Review Article

来自日本海洋生物的药物先导物

卷 28, 期 1, 2021

发表于: 22 October, 2019

页: [196 - 210] 页: 15

弟呕挨: 10.2174/0929867326666191022125851

价格: $65

摘要

从海洋生物中获得了许多具有非凡化学结构和卓越生物活性的天然产物。我们通过对这些生物活性分子的研究,探索了有机化学和生物科学的新前沿,例如强大的海洋毒素水螅毒素A和抗癌药物HalavenR的抗肿瘤分子大田软海绵素B。我们在传统学科内工作,试图获得对生物现象的更深入的理解。我们在这里介绍我们的主要工作以及最新的主题。我们从海洋蓝藻中分离出水螅毒素A,并完成了克级合成。水螅毒素 A是一种新型聚酮,可抑制3T3-L1细胞向脂肪细胞分化,但细胞毒性不显著。具体的作用机制将通过进一步的体外和体内实验来阐明。在本研究中,我们探索冈田酸和大田软骨素B的真正生产者,通过免疫染色冈田软骨素抗体制备这些天然产物作为抗原。我们将分析分离的共生体并揭示生物合成途径。

关键词: 天然产物,大田软海绵素B

[1]
Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.; Tanaka, J.; Okumura, Y.; Hirata, Y. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J. Am. Chem. Soc., 1985, 107(16), 4796-4798.
[http://dx.doi.org/10.1021/ja00302a042]
[2]
Hirata, Y.; Uemura, D. Halichondrins - antitumor polyether macrolides from a marine sponge. Pure Appl. Chem., 1986, 58, 701-710.
[http://dx.doi.org/10.1351/pac198658050701]
[3]
Aicher, T.D.; Buszek, K.R.; Fang, F.G.; Forsyth, C.J.; Jung, S.H.; Kishi, Y.; Matelich, M.C.; Scola, P.M.; Spero, D.M.; Yoon, S.K. Total synthesis of halichondrin B and norhalichondrin B. J. Am. Chem. Soc., 1992, 114(8), 3162-3164.
[http://dx.doi.org/10.1021/ja00034a086]
[4]
Choi, H-W.; Demeke, D.; Kang, F-A.; Kishi, Y.; Nakajima, K.; Nowak, P.; Wan, Z-K.; Xie, C. Synthetic studies on the marine natural product halichondrins. Pure Appl. Chem., 2003, 75, 1-17.
[http://dx.doi.org/10.1351/pac200375010001]
[5]
Jordan, M.A.; Kamath, K.; Manna, T.; Okouneva, T.; Miller, H.P.; Davis, C.; Littlefield, B.A.; Wilson, L. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther., 2005, 4(7), 1086-1095.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0345] [PMID: 16020666]
[6]
NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19•2 million participants. Lancet, 2016, 387(10026), 1377-1396.
[http://dx.doi.org/10.1016/S0140-6736(16)30054-X] [PMID: 27115820]
[7]
Choi, Y.; Kawazoe, Y.; Murakami, K.; Misawa, H.; Uesugi, M. Identification of bioactive molecules by adipogenesis profiling of organic compounds. J. Biol. Chem., 2003, 278(9), 7320-7324.
[http://dx.doi.org/10.1074/jbc.M210283200] [PMID: 12496288]
[8]
Inuzuka, T.; Yamamoto, K.; Iwasaki, A.; Ohno, O.; Suenaga, K.; Kawazoe, Y.; Uemura, D. An inhibitor of the adipogenic differentiation of 3T3-L1 cells, yoshinone A, and its analogs, isolated from the marine cyanobacterium Leptolyngbya sp. Tetrahedron Lett., 2014, 55(49), 6711-6714.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.032]
[9]
Graber, M.A.; Gerwick, W.H. Kalkipyrone, a toxic gamma-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. J. Nat. Prod., 1998, 61(5), 677-680.
[http://dx.doi.org/10.1021/np970539j] [PMID: 9599278]
[10]
Bertin, M.J.; Demirkiran, O.; Navarro, G.; Moss, N.A.; Lee, J.; Goldgof, G.M.; Vigil, E.; Winzeler, E.A.; Valeriote, F.A.; Gerwick, W.H.; Kalkipyrone, B. Kalkipyrone B, a marine cyanobacterial γ-pyrone possessing cytotoxic and anti-fungal activities. Phytochemistry, 2016, 122, 113-118.
[http://dx.doi.org/10.1016/j.phytochem.2015.11.011] [PMID: 26632528]
[11]
Maeda, K. Chemical studies on antibiotic substances. IV. A crystalline toxic substance of Streptomyces thioluteus producing aureothricin. J. Antibiot. (Tokyo), 1953, 6(3), 137-138.
[PMID: 13096448]
[12]
Hirata, Y.; Nakata, H.; Yamada, K.; Okuhara, K.; Naito, T. The structure of aureothin, a nitro compound obtained from Streptomyces thioluteus. Tetrahedron, 1961, 14(3), 252-274.
[http://dx.doi.org/10.1016/S0040-4020(01)92175-1]
[13]
Shinomiya, S.; Iwasaki, A.; Ohno, O.; Suenaga, K. Total synthesis and stereochemical determination of yoshinone A. Phytochemistry, 2016, 132, 109-114.
[http://dx.doi.org/10.1016/j.phytochem.2016.10.005] [PMID: 27765324]
[14]
De Paolis, M.; Rosso, H.; Henrot, M.; Prandi, C.; d’Herouville, F.; Maddaluno, J. A concise route to α′-methoxy-γ-pyrones and verticipyrone based upon the desymmetrization of α,α′-dimethoxy-γ-pyrone. Chemistry, 2010, 16(37), 11229-11232.
[http://dx.doi.org/10.1002/chem.201001780] [PMID: 20726024]
[15]
Alcaide, B.; Almendros, P.; Alonso, J.M.; Aly, M.F. A novel use of Grubbs’ carbene. Application to the catalytic deprotection of tertiary allylamines. Org. Lett., 2001, 3(23), 3781-3784.
[http://dx.doi.org/10.1021/ol0167412] [PMID: 11700137]
[16]
Chatterjee, A.K.; Choi, T-L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc., 2003, 125(37), 11360-11370.
[http://dx.doi.org/10.1021/ja0214882] [PMID: 16220959]
[17]
Balcells, S.; Haughey, M.B.; Walker, J.C.L.; Josa-Culleré, L.; Towers, C.; Donohoe, T.J. Asymmetric total synthesis of (−)-(3R)-. Org. Lett., 2018, 20(12), 3583-3586.
[http://dx.doi.org/10.1021/acs.orglett.8b01370] [PMID: 29863350]
[18]
Koyama, T.; Kawazoe, Y.; Iwasaki, A.; Ohno, O.; Suenaga, K.; Uemura, D. Anti-obesity activities of the yoshinone A and the related marine γ-pyrone compounds. J. Antibiot. (Tokyo), 2016, 69(4), 348-351.
[http://dx.doi.org/10.1038/ja.2016.19] [PMID: 26932409]
[19]
Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T. Le Zhan; Yanxiang Guo, J.; White, E.; Rabinowitz, J.D. Glucose feeds the TCA cycle via circulating lactate. Nature, 2017, 551(7678), 115-118.
[http://dx.doi.org/10.1038/nature24057] [PMID: 29045397]
[20]
Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta, 1995, 1271(1), 195-204.
[http://dx.doi.org/10.1016/0925-4439(95)00028-3] [PMID: 7599208]
[21]
Hadler, A.J. Mazindol, a new non-amphetamine anorexigenic agent. J. Clin. Pharmacol. New Drugs, 1972, 12(11), 453-458.
[http://dx.doi.org/10.1002/j.1552-4604.1972.tb00246.x] [PMID: 4563662]
[22]
Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy, 2000, 20(3), 270-279.
[http://dx.doi.org/10.1592/phco.20.4.270.34882] [PMID: 10730683]
[23]
Kopelman, P.; Bryson, A.; Hickling, R.; Rissanen, A.; Rossner, S.; Toubro, S.; Valensi, P. Cetilistat (ATL-962), a novel lipase inhibitor: a 12-week randomized, placebo-controlled study of weight reduction in obese patients. Int. J. Obes., 2007, 31(3), 494-499.
[http://dx.doi.org/10.1038/sj.ijo.0803446] [PMID: 16953261]
[24]
United Nations. Transforming our world: The 2030 Agenda for Sustainable Development. Report No. A/RES/70/1., 2015. Available at: https://sustainabledevelopment.un.org/post2015/ transformingourworld (Access date: November 09, 2020).
[25]
Ogi, S. Coral fishery and the Kuroshio region in modern Japan.In: A Biohistory of Precious Corals Scientific Cultural and Historical Perspectives; Iwasaki-Nozomu, Ed.; Tokai University Press: Hadano, Kanagawa, Japan,; , 2010, pp. 163-197.
[26]
Ogi, S. Coral fishery and Kochi prefecture in modern times.In: A Biohistory of Precious Corals Scientific Cultural and Historical Perspectives; Iwasaki-Nozomu, Ed.; Tokai University Press: Hadano, Kanagawa, Japan,; , 2010, pp. 198-249.
[27]
Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep., 2014, 31(8), 999-1025.
[http://dx.doi.org/10.1039/C3NP70118B] [PMID: 24871201]
[28]
De Rosa, S.; Crispino, A.; De Giulio, A.; Iodice, C.; Pronzato, R.; Zavodnik, N.; Cacospongionolide, B. Cacospongionolide B, a new sesterterpene from the sponge Fasciospongia cavernosa. J. Nat. Prod., 1995, 58(11), 1776-1780.
[http://dx.doi.org/10.1021/np50125a024] [PMID: 8594155]
[29]
Cheung, A.K.; Murelli, R.; Snapper, M.L. Total syntheses of (+)- and (-)-cacospongionolide B, cacospongionolide e, and related analogues. Preliminary study of structural features required for phospholipase a2 inhibition. J. Org. Chem., 2004, 69(17), 5712-5719.
[http://dx.doi.org/10.1021/jo049285e] [PMID: 15307744]
[30]
Gulavita, N.K.; De Silva, E.D.; Hagadone, M.R.; Karuso, P.; Scheuer, P.J.; Van Duyne, G.D.; Clardy, J. Nitrogenous bisabolene sesquiterpenes from marine invertebrates. J. Org. Chem., 1986, 51(26), 5136-5139.
[http://dx.doi.org/10.1021/jo00376a015]
[31]
Uemura, D. Bioorganic studies on marine natural products--diverse chemical structures and bioactivities. Chem. Rec., 2006, 6(5), 235-248.
[http://dx.doi.org/10.1002/tcr.20087] [PMID: 17099881]
[32]
Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Halichlorine, an inhibitor of VCAM-1 induction from the marine sponge Halichondria okadai Kadata. Tetrahedron Lett., 1996, 37(22), 3867-3870.
[http://dx.doi.org/10.1016/0040-4039(96)00703-4]
[33]
Tsubosaka, Y.; Murata, T.; Yamada, K.; Uemura, D.; Hori, M.; Ozaki, H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J. Pharmacol. Sci., 2010, 113(3), 208-213.
[http://dx.doi.org/10.1254/jphs.10065FP] [PMID: 20562517]
[34]
Tachibana, K.; Scheuer, P.J.; Tsukitani, Y.; Kikuchi, H.; Van Engen, D.; Clardy, J.; Gopichand, Y.; Schmitz, F.J. Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J. Am. Chem. Soc., 1981, 103(9), 2469-2471.
[http://dx.doi.org/10.1021/ja00399a082 ]
[35]
Vogel, G. The inner lives of sponges. Science, 2008, 320(5879), 1028-1030.
[http://dx.doi.org/10.1126/science.320.5879.1028] [PMID: 18497285]
[36]
Humisto, A.; Jokela, J.; Liu, L.; Wahlsten, M.; Wang, H.; Permi, P.; Machado, J.P.; Antunes, A.; Fewer, D.P.; Sivonen, K. The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Appl. Environ. Microbiol., 2018, 84(3), 02317-02321.
[http://dx.doi.org/10.1128/aem.02321-17] [PMID: 29150506]
[37]
Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59(1), 143-169.
[http://dx.doi.org/10.1128/MMBR.59.1.143-169.1995] [PMID: 7535888]
[38]
Reissbrodt, R.; Heier, H.; Tschäpe, H.; Kingsley, R.A.; Williams, P.H. Resuscitation by ferrioxamine E of stressed Salmonella enterica serovar typhimurium from soil and water microcosms. Appl. Environ. Microbiol., 2000, 66(9), 4128-4130.
[http://dx.doi.org/10.1128/AEM.66.9.4128-4130.2000] [PMID: 10966440]
[39]
Guan, L.L.; Onuki, H.; Kamino, K. Bacterial growth stimulation with exogenous siderophore and synthetic N-acyl homoserine lactone autoinducers under iron-limited and low-nutrient conditions. Appl. Environ. Microbiol., 2000, 66(7), 2797-2803.
[http://dx.doi.org/10.1128/AEM.66.7.2797-2803.2000] [PMID: 10877770]
[40]
Bruns, A.; Cypionka, H.; Overmann, J. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol., 2002, 68(8), 3978-3987.
[http://dx.doi.org/10.1128/AEM.68.8.3978-3987.2002] [PMID: 12147499]
[41]
Mukamolova, G.V.; Kaprelyants, A.S.; Young, D.I.; Young, M.; Kell, D.B. A bacterial cytokine. Proc. Natl. Acad. Sci. USA, 1998, 95(15), 8916-8921.
[http://dx.doi.org/10.1073/pnas.95.15.8916] [PMID: 9671779]
[42]
Mukamolova, G.V.; Turapov, O.A.; Kazarian, K.; Telkov, M.; Kaprelyants, A.S.; Kell, D.B.; Young, M. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol., 2002, 46(3), 611-621.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03183.x] [PMID: 12410820]
[43]
Aoi, Y.; Kinoshita, T.; Hata, T.; Ohta, H.; Obokata, H.; Tsuneda, S. Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl. Environ. Microbiol., 2009, 75(11), 3826-3833.
[http://dx.doi.org/10.1128/AEM.02542-08] [PMID: 19329655]
[44]
Nichols, D.; Cahoon, N.; Trakhtenberg, E.M.; Pham, L.; Mehta, A.; Belanger, A.; Kanigan, T.; Lewis, K.; Epstein, S.S. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol., 2010, 76(8), 2445-2450.
[http://dx.doi.org/10.1128/AEM.01754-09] [PMID: 20173072]
[45]
Gillespie, D.E.; Brady, S.F.; Bettermann, A.D.; Cianciotto, N.P.; Liles, M.R.; Rondon, M.R.; Clardy, J.; Goodman, R.M.; Handelsman, J. Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol., 2002, 68(9), 4301-4306.
[http://dx.doi.org/10.1128/AEM.68.9.4301-4306.2002] [PMID: 12200279]
[46]
Abe, T.; Sahin, F.P.; Akiyama, K.; Naito, T.; Kishigami, M.; Miyamoto, K.; Sakakibara, Y.; Uemura, D. Construction of a metagenomic library for the marine sponge Halichondria okadai. Biosci. Biotechnol. Biochem., 2012, 76(4), 633-639.
[http://dx.doi.org/10.1271/bbb.110533] [PMID: 22484923]
[47]
Morris, R.M.; Rappé, M.S.; Connon, S.A.; Vergin, K.L.; Siebold, W.A.; Carlson, C.A.; Giovannoni, S.J. SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 2002, 420(6917), 806-810.
[http://dx.doi.org/10.1038/nature01240] [PMID: 12490947]
[48]
Abe, T.; Kukita, A.; Akiyama, K.; Naito, T.; Uemura, D. Isolation and structure of a novel biindole pigment substituted with an ethyl group from a metagenomic library derived from the marine sponge Halichondria okadai. Chem. Lett., 2012, 41(7), 728-729.
[http://dx.doi.org/10.1246/cl.2012.728]
[49]
Koike, K.; Sato, S.; Yamaji, M.; Nagahama, Y.; Kotaki, Y.; Ogata, T.; Kodama, M. Occurrence of okadaic acid-producing Prorocentrum lima on the Sanriku coast, northern Japan. Toxicon, 1998, 36(12), 2039-2042.
[http://dx.doi.org/10.1016/S0041-0101(98)00132-9] [PMID: 9839688]
[50]
Izumikawa, M.; Murata, M.; Tachibana, K.; Fujita, T.; Naoki, H. 18O-Labelling pattern of okadaic acid from H218O in dinoflagellate Prorocentrum lima elucidated by tandem mass spectrometry. Eur. J. Biochem., 2000, 267(16), 5179-5183.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01586.x] [PMID: 10931202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy