Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Application of Nanometal Catalysts for Glaser Coupling

Author(s): Saeideh Ebrahimiasl, Farnaz Behmagham, Shahrzad Abdolmohammadi*, Rahman N. Kojabad and Esmail Vessally

Volume 23, Issue 22, 2019

Page: [2489 - 2503] Pages: 15

DOI: 10.2174/1385272823666191022174928

Price: $65

Abstract

Synthesis of symmetrical 1,3-diynes from terminal alkynes through an oxidative process is generally called Glaser coupling. The classic Glaser coupling is catalyzed by copper salts under an atmosphere of molecular oxygen as an oxidant. Over the past years, different metal catalysts and oxidants were successfully used in this atom economical C-C coupling reaction. Moreover, several procedures for the preparation of unsymmetrical 1,3-diynes by coupling two different alkyne substrates have been developed. In this review, we will highlight the usefulness of transition metal nanoparticles as efficient catalysts in homo- and hetero-coupling of alkynes by hoping that it will be beneficial to the development of novel and extremely efficient catalytic systems for this fast-growing and important reaction.

Keywords: Glaser coupling, metal nanocatalysts, carbon-carbon coupling, carbon-hydrogen bonds, terminal alkynes, 1, 3-diynes.

« Previous
Graphical Abstract

[1]
Villegas, M.; Vargas, D.; Msonthi, J.D.; Marston, A.; Hostettmann, K. Isolation of the antifungal compounds falcarindiol and sarisan from Heteromorpha trifoliata. Planta Med., 1988, 54(1), 36-37.
[http://dx.doi.org/10.1055/s-2006-962326] [PMID: 3375335]
[2]
Bae, E-A.; Han, M.J.; Baek, N-I.; Kim, D-H. In vitro anti-Helicobacter pylori activity of panaxytriol isolated from ginseng. Arch. Pharm. Res., 2001, 24(4), 297-299.
[http://dx.doi.org/10.1007/BF02975095] [PMID: 11534760]
[3]
Purup, S.; Larsen, E.; Christensen, L.P. Differential effects of falcarinol and related aliphatic C(17)-polyacetylenes on intestinal cell proliferation. J. Agric. Food Chem., 2009, 57(18), 8290-8296.
[http://dx.doi.org/10.1021/jf901503a] [PMID: 19694436]
[4]
Kim, H.; Chin, J.; Choi, H.; Baek, K.; Lee, T.G.; Park, S.E.; Wang, W.; Hahn, D.; Yang, I.; Lee, J.; Mun, B.; Ekins, M.; Nam, S.J.; Kang, H. Phosphoiodyns A and B, unique phosphorus-containing iodinated polyacetylenes from a Korean sponge Placospongia sp. Org. Lett., 2013, 15(1), 100-103.
[http://dx.doi.org/10.1021/ol3031318] [PMID: 23240782]
[5]
Shi, W.; Lei, A. 1, 3-Diyne chemistry: synthesis and derivations. Tetrahedron Lett., 2014, 55, 2763-2772.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.022]
[6]
Sindhu, K.S.; Thankachan, A.P.; Sajitha, P.S.; Anilkumar, G. Recent developments and applications of the Cadiot-Chodkiewicz reaction. Org. Biomol. Chem., 2015, 13(25), 6891-6905.
[http://dx.doi.org/10.1039/C5OB00697J] [PMID: 26008847]
[7]
Chalifoux, W.A.; Tykwinski, R.R. Polyyne synthesis using carbene/carbenoid rearrangements. Chem. Rec., 2006, 6(4), 169-182.
[http://dx.doi.org/10.1002/tcr.20081] [PMID: 16902994]
[8]
Dermenci, A.; Whittaker, R.E.; Dong, G. Rh(I)-catalyzed decarbonylation of diynones via C-C activation: orthogonal synthesis of conjugated diynes. Org. Lett., 2013, 15(9), 2242-2245.
[http://dx.doi.org/10.1021/ol400815y] [PMID: 23586742]
[9]
Li, S.T.; Schnabel, T.; Lysenko, S.; Brandhorst, K.; Tamm, M. Synthesis of unsymmetrical 1,3-diynes via alkyne cross-metathesis. Chem. Commun. (Camb.), 2013, 49(65), 7189-7191.
[http://dx.doi.org/10.1039/c3cc43108h] [PMID: 23712543]
[10]
Negishi, E.; Okukado, N.; Lovich, S.F.; Luo, F.T. A method for the preparation of terminal and internal conjugated diynes via palladium-catalyzed cross-coupling. J. Org. Chem., 1984, 49, 2629-2632.
[http://dx.doi.org/10.1021/jo00188a025]
[11]
Glaser, C. Beiträge zur kenntniss des acetenylbenzols. Ber. Dtsch. Chem. Ges., 1869, 2, 422-424.
[http://dx.doi.org/10.1002/cber.186900201183]
[12]
Tang, J.; Jiang, H.; Deng, G.; Zhou, L. Advances of Glaser coupling reaction. Youji Huaxue, 2005, 25, 1503-1507.
[13]
Lampkowski, J.S.; Durham, C.E.; Padilla, M.S.; Young, D.D. Preparation of asymmetrical polyynes by a solid-supported Glaser-Hay reaction. Org. Biomol. Chem., 2015, 13(2), 424-427.
[http://dx.doi.org/10.1039/C4OB02196G] [PMID: 25371282]
[14]
Nimmo, Z.M.; Halonski, J.F.; Chatkewitz, L.E.; Young, D.D. Development of optimized conditions for Glaser-Hay bioconjugations. Bioorg. Chem., 2018, 76, 326-331.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.020] [PMID: 29227916]
[15]
Sindhu, K.; Anilkumar, G. Recent advances and applications of Glaser coupling employing greener protocols. RSC Advances, 2014, 4, 27867-27887.
[http://dx.doi.org/10.1039/C4RA02416H]
[16]
Vessally, E.; Babazadeh, M.; Hosseinian, A.; Arshadi, S.; Edjlali, L. Nanocatalysts for chemical transformation of carbon dioxide. J. CO2 Util, 2017, 21, 491-502.
[17]
Hosseinian, A.; Ahmadi, S.; Monfared, A.; Nezhad, P.D.; Vessally, E. Nano-structured catalytic systems in cyanation of aryl halides with K4. Curr. Org. Chem., 2018, 22, 1862-1874.
[http://dx.doi.org/10.2174/1385272822666180831114702]
[18]
Shahidi, S.; Farajzadeh, P.; Ojaghloo, P.; Karbakhshzadeh, I.; Hosseinian, A. Nanocatalysts for conversion of aldehydes/alcohols/amines to nitriles: a review. Chem. Rev. Lett., 2018, 1, 37-44.
[http://dx.doi.org/10.22034/crl.2018.85118]
[19]
Abdolmohammadi, S. Solvent-free synthesis of 4,5-dihydropyrano[c]chro-mene derivatives over TiO2 nanoparticles as an economical and efficient catalyst. Curr. Catal., 2013, 2, 116-121.
[http://dx.doi.org/10.2174/2211544711302020005]
[20]
Abdolmohammadi, S.; Afsharpour, M.; Keshavarz-Fatideh, S. An efficient green synthesis of 3-amino-1H-chromenes catalysed by ZnO nanoparticles thin-film. S. Afr. J. Chem.-. S. Afr. T., 2014, 67, 203-210.
[21]
Abdolmohammadi, S.; Afsharpour, M. An operationally simple green procedure for the synthesis of dihydropyrimido[4,5-d]pyrimidinetriones using CuI nanoparticles as a highly efficient catalyst. Z. Naturforsch. B, 2015, 70, 171-176.
[http://dx.doi.org/10.1515/znb-2014-0207]
[22]
Abdolmohammadi, S.; Aghaei-Meybodi, Z. Simple and efficient route toward ambient preparation of pyrimido[b]quinolinetriones using copper (I) iodide nanoparticles in aqueous media. Comb. Chem. High Throughput Screen., 2015, 18(9), 911-916.
[http://dx.doi.org/10.2174/1386207318666150525094234] [PMID: 26004049]
[23]
Rabiei, A.; Abdolmohammadi, S.; Shafaei, F. A green approach for an efficient preparation of 2,4-diamino-6-aryl-5-pyrimidinecarbonitriles using a TiO2/SiO2 nanocomposite catalyst under solvent-free conditions. Z. Naturforsch. B, 2017, 72, 241-247.
[http://dx.doi.org/10.1515/znb-2016-0219]
[24]
Khalilian, S.; Abdolmohammadi, S.; Nematolahi, F. An eco-friendly and highly efficient synthesis of pyrimidinones using a TiO2-CNTs nanocomposite catalyst. Lett. Org. Chem., 2017, 14, 361-367.
[http://dx.doi.org/10.2174/1570178614666170321113926]
[25]
Abdolmohammadi, S.; Nasrabadi, S.R.R.; Seif, A.; Fard, N.E. Ag/CdS nanocomposite: an efficient recyclable catalyst for the synthesis of novel 8-aryl-8H-[1,3]dioxolo[4,5-g]chromene-6-carboxylic acids under mild reaction conditions. Comb. Chem. High Throughput Screen., 2018, 21(5), 323-328.
[http://dx.doi.org/10.2174/1386207321666180604104456] [PMID: 29866001]
[26]
Fakheri-Vayeghan, S.; Abdolmohammadi, S.; Kia-Kojoori, R. An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Z. Naturforsch. B, 2018, 73, 545-551.
[http://dx.doi.org/10.1515/znb-2018-0030]
[27]
Didehban, K.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Khosroshahi, E.S. Nanocatalysts for C–Se cross-coupling reactions. RSC Advances, 2018, 8, 291-301.
[http://dx.doi.org/10.1039/C7RA12663H]
[28]
Nejati, K.; Ahmadi, S.; Nikpassand, M.; Nezhad, P.D.K.; Vessally, E. Diaryl ethers synthesis: nano-catalysts in carbon-oxygen cross-coupling reactions. RSC Advances, 2018, 8, 19125-19143.
[http://dx.doi.org/10.1039/C8RA02818D]
[29]
Monfared, A.; Mohammadi, R.; Ahmadi, S.; Nikpassand, M.; Hosseinian, A. Recent advances in the application of nano-catalysts for Hiyama cross-coupling reactions. RSC Advances, 2019, 9, 3185-3202.
[http://dx.doi.org/10.1039/C8RA08112C]
[30]
Vessally, E.; Didehban, K.; Mohammadi, R.; Hosseinian, A.; Babazadeh, M. Recent advantages in the metal (bulk and nano)-catalyzed S-arylation reactions of thiols with aryl halides in water: a perfect synergy for eco-compatible preparation of aromatic thioethers. J. Sulfur Chem., 2018, 39, 332-349.
[http://dx.doi.org/10.1080/17415993.2018.1436711]
[31]
Mohammadi, S.; Musavi, M.; Abdollahzadeh, F.; Babadoust, S.; Hosseinian, A. Application of nanocatalysts in C-Te cross-coupling reactions: an overview. Chem. Rev. Lett., 2018, 1, 49-55.
[http://dx.doi.org/10.22034/crl.2018.85119]
[32]
Peng, W.; Vessally, E.; Arshadi, S.; Monfared, A.; Hosseinian, A.; Edjlali, L. Cross-dehydrogenative coupling reactions between C (sp)–H and X–H (X= N, P, S, Si, Sn) bonds: an environmentally benign access to heteroatom-substituted alkynes. Top. Curr. Chem. (Cham), 2019, 377(4), 20.
[http://dx.doi.org/10.1007/s41061-019-0245-4] [PMID: 31273478]
[33]
Hosseinian, A.; Farshbaf, S.; Fekri, L.Z.; Nikpassand, M.; Vessally, E. Cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds. Top. Curr. Chem. (Cham), 2018, 376(3), 23.
[http://dx.doi.org/10.1007/s41061-018-0200-9] [PMID: 29802503]
[34]
Hosseinian, A.; Ahmadi, S.; Nasab, F.A.H.; Mohammadi, R.; Vessally, E. Cross-dehydrogenative C–H/S–H coupling reactions. Top. Curr. Chem. (Cham), 2018, 376(6), 39.
[http://dx.doi.org/10.1007/s41061-018-0217-0] [PMID: 30306362]
[35]
Monfared, A.; Ebrahimiasl, S.; Babazadeh, M.; Arshadi, S.; Vessally, E. Recent advances in decarboxylative trifluoromethyl (thiol) ation of carboxylic acids. J. Fluor. Chem., 2019, 220, 24-34.
[http://dx.doi.org/10.1016/j.jfluchem.2019.02.001]
[36]
Hamzeloo, M.; Hosseinian, A.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. Direct C-H trifluoromethylthiolation of (hetero) arenes: A review. J. Fluor. Chem., 2019, 224, 52-60.
[http://dx.doi.org/10.1016/j.jfluchem.2019.05.004]
[37]
Arshadi, S.; Vessally, E.; Sobati, M.; Hosseinian, A.; Bekhradnia, A. Chemical fixation of CO2 to N-propargylamines: A straightforward route to 2- oxazolidinones. J. CO2 Util., 2017, 19, 120-129.
[38]
Arshadi, S.; Vessally, E.; Hosseinian, A.; Soleimani-amiri, S.; Edjlali, L. Three-component coupling of CO2, propargyl alcohols, and amines: An environmentally benign access to cyclic and acyclic carbamates (A Review). J. CO2 Util., 2017, 21, 108-118.
[39]
Vessally, E.; Didehban, K.; Babazadeh, M.; Hosseinian, A.; Edjlali, L. Chemical fixation of CO2 with aniline derivatives: A new avenue to the synthesis of functionalized azole compounds (A review) J. CO2 Util, 2017, 21, 480-490.
[40]
Vessally, E.; Soleimani-Amiri, S.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. Chemical fixation of CO2 to 2-aminobenzonitriles: A straightforward route to quinazoline-2, 4 (1H, 3H)-diones with green and sustainable chemistry perspectives. J. CO2 Util, 2017, 21, 342-352.
[41]
Didehban, K.; Vessally, E.; Salary, M.; Edjlali, L.; Babazadeh, M. Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives. J. CO2 Util., 2018, 23, 42-50.
[42]
Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. Three component coupling of amines, alkyl halides and carbon dioxide: an environmentally benign access to carbamate esters (urethanes). J. CO2 Util, 2018, 24, 361-368.
[43]
Farshbaf, S.; Fekri, L. Z.; Nikpassand, M.; Mohammadi, R.; Vessally, E. Dehydrative condensation of β-aminoalcohols with CO2: An environmentally benign access to 2-oxazolidinone derivatives. J. CO2 Uti, 2018, 25, 194-204.
[44]
Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. Three-component reaction of amines, epoxides, and carbon dioxide: a straightforward route to organic carbamates J. CO2 Uti, 2018, 27, 381-389.
[45]
Hosseinian, A.; Farshbaf, S.; Mohammadi, R.; Monfared, A.; Vessally, E. Advancements in six-membered cyclic carbonate (1, 3-dioxan-2-one) synthesis utilizing carbon dioxide as a C1 source. RSC Advances, 2018, 8, 17976-17988.
[http://dx.doi.org/10.1039/C8RA01280F]
[46]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Babazadeh, M.; Didehban, K. Chemical fixation of CO2 to allylic (α-allenylic) amines: a green route to synthesis of functionalized 2-oxazolidones. Mini Rev. Org. Chem., 2018, 15, 315-323.
[http://dx.doi.org/10.2174/1570193X15666171227160258]
[47]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M.D. New page to access pyridine derivatives: synthesis from N-propargylamines. RSC Advances, 2016, 6, 71662-71675.
[http://dx.doi.org/10.1039/C6RA08720E]
[48]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M.D. New route to 1, 4-oxazepane and 1, 4-diazepane derivatives: synthesis from N-propargylamines. RSC Advances, 2016, 6, 99781-99793.
[http://dx.doi.org/10.1039/C6RA20718A]
[49]
Vessally, E.; Soleimani-Amiri, S.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A. New protocols to access imidazoles and their ring fused analogues: synthesis from N-propargylamines. RSC Advances, 2017, 7, 7079-7091.
[http://dx.doi.org/10.1039/C6RA25816F]
[50]
Arshadi, S.; Vessally, E.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. N-Propargylic β-enaminocarbonyls: powerful and versatile building blocks in organic synthesis. RSC Advances, 2017, 7, 13198-13211.
[http://dx.doi.org/10.1039/C7RA00746A]
[51]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.D.; Esrafili, M. New page to access pyrazines and their ring fused analogues: synthesis from N-propargylamines. Curr. Org. Synth., 2017, 14, 557-567.
[http://dx.doi.org/10.2174/1570179413666160818144816]
[52]
Arshadi, S.; Vessally, E.; Edjlali, L.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E. N-Propargylamines: versatile building blocks in the construction of thiazole cores. Beilstein J. Org. Chem., 2017, 13, 625-638.
[http://dx.doi.org/10.3762/bjoc.13.61] [PMID: 28487756]
[53]
Vessally, E.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, E. Es’ haghi, M.; Bekhradnia, A. Domino carbometalation/coupling reactions of N-arylpropiolamides: a novel and promising synthetic strategy toward stereocontrolled preparation of highly substituted 3-methyleneindolinones. RSC Advances, 2017, 7, 19061-19072.
[http://dx.doi.org/10.1039/C7RA01371J]
[54]
Soleimani-Amiri, S.; Vessally, E.; Babazadeh, M.; Hosseinian, A.; Edjlali, L. Intramolecular cyclization of N-allyl propiolamides: a facile synthetic route to highly substituted γ-lactams (a review). RSC Advances, 2017, 7, 28407-28418.
[http://dx.doi.org/10.1039/C7RA03075D]
[55]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Babazadeh, M.; Hosseinzadeh-Khanmiri, R. New strategy for the synthesis of morpholine cores: synthesis from N-propargylamines. Iran. J. Chem. Chem. Eng., 2017, 36, 1-13.
[56]
Vessally, E.; Hosseinian, A.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. Intramolecular cyclization of N-propargyl anilines: A new synthetic entry into highly substituted indoles. J. Iran. Chem. Soc., 2017, 14, 2339-2353.
[http://dx.doi.org/10.1007/s13738-017-1170-5]
[57]
Babazadeh, M.; Soleimani-Amiri, S.; Vessally, E.; Hosseinian, A.; Edjlali, L. Transition metal-catalyzed [2+ 2+ 2] cycloaddition of nitrogen-linked 1, 6-diynes: a straightforward route to fused pyrrolidine systems. RSC Advances, 2017, 7, 43716-43736.
[http://dx.doi.org/10.1039/C7RA05398C]
[58]
Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Intramolecular cyclization of N-arylpropiolamides: a new strategy for the synthesis of functionalized 2-quinolones. Curr. Org. Chem., 2017, 21, 2561-2572.
[http://dx.doi.org/10.2174/1875692115666170612103356]
[59]
Vessally, E.; Babazadeh, M.; Hosseinian, A.; Edjlali, L.; Sreerama, L. Recent advances in synthesis of functionalized β-lactams through cyclization of N-propargyl amine/amide derivatives. Curr. Org. Chem., 2018, 22, 199-205.
[http://dx.doi.org/10.2174/1385272821666170519113904]
[60]
Vessally, E.; Babazadeh, M.; Didehban, K.; Hosseinian, A.; Edjlali, L. Intramolecular ipso-cyclization of N-arylpropiolamides: a novel and straightforward synthetic approach for azaspiro [4.5] decatrien-2-ones. Curr. Org. Chem., 2018, 22, 286-297.
[http://dx.doi.org/10.2174/1385272821666170914111817]
[61]
Sarhandi, S.; Rahmani, Z.; Moghadami, R.; Vali, M. New insight in Hiyama cross-coupling reactions: decarboxylative, denitrogenative and desulfidative couplings. Chem. Rev. Lett., 2018, 1, 9-15.
[http://dx.doi.org/10.22034/crl.2018.85109]
[62]
Daghagheleh, M.; Vali, M.; Rahmani, Z.; Sarhandi, S.; Vessally, E. A review on the CO2 incorporation reactions using arynes. Chem. Rev. Lett., 2018, 1, 23-30.
[http://dx.doi.org/10.22034/crl.2018.85117]
[63]
Hosseinian, A.; Arshadi, S.; Sarhandi, S.; Monfared, A.; Vessally, E. Direct C–H bond sulfenylation of (Het) arenes using sulfonyl hydrazides as thiol surrogate: a review. J. Sulfur Chem., 2019, 40, 289-311.
[http://dx.doi.org/10.1080/17415993.2019.1582654]
[64]
Vessally, E.; Nikpasand, M.; Ahmadi, S.; Nezhad, P.D.K.; Hosseinian, A. Transition metal-catalyzed intramolecular cyclization of N-Boc-protected propargyl/ethynyl amines: a novel and convenient access to 2-oxazolidinone/oxazolone derivatives. J. Iran. Chem. Soc., 2019, 16, 617-627.
[http://dx.doi.org/10.1007/s13738-018-1542-5]
[65]
Hosseinian, A.; Sadeghi, Y.J.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. Recent trends in direct mono-, di-, and tri-fluoromethyl (thiol) ation of SH bonds. J. Sulfur Chem., 2019, 40(5), 565-585.
[http://dx.doi.org/10.1080/17415993.2019.1598410]
[66]
Arshadi, S.; Banaei, A.; Ebrahimiasl, S.; Monfared, A.; Vessally, E. Solvent-free incorporation of CO2 into 2-oxazolidinones: a review. RSC Advances, 2019, 9, 19465-19482.
[http://dx.doi.org/10.1039/C9RA00551J]
[67]
Arshadi, S.; Ebrahimiasl, S.; Hosseinian, A.; Monfared, A.; Vessally, E. Recent developments in decarboxylative cross-coupling reactions between carboxylic acids and N-H compounds. RSC Advances, 2019, 9, 8964-8976.
[http://dx.doi.org/10.1039/C9RA00929A]
[68]
Gawande, M.B.; Goswami, A.; Felpin, F-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev., 2016, 116(6), 3722-3811.
[http://dx.doi.org/10.1021/acs.chemrev.5b00482] [PMID: 26935812]
[69]
Saeidian, H.; Abdoli, M.; Salimi, R. One-pot synthesis of highly substituted pyrroles using nano copper oxide as an effective heterogeneous nanocatalyst. C. R. Chim., 2013, 16, 1063-1070.
[http://dx.doi.org/10.1016/j.crci.2013.02.008]
[70]
Nador, F.; Fortunato, L.; Moglie, Y.; Vitale, C.; Radivoy, G. A simple one-pot procedure for the direct homocoupling of terminal alkynes promoted by copper nanoparticles. Synthesis, 2009, 2009(23), 4027-4031.
[71]
Tang, B.X.; Fang, X.N.; Kuang, R.Y.; Wu, J.H.; Chen, Q.; Hu, S.J.; Liu, Y.L. First report of a nano-Cu2O-catalyzed protocol for homo-coupling reaction of terminal alkynes in water/ionic liquid medium. Appl. Organomet. Chem., 2016, 30, 943-945.
[http://dx.doi.org/10.1002/aoc.3525]
[72]
Singh, B.K.; Lee, S.; Na, K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met., 2019, 38, 1-16.
[http://dx.doi.org/10.1007/s12598-019-01205-6]
[73]
Jiménez-Morales, I.; Cavaliere, S.; Jones, D.; Rozière, J. Strong metal-support interaction improves activity and stability of Pt electrocatalysts on doped metal oxides. Phys. Chem. Chem. Phys., 2018, 20(13), 8765-8772.
[http://dx.doi.org/10.1039/C8CP00176F] [PMID: 29541731]
[74]
Shelke, S.N.; Bankar, S.R.; Mhaske, G.R.; Kadam, S.S.; Murade, D.K.; Bhorkade, S.B.; Rathi, A.K.; Bundaleski, N.; Teodoro, O.M.; Zboril, R. Iron oxide-supported copper oxide nanoparticles (Nanocat-Fe-CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and Ullmann-type condensation reactions. ACS Sustain. Chem.& Eng., 2014, 2(7), 1699-1706.
[http://dx.doi.org/10.1021/sc500160f]
[75]
Moradabadi, A.; Ahmadi, S.; Kaghazchi, P. Evidence of a strong effect of defect-free metal oxide supports on Pt nanoparticles. Nanoscale, 2017, 9(13), 4478-4485.
[http://dx.doi.org/10.1039/C6NR07816H] [PMID: 28304408]
[76]
Farshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem. Rev. Lett., 2018, 1, 56-67.
[http://dx.doi.org/10.22034/crl.2018.85120]
[77]
Zheng, N.; Stucky, G.D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 2006, 128(44), 14278-14280.
[http://dx.doi.org/10.1021/ja0659929] [PMID: 17076500]
[78]
Alonso, F.; Melkonian, T.; Moglie, Y.; Yus, M. Homocoupling of terminal alkynes catalysed by ultrafine copper nanoparticles on titania. Eur. J. Org. Chem., 2011, 2011(13), 2524-2530.
[http://dx.doi.org/10.1002/ejoc.201001735]
[79]
Liu, L.; Matsushita, T.; Concepción, P.; Leyva-Pérez, A.; Corma, A. Facile synthesis of surface-clean monodispersed CuOx nanoparticles and their catalytic properties for oxidative coupling of alkynes. ACS Catal., 2016, 6, 2211-2221.
[http://dx.doi.org/10.1021/acscatal.5b02935]
[80]
Biswas, S.; Mullick, K.; Chen, S-Y.; Kriz, D.A.; Shakil, M.; Kuo, C-H.; Angeles-Boza, A.M.; Rossi, A.R.; Suib, S.L. Mesoporous copper/manganese oxide catalyzed coupling of alkynes: evidence for synergistic cooperative catalysis. ACS Catal., 2016, 6, 5069-5080.
[http://dx.doi.org/10.1021/acscatal.6b00717]
[81]
Barot, N.; Patel, S.B.; Kaur, H. Nitro resin supported copper nanoparticles: An effective heterogeneous catalyst for C-N cross coupling and oxidative C-C homocoupling. J. Mol. Catal. Chem., 2016, 423, 77-84.
[http://dx.doi.org/10.1016/j.molcata.2016.06.009]
[82]
Chakraborty, D.; Nandi, S.; Mullangi, D.; Haldar, S.; Vinod, C.P.; Vaidhyanathan, R. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as heterogeneous catalyst for the synthesis of unsymmetrical diynes via Glaser-Hay coupling. ACS Appl. Mater. Interfaces, 2019, 11(17), 15670-15679.
[http://dx.doi.org/10.1021/acsami.9b02860] [PMID: 30964266]
[83]
Maaten, B.; Moussa, J.; Desmarets, C.; Gredin, P.; Beaunier, P.; Kanger, T.; Tõnsuaadu, K.; Villemin, D.; Gruselle, M. Cu-modified hydroxy-apatite as catalyst for Glaser–Hay C-C homo-coupling reaction of terminal alkynes. J. Mol. Catal. Chem., 2014, 393, 112-116.
[http://dx.doi.org/10.1016/j.molcata.2014.06.011]
[84]
Lu, W.; Sun, W.; Tan, X.; Gao, L.; Zheng, G. Stabilized Cu/Cu2O nanoparticles on rGO as an efficient heterogeneous catalyst for Glaser homo-coupling. Catal. Commun., 2019, 125, 98-102.
[http://dx.doi.org/10.1016/j.catcom.2019.04.002]
[85]
Li, H.; Yang, M.; Pu, Q. Palladium with spindle-like nitrogen ligand supported on mesoporous silica SBA-15: a tailored catalyst for homocoupling of alkynes and Suzuki coupling. Microporous Mesoporous Mater., 2012, 148, 166-173.
[http://dx.doi.org/10.1016/j.micromeso.2011.08.010]
[86]
Li, X.; Li, D.; Bai, Y.; Zhang, C.; Chang, H.; Gao, W.; Wei, W. Homocoupling reactions of terminal alkynes and arylboronic compounds catalyzed by in situ formed Al(OH) 3-supported palladium nanoparticles. Tetrahedron, 2016, 72, 6996-7002.
[http://dx.doi.org/10.1016/j.tet.2016.09.035]
[87]
Boronat, M.; Laursen, S.; Leyva-Pérez, A.; Oliver-Meseguer, J.; Combita, D.; Corma, A. Partially oxidized gold nanoparticles: a catalytic base-free system for the aerobic homocoupling of alkynes. J. Catal., 2014, 315, 6-14.
[http://dx.doi.org/10.1016/j.jcat.2014.04.003]
[88]
Vilhanová, B.t.; Václavík, J.i.; Artiglia, L.; Ranocchiari, M.; Togni, A.; van Bokhoven, J.A. Subnanometer gold clusters on amino-functionalized silica: an efficient catalyst for the synthesis of 1, 3-diynes by oxidative alkyne coupling. ACS Catal., 2017, 7, 3414-3418.
[http://dx.doi.org/10.1021/acscatal.7b00691]
[89]
Gonzalez-Arellano, C.; Balu, A.M.; Luque, R.; Macquarrie, D.J. Catalytically active self-assembled silica-based nanostructures containing supported nanoparticles. Green Chem., 2010, 12, 1995-2002.
[http://dx.doi.org/10.1039/c0gc00282h]
[90]
Patel, S.B.; Vasava, D.V. Carbon nitride-supported silver nanoparticles: microwave-assisted synthesis of propargylamine and oxidative C-C coupling reaction. ChemistrySelect, 2018, 3, 471-480.
[http://dx.doi.org/10.1002/slct.201702268]
[91]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J-M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[92]
Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev., 2014, 114(14), 6949-6985.
[http://dx.doi.org/10.1021/cr500134h] [PMID: 24892491]
[93]
Karimi, B.; Mansouri, F.; Mirzaei, H.M. Recent applications of magnetically recoverable nanocatalysts in C-C and C-X coupling reactions. ChemCatChem, 2015, 7, 1736-1789.
[http://dx.doi.org/10.1002/cctc.201403057]
[94]
Nador, F.; Volpe, M.A.; Alonso, F.; Feldhoff, A.; Kirschning, A.; Radivoy, G. Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions. Appl. Catal. A Gen., 2013, 455, 39-45.
[http://dx.doi.org/10.1016/j.apcata.2013.01.023]
[95]
Perez, J.M.; Cano, R.; Yus, M.; Ramon, D.J. Copper-impregnated magnetite as a heterogeneous catalyst for the homocoupling of terminal alkynes. Synthesis, 2013, 45, 1373-1379.
[http://dx.doi.org/10.1055/s-0032-1316872]
[96]
Farzaneh, F.; Shafie, Z.; Rashtizadeh, E.; Ghandi, M. Immobilized Cu complex on modified Fe3O4 nanoparticles as a magnetically separable catalyst for the oxidative homocoupling of terminal alkynes. React. Kinet. Mech. Cat., 2013, 110, 119-129.
[97]
Sgrolli, N.; Imlyhen, N.; Volkman, J.; Raspolli-Galletti, A.; Serp, P. Copper-based magnetic catalysts for alkyne oxidative homocoupling reactions. Mol. Catal., 2017, 438, 143-151.
[http://dx.doi.org/10.1016/j.mcat.2017.05.015]
[98]
Tao, F.F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev., 2012, 41(24), 7977-7979.
[http://dx.doi.org/10.1039/c2cs90093a] [PMID: 23143202]
[99]
Tao, F.F.; Zhang, S.; Nguyen, L.; Zhang, X. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chem. Soc. Rev., 2012, 41(24), 7980-7993.
[http://dx.doi.org/10.1039/c2cs35185d] [PMID: 23023152]
[100]
Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P. ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King. Saud. Univ., 2017, 31, 257-269.
[http://dx.doi.org/10.1016/j.jksus.2017.06.012]
[101]
Xiao, Q.; Sarina, S.; Bo, A.; Jia, J.; Liu, H.; Arnold, D.P.; Huang, Y.; Wu, H.; Zhu, H. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal., 2014, 4, 1725-1734.
[http://dx.doi.org/10.1021/cs5000284]
[102]
Ohtaka, A.; Sansano, J.M.; Nájera, C.; Miguel‐García, I.; Berenguer‐Murcia, Á.; Cazorla‐Amorós, D. Palladium and bimetallic palladium–nickel nanoparticles supported on multiwalled carbon nanotubes: application to carbon-carbon bond‐forming reactions in water. ChemCatChem, 2015, 7, 1841-1847.
[http://dx.doi.org/10.1002/cctc.201500164]
[103]
Shi, J.; Long, C.; Li, A. Selective reduction of nitrate into nitrogen using Fe–Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH. Chem. Eng. J., 2016, 286, 408-415.
[http://dx.doi.org/10.1016/j.cej.2015.10.054]
[104]
Weng, X.; Guo, M.; Luo, F.; Chen, Z. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: biomolecules identification, characterization and catalytic activity. Chem. Eng. J., 2017, 308, 904-911.
[http://dx.doi.org/10.1016/j.cej.2016.09.134]
[105]
Miyamura, H.; Suzuki, A.; Yasukawa, T.; Kobayashi, S. Polysilane-immobilized Rh–Pt bimetallic nanoparticles as powerful arene hydrogenation catalysts: synthesis, reactions under batch and flow conditions and reaction mechanism. J. Am. Chem. Soc., 2018, 140(36), 11325-11334.
[http://dx.doi.org/10.1021/jacs.8b06015] [PMID: 30080963]
[106]
Gholinejad, M.; Bahrami, M.; Nájera, C.; Pullithadathil, B. Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction. J. Catal., 2018, 363, 81-91.
[http://dx.doi.org/10.1016/j.jcat.2018.02.028]
[107]
Pye, D.R.; Mankad, N.P. Bimetallic catalysis for C-C and C-X coupling reactions. Chem. Sci. (Camb.), 2017, 8(3), 1705-1718.
[http://dx.doi.org/10.1039/C6SC05556G] [PMID: 29780450]
[108]
Ma, C.T.; Wang, J.J.; Zhao, A.D.; Wang, Q.L.; Zhang, Z.H. Magnetic copper ferrite catalyzed homo-and cross-coupling reaction of terminal alkynes under ambient atmosphere. Appl. Organomet. Chem., 2017, 31, e3888
[http://dx.doi.org/10.1002/aoc.3888]
[109]
Chen, Z.; Shen, R.; Chen, C.; Li, J.; Li, Y. Synergistic effect of bimetallic Pd/Au nanocrystals on oxidative alkyne homocoupling. Chem. Commun., 2018, 54, 13155-13158.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy