Abstract
Background: Bis(indolyl) methanes (BIMs) have a wide spectrum of applications in biomedicine and agriculture as well as are present in natural products. These bisheterocyclic compounds possess vast pharmacological, including antifungal, antitubercular, anti-inflammatory, antibacterial, anticancer, anticonvulsant, antibiotic, antiviral, antimalarial, analgesic, and antidiabetic properties. BIMs scaffolds have also been employed as selective optical chemosensors for detection of some anions and cations with the naked eye. Because of the importance of these bisheterocycles, various methods have been reported for their synthesis through reaction of indole derivatives and aldehydes or ketones. Therefore, the synthesis of BIMs through different methodologies has received widespread attention in the field of organic synthesis and medicinal chemistry.
Objective: In this study, the catalytic activity of phthalimide-N-sulfonic acid (PISA) as an efficient and safe solid acidic organocatalyst toward the synthesis of BIMs derivatives in ethanol is described.
Methods: Indole derivatives (2 mmol), aryl/heteroaryl aldehydes (1 mmol), and PISA (10 mol%) were mixture in ethanol. The reaction mixture was stirred at room temperature for the appropriate times. After workup and separation of catalyst, the corresponding heterocyclic products were obtained through recrystallization from hot ethanol.
Results: The BIMs derivatives were easily obtained via Bisindolization Reaction (BIR) of two indoles (2-methylindole and indole) with a series of aryl and heteroaryl aldehydes. The BIR was efficiently catalyzed at room temperature using PISA as an excellent organocatalyst under optimized reaction conditions.
Conclusion: The reactions were implemented in simple manner and were completed within acceptable reaction times. The expected BIM products were obtained in satisfactory yields. The catalyst can be recovered and reused several times in the template reaction. This approach provides the benefits of convenience, simple operational procedure, no use of hazardous organic solvents, cheapness and ease of preparation of catalyst.
Keywords: Bis(indolyl)methanes, green synthesis, indole, phthalimide-N-sulfonic acid, aryl aldehyde, organocatalyst.
Graphical Abstract
[http://dx.doi.org/10.1021/cr900195a] [PMID: 20041637]
[http://dx.doi.org/10.1246/cl.2004.288]
b) Praveen, C.; DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
c) Nemallapudi, B.R.; Zyryanov, G.V.; Avula, B.; Guda, M.R.; Cirandur, S.R.; Venkataramaiah, C.; Rajendra, W.; Gundala, S. Meglumine as a green, efficient and reusable catalyst for synthesis and molecular docking studies of bis(indolyl)methanes as antioxidant agents. Bioorg. Chem., 2019, 87, 465-473.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.005] [PMID: 30927587]
d) Praveen, C.; Ayyanar, A.; Perumal, P.T. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorg. Med. Chem. Lett., 2011, 21(13), 4072-4077.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.117] [PMID: 21621411]
e) Nemallapudi, B.R.; Zyryanov, G.V.; Avula, B.; Guda, M.R.; Gundala, S. An effective green and ecofriendly catalyst for synthesis of bis(indolyl)methanes as promising antimicrobial agents. J. Heterocycl. Chem., 2019, 56, 3324-3332.
[http://dx.doi.org/10.1002/jhet.3729]
[http://dx.doi.org/10.1248/cpb.42.2449] [PMID: 7697760]
[http://dx.doi.org/10.1016/j.cclet.2015.08.012]
[http://dx.doi.org/10.1016/S0040-4039(00)86237-1]
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055] [PMID: 20932744]
[http://dx.doi.org/10.1002/ejoc.201402055]
b) Grosso, C.; Cardoso, A.L.; Lemos, A.; Varela, J.; Rodrigues, M.J.; Custódio, L.; Barreira, L.; Pinho e Melo, T.M.V.D. Novel approach to bis(indolyl)methanes: de novo synthesis of 1-hydroxyiminomethyl derivatives with anti-cancer properties. Eur. J. Med. Chem., 2015, 93, 9-15.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.050] [PMID: 25644672]
c) ayindir, S.; Ayna, A.; Temel, Y.; Ciftci, M. The synthesis of new oxindoles as analogs of natural product 3,3′ -bis(indolyl)oxindole and in vitro evaluation of the enzyme activity of G6PD and 6PGD. Turk. J. Chem., 2018, 42, 332-345.
[http://dx.doi.org/10.3906/kim-1706-51]
d) Hedrick, E.; Li, X.; Cheng, Y.; Lacey, A.; Mohankumar, K.; Zarei, M.; Safe, S. Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists. Breast Cancer Res. Treat., 2019, 177(1), 29-40.
[http://dx.doi.org/10.1007/s10549-019-05279-9] [PMID: 31119568]
[http://dx.doi.org/10.1002/ajoc.201600415]
b) Zendah, I.; Shaaban, K.A.; Helmke, E.; Maier, A.; Fiebig, H.H.; Laatsch, H. Barakacin: a thiazolyl-indole alkaloid isolated from a ruminal Pseudomonas sp. Z. Naturforsch., 2012, 67b, 417-420.
[http://dx.doi.org/10.5560/znb.2011-0277]
[http://dx.doi.org/10.1007/s00216-016-9749-8] [PMID: 27473426]
b) Yaghoubi, A.; Dekamin, M.G.; Arefi, E.; Karimi, B. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-Pr-SO3H): A new and highly efficient recoverable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives. J. Colloid Interface Sci., 2017, 505, 956-963.
[http://dx.doi.org/10.1016/j.jcis.2017.06.055] [PMID: 28687033]
[http://dx.doi.org/10.1039/C8MD00055G] [PMID: 30108999]
[http://dx.doi.org/10.1016/j.bmcl.2017.03.070] [PMID: 28377058]
[http://dx.doi.org/10.1124/mol.105.018978] [PMID: 16385077]
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
b) Lafzi, F.; Kilic, H.; Saracoglu, N. Protocols for the Syntheses of 2,2′-Bis(indolyl)arylmethanes, 2-Benzylated Indoles, and 5,7-Dihydroindolo[2,3-b]carbazoles. J. Org. Chem., 2019, 84(18), 12120-12130.
[http://dx.doi.org/10.1021/acs.joc.9b02124] [PMID: 31454241]
[PMID: 11507062]
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.021]
[http://dx.doi.org/10.1016/j.jaubas.2015.04.003]
[http://dx.doi.org/10.1016/j.tet.2007.12.025]
[http://dx.doi.org/10.1016/j.tetlet.2014.05.028]
[http://dx.doi.org/10.1039/c2ob06793e] [PMID: 22228473]
[http://dx.doi.org/10.1016/j.tetlet.2017.04.032]
[http://dx.doi.org/10.1080/17518253.2012.711372]
b) Mallik, A.K.; Pal, R.; Guha, C.; Mallik, H. A convenient, eco-friendly, and efficient method for synthesis of bis(3-indolyl)methanes “on water”. Green Chem. Lett. Rev., 2012, 5, 321-327.
[http://dx.doi.org/10.1080/17518253.2011.630027]
c) Wang, S.Y.; Ji, S.J.; Su, X.M. A Meldrum’s acid catalyzed synthesis of bis(indolyl)methanes in water under ultrasonic condition. Chin. J. Chem., 2008, 26, 22-24.
[http://dx.doi.org/10.1002/cjoc.200890029]
d) Simha, P.R.; Mangali, M.S.; Gari, D.K.; Venkatapuram, P.; Adivireddy, P. Benzenesulfonic acid: a versatile catalyst for the synthesis of bis(indolyl)methanes as antioxidants. J. Heterocycl. Chem., 2017, 54, 2717-2724.
[http://dx.doi.org/10.1002/jhet.2873]
e) Bandia, M.; Reddy, V.R. One‐pot, step‐wise, alternative syntheses of quinoline‐substituted bis(Indolyl)methanes using a green approach. J. Heterocycl. Chem., 2017, 54, 3093-3098.
[http://dx.doi.org/10.1002/jhet.2922]
f) Tumtin, S.; Kathing, C.; Phucho, I.T.; Nongrum, R.; Myrboh, B.; Nongkhlaw, R. Triethylbenzylammonium chloride as a useful and efficient catalyst for the alkylation of indole/substituted indoles in water: a comparative study between conventional and microwave irradiation. J. Chin. Chem. Soc. (Taipei), 2015, 62, 321-327.
[http://dx.doi.org/10.1002/jccs.201400221]
g) Karthikeyan, K.; Sivaprasad, G. Synthesis of some bis(Indolyl)methanes catalyzed by ascorbic acid under mild conditions. Org. Prep. Proced. Int., 2015, 47, 449-453.
[http://dx.doi.org/10.1080/00304948.2015.1088755]
h) Banari, H.; Kiyani, H.; Pourali, A. Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid. Res. Chem. Intermed., 2017, 43, 1635-1649.
[http://dx.doi.org/10.1007/s11164-016-2720-7]
i) Banari, H.; Kiyani, H.; Pourali, A. Green synthesis of bis(indolyl)methanes catalysed by salicylic acid. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2018, 45, 413-420.
j) Kasar, S.B.; Thopate, S.R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst. Curr. Org. Chem., 2018, 15, 110-115.
k) Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of bisindolylmethanes using malic acid as a homogeneous and reusable organocatalyst. Curr. Green Chem., 2018, 5, 177-184.
[http://dx.doi.org/10.2174/2213346105666180821114459]
[http://dx.doi.org/10.5012/bkcs.2013.34.1.117]
b) Basumatary, G.; Mohanta, R.; Baruah, S.D.; Deka, R.C.; Bez, G. First aminocatalytic synthesis of bis(indolyl)methanes and DFT studies on the reaction pathway. Catal. Lett., 2019.
[http://dx.doi.org/10.1007/s10562-019-02932-2]
c) Shaikh, S.I.; Zaheer, Z.; Mokale, S.N. A simple and efficient supramolecular chemistry approach for synthesis of bis(indolyl)methanes using aqueous β-cyclodextrin as green promoter host. Lett. Org. Chem., 2018, 15, 32-38.
[http://dx.doi.org/10.1007/s11164-014-1636-3]
b) Khatab, T.K.; Abdelghany, A.M.; Soliman, H.A. V2O5/SiO2 as a heterogeneous catalyst in the synthesis of bis(indolyl)methanes under solvent free condition. Silicon, 2018, 10, 703-708.
[http://dx.doi.org/10.1007/s12633-016-9515-8]
c) Deb, M.L.; Pegu, C.D.; Deka, B.; Dutta, P.; Kotmale, A.S.; Baruah, P.K. Brønsted-acid-mediated divergent reactions of Betti bases with indoles: an approach to chromeno[2,3-b]indoles through intramolecular dehydrogenative C2-alkoxylation of indole. Eur. J. Org. Chem., 2016, 2016, 3441-3448.
[http://dx.doi.org/10.1002/ejoc.201600546]
d) Zou, Y.; Chen, C.; Chen, X.; Zhang, X.; Rao, W. Silica gel mediated Friedel–Crafts alkylation of 3-indolylmethanols with indoles: synthesis of unsymmetrical nis(3-indolyl)methanes. Eur. J. Org. Chem., 2017, 2017, 2266-2271.
[http://dx.doi.org/10.1002/ejoc.201700088]
e) Soliman, H.A.; Mubarak, A.Y.; Elmorsy, S.S. An efficient synthesis of bis(indolyl) methanes and N,N′-alkylidene bisamides by Silzic under solvent free conditions. Chin. Chem. Lett., 2016, 27, 353-356.
[http://dx.doi.org/10.1016/j.cclet.2015.11.013]
f) Suarez, A.; Martinez, F.; Suarez-Pantiga, S.; Sanz, R. PTSA-Catalyzed reaction of ndoles with 2-oxoaldehydes: synthesis of α,α-bis(indol-3-yl) ketones. Chem. Select, 2017, 2, 787-790.
g) Selvakumar, K.; Shanmugaprabha, T.; Annapoorani, R.; Sami, P. One-pot three-component synthesis of bis(indolyl)methanes under solvent-free condition using heteropoly-11-tungsto-1-vanadophosphoric acid supported on natural clay as catalyst. Synth. Commun., 2017, 47, 913-927.
[http://dx.doi.org/10.1080/00397911.2017.1296159]
h) Ravi, K.; Krishnakumar, B.; Swaminathan, M. Efficient, rapid, and solvent-free synthesis of substituted bis(indolyl)methanes using sulfated anatase titania as a solid acid catalyst. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45, 1380-1386.
[http://dx.doi.org/10.1080/15533174.2013.862710]
i) Esmaielpour, M.; Akhalaghinia, B.; Jahanshahi, R. Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using expanded Perlite-PPA as a heterogeneous solid acid catalyst in aqueous media. J. Chem. Sci., 2017, 129, 313-328.
[http://dx.doi.org/10.1007/s12039-017-1246-x]
j) Wang, Y.; Sang, R.; Zheng, Y.; Guo, L.; Guan, M.; Wu, Y. Graphene oxide: An efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water. Catal. Commun., 2017, 89, 138-142.
[http://dx.doi.org/10.1016/j.catcom.2016.09.027]
[http://dx.doi.org/10.1080/17518253.2011.581700]
b) Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Wanyi, L.; Ma, B.; Zhan, H.; Bi, S.; Chen, X. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid–surfactant-SiO2-combined nanocatalyst. Green Chem., 2019, 21, 3542-3546.
[http://dx.doi.org/10.1039/C9GC01073D]
c) Ali, R.; Ahamad, M.Z.; Singh, S.; Haq, W. Regioselective synthesis of symmetrical and unsymmetrical bis(heteroaryl)methane (BHM)-containing amino acids. Eur. J. Org. Chem., 2019, 2019, 1820-1824.
[http://dx.doi.org/10.1002/ejoc.201900043]
d) Merinos, J.P.G.; Ruíz, H.L.; López, Y.; Lima, S.R. Synthesis of bis(indolyl)methanes Catalyzed by Triethylborane. Lett. Org. Chem., 2015, 12(5), 332-336.
[http://dx.doi.org/10.2174/1570178612666150220225335] [PMID: 26120289]
e) Noland, W.E.; Kumar, H.V.; Flick, G.C.; Aspros, C.L.; Yoon, J.H.; Wilt, A.C.; Dehkordi, N.; Thao, S.; Schneerer, A.K.; Gao, S.; Tritch, K.J. Hydrated ferric sulfate-catalyzed reactions of indole with aldehydes, ketones, cyclic ketones, and chromanones: Synthesis of bisindoles and trisindoles. Tetrahedron, 2017, 73, 3913-3922.
[http://dx.doi.org/10.1016/j.tet.2017.05.061]
f) Nasreen, A.; Varala, R.; Adapa, S.R. Copper nitrate trihydrate catalyzed efficient synthesis of bis(indolyl)methanes in acetonitrile at room temperature. J. Heterocycl. Chem., 2007, 44, 983-987.
[http://dx.doi.org/10.1002/jhet.5570440440]
g) Silveira, C.C.; Mendes, S.R.; Líbero, F.M.; Lenardão, E.J.; Perin, G. Glycerin and CeCl3•7H2O: a new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Lett., 2009, 50, 6060-6063.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.062]
h) Mohapatra, S.S.; Wilson, Z.E.; Roy, S.; Ley, S.V. Utilization of flow chemistry in catalysis: New avenues for the selective synthesis of bis(indolyl)methanes. Tetrahedron, 2017, 73, 1812-1819.
[http://dx.doi.org/10.1016/j.tet.2017.02.026]
i) Praveen, C.; Narendiran, S.; Dheenkumara, P.; Perumal, P.T. Zn(OTf)2-catalysed indolylation and pyrrolylation of isatins: Efficient synthesis and biochemical assay of 3,3-di(heteroaryl)oxindoles. J. Chem. Sci., 2013, 125, 1543-1553.
[http://dx.doi.org/10.1007/s12039-013-0510-y]
j) Praveen, C.; Sagayaraj, Y.W.; Perumal, P.T. Gold(I) catalyzed sequential cycloisomerization/bis-addition of o-ethynylanilines: an efficient access to bis(indolyl)methanes and di(indolyl)indolin-2-ones. Tetrahedron Lett., 2009, 50, 644-647.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.086]
k) Praveen, C.; Karthikeyan, K.; Perumal, P.T. Efficient synthesis of 3-substituted indoles through a domino gold(I) chloride catalyzed cycloisomerization/C3-functionalization of 2-(alkynyl)anilines. Tetrahedron, 2009, 65, 9244-9255.
[http://dx.doi.org/10.1016/j.tet.2009.09.019]
l) Mo, L.P.; Ma, Z.C.; Zhang, Z.H. CuBr2-Catalyzed synthesis of bis(indolyl)methanes. Synth. Commun., 2005, 35, 1997-2004.
[http://dx.doi.org/10.1081/SCC-200066653]
m) Zhang, Z.H.; Yin, L.; Wang, Y.M. An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride. Synthesis, 2005, 12, 1949-1954.
n) Deshmukh, M.S.; Chaudhary, A.; Zolotarev, P.N.; Boomishankar, R. A 3D coordination network built from CuII 4Cl3(H2O)2 linear clusters and tetrapyridyl tetrahedral silane ligands: reversible iodine uptake and Friedel-Crafts alkylation reactions. Inorg. Chem., 2017, 56(19), 11762-11767.
[http://dx.doi.org/10.1021/acs.inorgchem.7b01781] [PMID: 28933539]
o) Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Wanyi, L.; Ma, B.; Zhan, H.; Bi, S.; Chen, X. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid-surfactant-SiO2-combined nanocatalyst. Green Chem., 2019, 21, 3542-3546.
[http://dx.doi.org/10.1039/C9GC01073D]
[http://dx.doi.org/10.1039/b807572g]
b) Song, Y.; Cheng, C.; Jing, H. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions. Chemistry, 2014, 20(40), 12894-12900.
[http://dx.doi.org/10.1002/chem.201403118] [PMID: 25154312]
c) Liu, C.; Yu, C. An efficient one-pot synthesis of bis-indolylmethanes containing pyrazolyl catalyzed by Brønsted acidic ionic liquid under solvent-free conditions. J. Heterocycl. Chem., 2011, 48, 845-848.
[http://dx.doi.org/10.1002/jhet.650]
d) Choudhary, S.; Pandey, K.; Budania, S.; Kumar, A. Functionalized ionic liquid-assisted chromatography-free synthesis of bis(indolyl)methanes. Mol. Divers., 2017, 21(1), 155-162.
[http://dx.doi.org/10.1007/s11030-016-9713-8] [PMID: 28078549]
e) Honarmand, M.; Esmaeili, E. Tris(hydroxymethyl)methane ammonium hydrogensulphate as a nano ionic liquid and its catalytic activity in the synthesis of bis(indolyl)methanes. J. Mol. Liq., 2017, 225, 741-749.
[http://dx.doi.org/10.1016/j.molliq.2016.10.136]
f) Ghaffari Khaligh, N.; Mihankhah, T.; Johan, M.R.; Ching, J.J. Two novel binuclear sulfonic-functionalized ionic liquids: Influence of anion and carbon-spacer on catalytic efficiency for one-pot synthesis of bis(indolyl)methanes. J. Mol. Liq., 2018, 259, 260-273.
[http://dx.doi.org/10.1016/j.molliq.2018.03.044]
g) Chatterjee, R.; Mahato, S.; Santra, S.; Zyryanov, G.V.; Hajra, A.; Majee, A. Imidazolium zwitterionic molten salt: an efficient organocatalyst under neat conditions at room temperature for the synthesis of dipyrromethanes as well as bis(indolyl)methanes. ChemistrySelect, 2018, 3, 5843-5847.
[http://dx.doi.org/10.1002/slct.201800227]
[http://dx.doi.org/10.1021/jo4017524] [PMID: 24066671]
b) Swetha, A.; Babu, B.M.; Meshram, H.M. An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes. Tetrahedron Lett., 2015, 56, 1775-1779.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.032]
c) Ganesan, A.; Kothandapani, J.; Nanubolu, J.B.; Ganesan, S.S. Oleic acid: a benign Brønsted acidic catalyst for densely substituted indole derivative synthesis. RSC Advances, 2015, 5, 28597-28600.
[http://dx.doi.org/10.1039/C5RA02906F]
[http://dx.doi.org/10.1016/j.tetlet.2014.07.024]
b) Chandam, D.; Mulik, A.; Patil, P.; Jagdale, S.; Patil, D.; Sankpal, S.; Deshmukh, M. Oxalic acid dihydrate: Proline (LTTM) as a new generation solvent for synthesis of 3,3-diaryloxindole and chromone based bis(indolyl)alkanes: Green, chromatography free protocol. J. Mol. Liq., 2015, 207, 14-20.
[http://dx.doi.org/10.1016/j.molliq.2015.02.036]
c) Grosso, C.; Brigas, A.; de los Santos, J.M.; Palacios, F.; Lemos, A.; Pinho e Melo, T.M.V.D. Natural deep eutectic solvents in the hetero Diels-Alder approach to bis(indolyl)methanes. Monatsh. Chem., 2019, 150, 1275-1288.
[http://dx.doi.org/10.1007/s00706-019-02421-7]
[http://dx.doi.org/10.1002/chin.201447118]
b) Pal, R. New greener alternative for biocondensation of aldehydes and indoles using Lemon juice: formation of bis-, tris-, and tetraindoles. Int. J. Org. Chem. (Irvine), 2013, 3, 136-142.
[http://dx.doi.org/10.4236/ijoc.2013.32015]
c) Ahmed, M.Z.; Khillare, C.B.; Ahmed, S.K. Synthesis of bis(indolyl)methanes: a natural approach. Chem. Sci. Trans., 2013, 2, 1513-1517.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.020]
[http://dx.doi.org/10.1002/slct.201702438]
b) Bahuguna, A.; Kumar, S.; Krishnan, V. Nanohybrid of ZnO-RGO as heterogeneous green catalyst for the synthesis of medicinally significant indole alkaloids and their derivatives. ChemistrySelect, 2018, 3, 314-320.
[http://dx.doi.org/10.1002/slct.201701990]
c) Kangari, S.; Yavari, I. Preparation of immobilized hexamine on Fe3O4/SiO2core/shell nanoparticles: a novel catalyst for solvent-free synthesis of bis(indolyl)methanes. Res. Chem. Intermed., 2016, 42, 8217-8226.
[http://dx.doi.org/10.1007/s11164-016-2590-z]
d) Pegu, R.; Majumdar, K.J.; Talukdar, D.J.; Pratihar, S. Oxalate capped iron nanomaterial: from methylene blue degradation to bis(indolyl)methane synthesis. RSC Advances, 2014, 4, 33446-33456.
[http://dx.doi.org/10.1039/C4RA04214J]
e) Sabitha, G.; Reddy, N.M.; Prasad, M.N.; Yadav, J.S.; Sivudu, K.S.; Shailaja, D. Efficient synthesis of bis(indolyl)methanes using nano ceria supported on vinyl pyridine polymer at ambient temperature. Lett. Org. Chem., 2008, 5, 300-303.
[http://dx.doi.org/10.2174/157017808784049560]
f) Parvanak Boroujeni, K.; Asadi, F.; Kazemi, R.; Fadavi, A. Carbon nanotubes grafted with sulfonated polyacrylamide as a heterogeneous catalyst for the preparation of bis(indolyl)methanes. J. Nanopart. Res., 2019, 21, 151.
[http://dx.doi.org/10.1007/s11051-019-4543-0]
b) Bankar, S. Nano-Fe3O4@L-cysteine as an efficient recyclable organocatalyst for the green synthesis of bis (indolyl) methanes under microwave irradiation. Curr. Organocatal., 2018, 5, 42-50.
[http://dx.doi.org/10.1039/C5GC00932D]
b) Gao, G.; Han, Y.; Zhang, Z.H. Catalyst free synthesis of bis(indolyl)methanes and 3,3-bis(indolyl)oxindoles in aqueous ethyl lactate. ChemistrySelect, 2017, 2, 11561-11564.
[http://dx.doi.org/10.1002/slct.201702326]
c) Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of bisindolylmethanes using malic acid as a homogeneous and reusable organocatalyst. Curr. Green Chem., 2018, 5, 177-184.
[http://dx.doi.org/10.2174/2213346105666180821114459]
[http://dx.doi.org/10.1080/00397911.2018.1542732]
[http://dx.doi.org/10.1016/S1872-2067(12)60669-X]
b) Ekbote, S.S.; Deshmukh, K.M.; Qureshi, Z.S.; Bhanage, B.M. Polyvinylsulfonic acid as a novel Brønsted acid catalyst for the synthesis of bis(indolyl)methanes. Green Chem. Lett. Rev., 2011, 4, 177-183.
[http://dx.doi.org/10.1080/17518253.2010.528048]
c) Rani, V.J.; Vani, K.V.; Rao, C.V. PEG-SO3H as a catalyst for the preparation of bis-indolyl and tris-indolyl methanes in aqueous media. Synth. Commun., 2012, 42, 2048-2057.
[http://dx.doi.org/10.1080/00397911.2010.551700]
d) Li, J.T.; Sun, M.X.; He, G.Y.; Xu, X.Y. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(1), 412-414.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.016] [PMID: 20727812]
e) Kidwai, M.; Chauhan, R.; Bhatnagar, D. Nafion-H® catalyzed efficient condensation of indoles with aromatic aldehydes in PEG-water solvent system: A green approach. Arab. J. Chem., 2016, 9, S2004-S2010.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.009]
f) Parvanak Boroujeni, K.; Tohidiyan, Z.; Fadavi, A.; Eskandari, M.M.; Shahsanaei, H.A. Synthesis and catalytic application of poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylamide) grafted on graphene oxide. ChemistrySelect, 2019, 4, 7734-7744.
[http://dx.doi.org/10.1002/slct.201900695]
[http://dx.doi.org/10.1080/17518253.2014.902506]
b) Sun, D.; Jiang, G.; Xie, Z.; Le, Z.G. α-Chymotrypsin-catalyzed synthesis of bis(indolyl)alkanes in water. Chin. J. Chem., 2015, 33, 409-412.
[http://dx.doi.org/10.1002/cjoc.201400892]
c) Xie, Z.B.; Sun, D.Z.; Jiang, G.F.; Le, Z.G. Facile synthesis of bis(indolyl)methanes catalyzed by α-chymotrypsin. Molecules, 2014, 19(12), 19665-19677.
[http://dx.doi.org/10.3390/molecules191219665] [PMID: 25438078]
[http://dx.doi.org/10.1080/17518253.2011.637967]
b) Patil, V.D.; Dere, G.B.; Rege, P.A.; Patil, J.J. Synthesis of bis(indolyl) methanes in catalyst- and solvent-free reaction. Synth. Commun., 2011, 41, 736-747.
[http://dx.doi.org/10.1080/00397911003642690]
[http://dx.doi.org/10.1007/s11164-014-1766-7]
[http://dx.doi.org/10.1016/j.jscs.2015.09.005]
[http://dx.doi.org/10.1016/j.jscs.2016.07.001]