doi.org/10.1128/MCB.5.10.2599] [PMID: 3016509]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy