Abstract
The field of heterocyclic chemistry has been revolutionized using transition metal catalysts in recent years. Various research groups have focused on the development of general protocols to achieve better functional group compatibilities and greater levels of molecular complexity under mild reaction conditions, using easily available starting substrates. The methodologies used earlier for their synthesis were less approachable to organic chemists because of their high cost, highly specified instrumentation and inconvenient methods. For both stereoselective and regioselective synthesis of five-membered nitrogen- containing heterocycles, cyclic reactions that are Ru-catalyzed have known to be very efficient. These methods have many advantages as compared to alternative pathways involved in the synthesis of heterocyclic compounds. In this review article, we concentrated on the synthesis of nitrogen-containing five-membered heterocycles in the presence of a ruthenium catalyst. This review mostly covers the literature published during the period from 1977-2019.
Keywords: Ruthenium, catalysis, heterocycles, nitrogen, synthesis, five-membered heterocycles.
Graphical Abstract
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
(b) Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev., 2013, 113(5), 3084-3213.
[http://dx.doi.org/10.1021/cr300333u] [PMID: 23305185]
(c) Liu, Q.; Zhang, H.; Lei, A. Oxidative carbonylation reactions: organometallic compounds (R-M) or hydrocarbons (R-H) as nucleophiles. Angew. Chem. Int. Ed., 2011, 50, 10788-10799.
[http://dx.doi.org/10.1002/anie.201100763]
(d) Padwa, A.; Stengel, T. Transition metal catalyzed ring opening reactions of 2-phenyl-3-vinyl substituted 2H-azirines. Tetrahedron Lett., 2004, 45(31), 5991-5993.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.046]
(e) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49(15), 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922]
(f) Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149]
(g) Kaur, N. Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497]
(h) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49, 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306]
(i)Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49(12), 1459-1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423]
(j)Kaur, N. Synthesis of six- and seven-membered and larger heterocycles using Au and Ag catalysts. Inorg. Nano-Metal Chem., 2018, 48(11), 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544]
[http://dx.doi.org/10.2174/1570179043366611]
(b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
(c) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479]
(d) Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
(e) Huo, H-H.; Xia, X-E.; Zhang, H-K.; Huang, P-Q. Enantioselective total syntheses of (-)-FR901483 and (+)-8-epi-FR901483. J. Org. Chem., 2013, 78(2), 455-465.
[http://dx.doi.org/10.1021/jo302362b] [PMID: 23214918]
(f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49, 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732]
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
(b) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 1205-1230.
[http://dx.doi.org/10.1080/00397911.2018.1540048]
(c) Kaur, N. Copper catalyzed synthesis of seven and higher-membered heterocycles. Synth. Commun., 2019, 49, 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780]
(d) Kaur, N. Ionic liquid assisted synthesis of S-heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492]
(e) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49, 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499]
(f) Kaur, N. Seven-membered N-heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351]
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O, N-heterocycles using metal and non-metal. Synth. Commun., 2019, 49, 1345-1384.
[http://dx.doi.org/10.1080/00397911.2019.1594308]
(h) Kaur, N. Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493]
(i)Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 14, 1513-1539.
[http://dx.doi.org/10.1007/s10562-019-02746-2]
[http://dx.doi.org/10.1002/jhet.2129]
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14, 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941]
(c) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14, 972-998.
(d) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14, 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050]
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46, 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620]
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47, 163-187.
(g) Orru, R.V.A.; de Greef, M. Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 10, 1471-1499.
[http://dx.doi.org/10.1055/s-2003-40507]
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44, 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129]
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44, 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
(d) Kaur, N. Microwave-assisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44, 3483-3508.
[http://dx.doi.org/10.1080/00397911.2013.800213]
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44, 3509-3537.
[http://dx.doi.org/10.1080/00397911.2013.800214]
(f) Kaur, N. Microwave-assisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44, 3229-3247.
[http://dx.doi.org/10.1080/00397911.2013.798666]
(g) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48, 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
(h) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48, 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218]
(i)Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673]
[http://dx.doi.org/10.1007/s13738-014-0451-5]
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N, N-heterocycles. Synth. Commun., 2015, 45, 1269-1300.
[http://dx.doi.org/10.1080/00397911.2013.827725]
(c) Kaur, N. Synthesis of fused five-membered N, N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1379-1410.
[http://dx.doi.org/10.1080/00397911.2013.828078]
(d) Kaur, N. Microwave-assisted synthesis of seven membered Sheterocycles. Synth. Commun, 2014, 44, 3201-3228.
[http://dx.doi.org/10.1080/00397911.2013.798665]
e Kaur, N. Six membered N-heterocycles: Microwave-assisted synthesis. Synth. Commun, 2015, 45, 1- 34.
[http://dx.doi.org/10.1080/00397911.2013.813548]
(f) Kaur, N. Polycyclic six membered N-heterocycles: Microwave-assisted synthesis. Synth. Commun, 2015, 45, 35-69.
[http://dx.doi.org/10.1080/00397911.2013.813549]
(g) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev, 2015, 57, 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824]
(h) Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun, 2018, 48, 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
(i) Kaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun, 2018, 48, 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
(j) Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and Sheterocycles. Synth. Commun, 2018, 48, 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
(k) Kaur, N. Photochemical mediated reactions in five-membered Oheterocycles synthesis. Synth. Commun, 2018, 48, 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
(l) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun, 2018, 48, 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657]
(m) Kaur, N. Photochemical irradiation: Seven and higher membered Oheterocycles. Synth. Commun, 2018, 48, 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
(n) Kaur, N. Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synth. Commun, 2018, 48, 2815-2849.
[http://dx.doi.org/10.1080/00397911.2018.1501488]
(o) Kaur, N. Ruthenium catalyzed synthesis of five-membered Oheterocycles. Inorg. Chem. Commun, 2018, 99, 82-107.
[http://dx.doi.org/10.1016/j.inoche.2018.11.011]
[http://dx.doi.org/10.1080/00397911.2013.824984]
(b) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45, 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550]
(c) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45, 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734]
(d) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45, 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735]
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45, 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
(f) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44, 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202]
(g) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442]
(h) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48, 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070]
[http://dx.doi.org/10.1080/00397911.2013.825808]
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45, 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982]
(c) Kaur, N.J. Microwave-assisted synthesis of five membered S-heterocycles. Iranian Chem. Soc., 2014, 11, 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2]
(d) Kaur, N. Review on the synthesis of six membered N, N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208]
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236]
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N, N-heterocycles. Synth. Commun., 2015, 45, 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755]
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45, 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756]
(h) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213]
(i)Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O-heterocycles. Synth. Commun., 2019, 49, 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
(j) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49, 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711]
[http://dx.doi.org/10.1021/cr050041j] [PMID: 18611054]
[http://dx.doi.org/10.1080/00397911.2013.824981]
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45, 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44, 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922]
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44, 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354]
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44, 2739-2755.
[http://dx.doi.org/10.1080/00397911.2013.796382]
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349]
[http://dx.doi.org/10.1016/j.tet.2005.11.027]
[http://dx.doi.org/10.1080/01614940.2014.976118]
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O,O-heterocycles. Synth. Commun., 2014, 44, 3082-3111.
[http://dx.doi.org/10.1080/00397911.2013.796384]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44, 3047-3081.
[http://dx.doi.org/10.1080/00397911.2013.796383]
(d) Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104(5), 2127-2198.
[http://dx.doi.org/10.1021/cr020095i] [PMID: 15137788]
(e) Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem. Rev., 2006, 106(11), 4644-4680.
[http://dx.doi.org/10.1021/cr0683966] [PMID: 17091931]
[http://dx.doi.org/10.1016/j.molcata.2013.02.017]
(b) Naota, T.; Takaya, H.; Murahashi, S-I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev., 1998, 98(7), 2599-2660.
[http://dx.doi.org/10.1021/cr9403695] [PMID: 11848973]
(c) Murahashi, S-I.; Takaya, H.; Naota, T. Ruthenium catalysis in organic synthesis. Pure Appl. Chem., 2002, 74, 19-24.
[http://dx.doi.org/10.1351/pac200274010019]
(d) Kim, Y-H.; Hwang, S-K.; Kim, J.W.; Lee, Y-S. Zirconia supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehyde. Ind. Eng. Chem. Res., 2014, 53, 12548-12552.
[http://dx.doi.org/10.1021/ie5009794]
(e) Murahashi, S-I.; Takaya, H. Low-valent ruthenium and iridium hydride complexes as alternatives to Lewis acid and base catalysts. Acc. Chem. Res., 2000, 33, 225-233.
[http://dx.doi.org/10.1021/ar980085x]
(f) Murahashi, S-I.; Naota, T. A new way for efficient catalysis by using low valent ruthenium complexes as redox Lewis acid and base catalysts. Bull. Chem. Soc. Jpn., 1996, 69, 1805-1824.
[http://dx.doi.org/10.1246/bcsj.69.1805]
(g) Grubbs, R.H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed., 2006, 45, 3760-3765.
[http://dx.doi.org/10.1002/anie.200600680]
(h) Nguyen, S.T.; Grubbs, R.H.; Ziller, J.W. Synthesis and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc., 1993, 115, 9858-9859.
[http://dx.doi.org/10.1021/ja00074a086]
(i)Schwab, P.; Grubbs, R.H.; Ziller, J.W. Synthesis and applications of RuCl2(CHR’)(PR3)2: The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc., 1996, 118, 100-110.
[http://dx.doi.org/10.1021/ja952676d]
(j)Nguyen, S.T.; Johnson, L.K.; Grubbs, R.H.; Ziller, J.W. Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media. J. Am. Chem. Soc., 1992, 114, 3974-3975.
[http://dx.doi.org/10.1021/ja00036a053]
(k)Ferguson, M.L.; O’Leary, D.J.; Grubbs, R.H.; Grubbs, R.H. Ring-closing metathesis synthesis of N-Boc-3-pyrroline. Org. Synth., 2003, 80, 85-92.
[http://dx.doi.org/10.15227/orgsyn.080.0085]
(l)Andrade, R.B.; Plante, O.J.; Melean, L.G.; Seeberger, P.H. Solid-phase oligosaccharide synthesis: preparation of complex structures using a novel linker and different glycosylating agents. Org. Lett., 1999, 1(11), 1811-1814.
[http://dx.doi.org/10.1021/ol991071+] [PMID: 10836038]
(m)Burdett, K.A.; Harris, L.D.; Margl, P.; Maughon, B.R.; Mokhtar-Zadeh, T.; Saucier, P.C.; Wasserman, E.P. Renewable monomer feedstocks via olefin metathesis: fundamental mechanistic studies of methyl oleate ethenolysis with the first-generation Grubbs catalyst. Organometallics, 2004, 23, 2027-2047.
[http://dx.doi.org/10.1021/om0341799]
(n)Blackwell, H.E.; O’Leary, D.J.; Chatterjee, A.K.; Washenfelder, R.A.; Bussmann, D.A.; Grubbs, R.H. New approaches to olefin cross-metathesis. J. Am. Chem. Soc., 2000, 122, 58-71.
[http://dx.doi.org/10.1021/ja993063u]
(o)France, M.B.; Paciello, R.A.; Grubbs, R.H. Initiation of ring-opening metathesis polymerization in protic media. Extension of [Ru(H2O)6]2+ catalyzed polymerizations to less-strained cyclic monomers. Macromolecules, 1993, 26, 4739-4741.
[http://dx.doi.org/10.1021/ma00070a001]
(p)Johnson, L.K.; Grubbs, R.H.; Ziller, J.W. Synthesis of tungsten vinyl alkylidene complexes via the reactions of WCl2(NAr)(PX3)3 (X = R, OMe) precursors with 3,3-disubstituted cyclopropenes. J. Am. Chem. Soc., 1993, 115, 8130-8145.
[http://dx.doi.org/10.1021/ja00071a026]
(q)Dias, E.L.; Nguyen, S.T.; Grubbs, R.H. Well-defined ruthenium olefin metathesis catalysts: Mechanism and activity. J. Am. Chem. Soc., 1997, 119, 3887-3897.
[http://dx.doi.org/10.1021/ja963136z]
(r)Binger, P.; Müller, P.; Benn, R.; Mynott, R. Vinylcarbene complexes of titanocene. Angew. Chem. Int. Ed. Engl., 1989, 28, 610-611.
[http://dx.doi.org/10.1002/anie.198906101]
[http://dx.doi.org/10.1002/chem.200600332] [PMID: 16953512]
(b) Azizi, M.; Maleki, A.; Hakimpoor, F.; Firouzi-Haji, R.; Ghassemi, M.; Rahimi, J. Green approach for highly efficient synthesis of polyhydroquinolines using Fe3O4@PEO-SO3H as a novel and recoverable magnetic nanocomposite catalyst. Lett. Org. Chem., 2018, 15, 753-759.
[http://dx.doi.org/10.2174/1570178615666180126155204]
(c) Maleki, A.; Sarvary, A. Synthesis of tetrazoles via isocyanide-based reactions. RSC Advances, 2015, 5, 60938-60955.
[http://dx.doi.org/10.1039/C5RA11531K]
(d) Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers., 2015, 19(1), 189-212.
[http://dx.doi.org/10.1007/s11030-014-9553-3] [PMID: 25273563]
(e) Maleki, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym., 2019, 208, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.069] [PMID: 30658798]
(f) Maleki, A.; Movahed, H.; Ravaghi, P. Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr. Polym., 2017, 156, 259-267.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.002] [PMID: 27842821]
(g) Maleki, A.; Jafari, A.A.; Yousefi, S. Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr. Polym., 2017, 175, 409-416.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.019] [PMID: 28917883]
(h) Maleki, A. Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 2012, 68, 7827-7833.
[http://dx.doi.org/10.1016/j.tet.2012.07.034]
(i)Maleki, A.; Rabbani, M.; Shahrokh, S. Preparation and characterization of a silica‐based magnetic nanocomposite and its application as a recoverable catalyst for the one‐pot multicomponent synthesis of quinazolinone derivatives. Appl. Organomet. Chem., 2015, 29, 809-814.
[http://dx.doi.org/10.1002/aoc.3373]
[http://dx.doi.org/10.1002/ejoc.200500602]
(b) Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 2013, 54, 2055-2059.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.123]
(c) Maleki, A. Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem., 2018, 40, (Pt A), 460-464.
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.020] [PMID: 28946446]
(d) Maleki, A. One-pot three-component synthesis of pyrido[2′,1′:2,3]imi-dazo[4,5-c]isoquinolines using Fe3O4@SiO2-OSO3H as an efficient heterogeneous nanocatalyst. RSC Advances, 2014, 4, 64169-64173.
[http://dx.doi.org/10.1039/C4RA10856F]
(e) Maleki, A.; Firouzi-Haji, R. L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci. Rep., 2018, 8(1), 17303.
[http://dx.doi.org/10.1038/s41598-018-35676-x] [PMID: 30470821]
(f) Maleki, A.; Aghaei, M.; Ghamari, N. Facile synthesis of tetrahydrobenzoxanthenones via a one‐pot three‐component reaction using an eco‐friendly and magnetized biopolymer chitosan‐based heterogeneous nanocatalyst. Appl. Organomet. Chem., 2016, 30, 939-942.
[http://dx.doi.org/10.1002/aoc.3524]
(g) Maleki, A.; Kamalzare, M. An efficient synthesis of benzodiazepine derivatives via a one-pot, three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett., 2014, 55, 6931-6934.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.120]
(h) Maleki, A.; Taheri-Ledari, R.; Rahimi, J.; Soroushnejad, M.; Hajizadeh, Z. Facile peptide bond formation: Effective interplay between isothiazolone rings and silanol groups at silver/iron oxide nanocomposite surfaces. ACS Omega, 2019, 4(6), 10629-10639.
[http://dx.doi.org/10.1021/acsomega.9b00986] [PMID: 31460161]
(i) Maleki, A.; Hajizadeh, Z.; Salehi, P. Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep., 2019, 9(1), 5552.
[http://dx.doi.org/10.1038/s41598-019-42126-9] [PMID: 30944394]
(j) Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl. Chem., 2018, 90, 387-394.
[http://dx.doi.org/10.1515/pac-2017-0702]
[http://dx.doi.org/10.1016/S0040-4039(03)01080-3]
[http://dx.doi.org/10.1016/j.tetlet.2004.02.100]
[http://dx.doi.org/10.1021/jo048519r] [PMID: 15549809]
(b) Suna, E.; Mutule, I. Microwave-assisted heterocyclic chemistry. Top. Curr. Chem., 2006, 266, 49-101.
[http://dx.doi.org/10.1007/128_058]
[http://dx.doi.org/10.1039/b007396m]
[http://dx.doi.org/10.1021/cr020009e]
[http://dx.doi.org/10.1039/a807843b]
[http://dx.doi.org/10.1002/anie.199725181]
[http://dx.doi.org/10.1007/s11030-010-9258-1] [PMID: 20669047]
[http://dx.doi.org/10.1002/1615-4169(200208)344:6/7<631:AID-ADSC631>3.0.CO;2-W]
[http://dx.doi.org/10.1016/S0040-4039(02)02736-3]
[http://dx.doi.org/10.3987/REV-08-646]
(b) Majumdar, K.C.; Chattopadhyay, B.; Ray, K. Formation of five- and six-membered heterocyclic compounds by ring closing metathesis. Curr. Org. Synth., 2010, 7, 153-176.
[http://dx.doi.org/10.2174/157017910790820292]
[http://dx.doi.org/10.1002/anie.200503512]
[http://dx.doi.org/10.1016/j.tet.2007.03.066]
[http://dx.doi.org/10.1016/S0040-4020(03)00411-3]
[http://dx.doi.org/10.1016/S0040-4039(96)02390-8]
[http://dx.doi.org/10.1021/ja961626l]
[http://dx.doi.org/10.1021/jo060160e] [PMID: 16674086]
[http://dx.doi.org/10.1002/anie.200290019]
[http://dx.doi.org/10.1021/ja060812g] [PMID: 16704278]
[http://dx.doi.org/10.1021/ol034614v] [PMID: 12790552]
[http://dx.doi.org/10.1021/ja9606743]
[http://dx.doi.org/10.1039/b108306f]
[http://dx.doi.org/10.1002/1099-0690(200208)2002:16<2855:AID-EJOC2855>3.0.CO;2-1]
[http://dx.doi.org/10.1021/ja016431e] [PMID: 11697983]
[http://dx.doi.org/10.1021/ol015606m] [PMID: 11348184]
[http://dx.doi.org/10.1021/cr950016l] [PMID: 11848744]
[http://dx.doi.org/10.1021/cr950065y]
[http://dx.doi.org/10.1021/cr941164z] [PMID: 11848882]
[http://dx.doi.org/10.1002/anie.200301688]
[http://dx.doi.org/10.1021/jo981616y]
[http://dx.doi.org/10.1021/ja9942890]
[http://dx.doi.org/10.1021/ja017012k] [PMID: 11782166]
[http://dx.doi.org/10.1246/cl.2003.24]
[http://dx.doi.org/10.1021/ja9929537]
[http://dx.doi.org/10.1021/ja003168t]
[http://dx.doi.org/10.1021/ol0610136] [PMID: 16898777]
[http://dx.doi.org/10.1021/jo802391x] [PMID: 19123833]
[http://dx.doi.org/10.1016/j.tetlet.2008.10.019]
[http://dx.doi.org/10.1002/ejoc.200700859]
[http://dx.doi.org/10.1055/s-2000-6295]
[http://dx.doi.org/10.1021/jo000230w] [PMID: 10866631]
[http://dx.doi.org/10.1021/ja011710n] [PMID: 11603971]
[http://dx.doi.org/10.1002/1615-4169(20011231)343:8<795:AID-ADSC795>3.0.CO;2-M]
[http://dx.doi.org/10.1021/jo026001m] [PMID: 12353994]
[http://dx.doi.org/10.1021/jo980896e] [PMID: 11672225]
(b) Mori, M. Recent progress on enyne metathesis: its application to syntheses of natural products and related compounds. Materials (Basel), 2010, 3, 2087-2140.
[http://dx.doi.org/10.3390/ma3032087]
(c) Mori, M. Synthesis of natural products and related compounds using enyne metathesis. Adv. Synth. Catal., 2007, 349, 121-135.
[http://dx.doi.org/10.1002/adsc.200600484]
[http://dx.doi.org/10.1039/b101453f]
[http://dx.doi.org/10.1002/1615-4169(200208)344:6/7<678:AID-ADSC678>3.0.CO;2-P]
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
[http://dx.doi.org/10.1016/S0040-4039(99)00919-3]
[http://dx.doi.org/10.1021/ol005651e] [PMID: 10841468]
[http://dx.doi.org/10.1021/ja001179g]
[http://dx.doi.org/10.3390/molecules17033348] [PMID: 22421789]
[http://dx.doi.org/10.1021/jo702169p] [PMID: 18052392]
[http://dx.doi.org/10.1021/jo800203d] [PMID: 18459814]
[http://dx.doi.org/10.1016/j.tet.2005.08.078]
[http://dx.doi.org/10.1021/ja00074a085]
[http://dx.doi.org/10.1021/ja00044a070]
[http://dx.doi.org/10.1016/0040-4039(94)02308-X]
[http://dx.doi.org/10.1055/s-1997-1497]
[http://dx.doi.org/10.1055/s-2008-1077888]
[http://dx.doi.org/10.1021/ja0579762] [PMID: 16551117]
[http://dx.doi.org/10.1021/ja063186w] [PMID: 17044669]
[http://dx.doi.org/10.1021/ol8027829] [PMID: 19105682]
[http://dx.doi.org/10.1021/jo801330c] [PMID: 18722404]
[http://dx.doi.org/10.1071/CH04153]
[http://dx.doi.org/10.1021/ol025789s] [PMID: 11975630]
[http://dx.doi.org/10.1021/ja0709829] [PMID: 17480078]
[http://dx.doi.org/10.1016/S0040-4039(03)00083-2]
[http://dx.doi.org/10.1016/j.tetlet.2003.10.049]
[http://dx.doi.org/10.1021/jo035135c] [PMID: 14604397]
[http://dx.doi.org/10.1021/jo000898a] [PMID: 11052139]
[http://dx.doi.org/10.1016/S0040-4039(98)01473-7]
[http://dx.doi.org/10.1055/s-2001-11394]
[http://dx.doi.org/10.1021/ol047356q]
[http://dx.doi.org/10.1021/ja9939744]
[http://dx.doi.org/10.1016/j.tetlet.2003.10.127]
[http://dx.doi.org/10.1016/j.tetlet.2006.06.142]
[http://dx.doi.org/10.1016/j.tetlet.2004.02.047]
[http://dx.doi.org/10.1039/C39930000764]
[http://dx.doi.org/10.1246/bcsj.60.3456]
[http://dx.doi.org/10.1016/j.tetlet.2007.05.069]
[http://dx.doi.org/10.1016/j.tetlet.2007.05.070]
[http://dx.doi.org/10.1039/B813383B] [PMID: 19156265]
[http://dx.doi.org/10.1002/sim.1354] [PMID: 12652565]
[http://dx.doi.org/10.1039/B608235C]
[http://dx.doi.org/10.1002/anie.200351170]
[http://dx.doi.org/10.1021/ja01256a013]
[http://dx.doi.org/10.1021/ja807696e] [PMID: 19554686]
[http://dx.doi.org/10.1021/ja807323a] [PMID: 19191700]
[http://dx.doi.org/10.1002/anie.200454157]
[http://dx.doi.org/10.1021/ja029747a] [PMID: 12733879]
[http://dx.doi.org/10.1021/ja0700146] [PMID: 17429974]
[http://dx.doi.org/10.1055/s-2006-950440]
[http://dx.doi.org/10.1039/b411571f] [PMID: 15599425]
[http://dx.doi.org/10.1246/bcsj.59.927]
[http://dx.doi.org/10.1039/b002211j]
[http://dx.doi.org/10.1021/ol017298y] [PMID: 11869132]
[http://dx.doi.org/10.1016/j.tet.2005.11.083]
[http://dx.doi.org/10.1021/ol052741g] [PMID: 16435859]
[http://dx.doi.org/10.1021/ja00278a054]
[http://dx.doi.org/10.1021/om00013a056]
[http://dx.doi.org/10.1021/ja00077a077]
[http://dx.doi.org/10.1002/chem.200801795] [PMID: 19009576]
[http://dx.doi.org/10.1021/om900275j]
[http://dx.doi.org/10.1039/c005219c] [PMID: 20617243]
[http://dx.doi.org/10.1021/ja900046z] [PMID: 19413322]
[http://dx.doi.org/10.1135/cccc2009053]
[http://dx.doi.org/10.1016/j.tet.2011.07.087]
[http://dx.doi.org/10.1039/c39850000518]
[http://dx.doi.org/10.1021/ja055806j] [PMID: 16287328]
[http://dx.doi.org/10.1055/s-1993-25950]
[http://dx.doi.org/10.1021/ja0112184] [PMID: 11673982]
[http://dx.doi.org/10.1002/anie.200600497]
[http://dx.doi.org/10.1021/ol026696d] [PMID: 12599476]
[http://dx.doi.org/10.1016/j.tet.2004.05.030]
[http://dx.doi.org/10.1021/ol0348710] [PMID: 12889888]
[http://dx.doi.org/10.1002/asia.200900712] [PMID: 20432504]
[http://dx.doi.org/10.1021/jo981150j]
[http://dx.doi.org/10.1016/S0040-4039(01)00177-0]
[http://dx.doi.org/10.1016/j.tetlet.2004.08.022]
(b) Alcaide, B.; Almendros, P. Novel aspects on the preparation of spirocyclic and fused unsual β-lactams. Top. Heterocycl. Chem., 2010, 22, 1-48.
[http://dx.doi.org/10.1007/7081_2009_7]
[http://dx.doi.org/10.1021/ol050819n] [PMID: 16288503]
[http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2313:AID-ANIE2313>3.0.CO;2-H]
[http://dx.doi.org/10.1016/j.tet.2004.04.074]
[http://dx.doi.org/10.1002/1521-3773(20020503)41:9<1584:AID-ANIE1584>3.0.CO;2-Y]
[http://dx.doi.org/10.1021/ol0361251] [PMID: 14703357]
[http://dx.doi.org/10.1016/j.tetlet.2004.05.031]
[http://dx.doi.org/10.1021/ja048794v] [PMID: 15281822]
[http://dx.doi.org/10.1021/ja000314m]
[http://dx.doi.org/10.1021/cr941164z] [PMID: 11848882]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980420)37:7<911:AID-ANIE911>3.0.CO;2-O] [PMID: 29711489]
[http://dx.doi.org/10.1016/S0010-8545(99)00032-6]
[http://dx.doi.org/10.1021/ja9939237]
[http://dx.doi.org/10.1039/a909462h]
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000204)39:3<631:AID-ANIE631>3.0.CO;2-B]
[http://dx.doi.org/10.1055/s-2000-6301]
[http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3676:AID-ANIE3676>3.0.CO;2-K]
[http://dx.doi.org/10.1002/1521-3773(20001117)39:22<4158:AID-ANIE4158>3.0.CO;2-#]
[http://dx.doi.org/10.1021/jo0057708] [PMID: 11325265]
[http://dx.doi.org/10.1039/b107577m] [PMID: 12240116]
[http://dx.doi.org/10.1016/S0040-4039(00)02204-8]
[http://dx.doi.org/10.1021/ol025836g] [PMID: 11975643]
[http://dx.doi.org/10.1016/S0040-4020(02)00420-9]
[http://dx.doi.org/10.1021/jo0262661] [PMID: 12375978]
[http://dx.doi.org/10.1246/cl.2002.1040]
[http://dx.doi.org/10.1021/ol026826i] [PMID: 12423090]
[http://dx.doi.org/10.1016/S0040-4039(00)01721-4]
[http://dx.doi.org/10.1016/j.tetlet.2003.10.197]
[http://dx.doi.org/10.1016/j.molcata.2005.12.048]
[http://dx.doi.org/10.1039/np9971400653]
[http://dx.doi.org/10.1021/jo0493121] [PMID: 15357589]
[http://dx.doi.org/10.1021/jo049820a] [PMID: 15104454]
[http://dx.doi.org/10.1002/anie.201101380]
(b) Ascic, E.; Jensen, J.F.; Nielsen, T.E. Synthesis of heterocycles through a ruthenium-catalyzed tandem ring-closing metathesis/isomerization/N-acyliminium cyclization sequence. Angew. Chem. Int. Ed., 2011, 50, 5188-5191.
[http://dx.doi.org/10.1002/anie.201100417]
[http://dx.doi.org/10.1039/C0CC03186K] [PMID: 21072421]
[http://dx.doi.org/10.1002/anie.201102306]
[http://dx.doi.org/10.1039/c2cs15224j] [PMID: 22358177]
[http://dx.doi.org/10.1055/s-1977-24273]
[http://dx.doi.org/10.1016/S0022-328X(00)85864-7]
[http://dx.doi.org/10.1016/S0022-328X(00)99836-X]
[http://dx.doi.org/10.1021/ja00361a057]
[http://dx.doi.org/10.1055/s-2008-1078488]
[http://dx.doi.org/10.1021/ol052041b] [PMID: 16209523]
[http://dx.doi.org/10.1351/PAC-CON-09-12-09] [PMID: 20622923]
[http://dx.doi.org/10.1055/s-2000-8211]
[http://dx.doi.org/10.1021/om00023a002]
[http://dx.doi.org/10.1021/om00011a027]
[http://dx.doi.org/10.1016/S0040-4039(99)00726-1]
[http://dx.doi.org/10.1021/ol000036w]
[http://dx.doi.org/10.1021/ol010045k] [PMID: 11348247]
[http://dx.doi.org/10.1021/ol034670w] [PMID: 12816439]
[http://dx.doi.org/10.1016/j.tet.2008.04.034]
[http://dx.doi.org/10.1016/j.tet.2004.07.040]
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2403:AID-ANIE2403>3.0.CO;2-F]
[http://dx.doi.org/10.1016/S0040-4020(03)01029-9]