Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Sexual Dimorphism in Drug Metabolism and Pharmacokinetics

Author(s): Askhi M. Valodara and Kaid Johar SR*

Volume 20, Issue 14, 2019

Page: [1154 - 1166] Pages: 13

DOI: 10.2174/1389200220666191021094906

Price: $65

Abstract

Background: Sex and gender-based differences are observed well beyond the sex organs and affect several physiological and biochemical processes involved in the metabolism of drug molecules. It is essential to understand not only the sex and gender-based differences in the metabolism of the drug but also the molecular mechanisms involved in the regulation of drug metabolism for avoiding sex-related adverse effects of drugs in the human.

Methods: The articles on the sex and gender-based differences in the metabolism of drug molecules were retrieved from the Pub Med database. The articles were classified into the metabolism of the drug molecule, gene expression regulation of drug-metabolizing enzymes, the effect of sex hormones on the metabolism of drug, expression of drugmetabolizing enzymes, etc.

Results: Several drug molecules are known, which are metabolized differently in males and females. These differences in metabolism may be due to the genomic and non-genomic action of sex hormones. Several other drug molecules still require further evaluation at the molecular level regarding the sex and gender-based differences in their metabolism. Attention is also required at the effect of signaling cascades associated with the metabolism of drug molecules.

Conclusion: Sex and gender-based differences in the metabolism of drugs exist at various levels and it may be due to the genomic and non-genomic action of sex hormones. Detailed understanding of the effect of sex and related condition on the metabolism of drug molecules will help clinicians to determine the effective therapeutic doses of drugs dependingon the condition of patient and disease.

Keywords: Sex differences, drug metabolism, sex hormones, pharmacokinetics, drug-metabolizing enzymes, adverse drug events.

Graphical Abstract

[1]
Chang, E.; Varghese, M.; Singer, K. Gender and sex differences in adipose tissue. Curr. Diab. Rep., 2018, 18(9), 69.
[http://dx.doi.org/10.1007/s11892-018-1031-3] [PMID: 30058013]
[2]
Ventura-Clapier, R.; Moulin, M.; Piquereau, J.; Lemaire, C.; Mericskay, M.; Veksler, V.; Garnier, A. Mitochondria: a central target for sex differences in pathologies. Clin. Sci. (Lond.), 2017, 131(9), 803-822.
[http://dx.doi.org/10.1042/CS20160485] [PMID: 28424375]
[3]
de Vries, G.J.; Forger, N.G. Sex differences in the brain: a whole body perspective. Biol. Sex Differ., 2015, 6, 15.
[http://dx.doi.org/10.1186/s13293-015-0032-z] [PMID: 26279833]
[4]
Straface, E.; Gambardella, L.; Brandani, M.; Malorni, W. Sex differences at cellular level: “cells have a sex. Handb. Exp. Pharmacol., 2012, 214(214), 49-65.
[PMID: 23027445]
[5]
Wagner, H.; Fink, B.A.; Zadnik, K. Sex- and gender-based differences in healthy and diseased eyes. Optometry, 2008, 79(11), 636-652.
[http://dx.doi.org/10.1016/j.optm.2008.01.024] [PMID: 19811761]
[6]
Gupta, P.D.; Johar, K., Sr; Nagpal, K.; Vasavada, A.R. Sex hormone receptors in the human eye. Surv. Ophthalmol., 2005, 50(3), 274-284.
[http://dx.doi.org/10.1016/j.survophthal.2005.02.005] [PMID: 15850816]
[7]
Clegg, D.J.; Mauvais-Jarvis, F. An integrated view of sex differences in metabolic physiology and disease. Mol. Metab., 2018, 15, 1-2.
[http://dx.doi.org/10.1016/j.molmet.2018.06.011] [PMID: 30032908]
[8]
Mulvey, B.; Bhatti, D.L.; Gyawali, S.; Lake, A.M.; Kriaucionis, S.; Ford, C.P.; Bruchas, M.R.; Heintz, N.; Dougherty, J.D. Molecular and functional sex differences of noradrenergic neurons in the mouse locus coeruleus. Cell Rep., 2018, 23(8), 2225-2235.
[http://dx.doi.org/10.1016/j.celrep.2018.04.054] [PMID: 29791834]
[9]
Dogan, M.; Yiginer, O.; Uz, O.; Kucuk, U.; Degirmencioglu, G.; Isilak, Z.; Uzun, M.; Davulcu, E. The effects of female sex hormones on ventricular premature beats and repolarization parameters in physiological menstrual cycle. Pacing Clin. Electrophysiol., 2016, 39(5), 418-426.
[http://dx.doi.org/10.1111/pace.12821] [PMID: 26842421]
[10]
Brown, S.G.; Morrison, L.A.; Calibuso, M.J.; Christiansen, T.M. The menstrual cycle and sexual behavior: relationship to eating, exercise, sleep, and health patterns. Women Health, 2008, 48(4), 429-444.
[http://dx.doi.org/10.1080/03630240802575179] [PMID: 19301532]
[11]
Guerriero, G. Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution. Ann. N. Y. Acad. Sci., 2009, 1163, 154-168.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04460.x] [PMID: 19456336]
[12]
Thakur, M.K.; Paramanik, V. Role of steroid hormone coregulators in health and disease. Horm. Res., 2009, 71(4), 194-200.
[PMID: 19258710]
[13]
Perls, T.; Handelsman, D.J. Disease mongering of age-associated declines in testosterone and growth hormone levels. J. Am. Geriatr. Soc., 2015, 63(4), 809-811.
[http://dx.doi.org/10.1111/jgs.13391] [PMID: 25809947]
[14]
Takahashi, T.A.; Johnson, K.M. Menopause. Med. Clin. North Am., 2015, 99(3), 521-534.
[http://dx.doi.org/10.1016/j.mcna.2015.01.006] [PMID: 25841598]
[15]
Legato, M.J. Principles of Gender-Specific Medicine, 2nd ed; Elsevier Academic Press: Amsterdam, 2009.
[16]
Choi, S.Y.; Koh, K.H.; Jeong, H. Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab. Dispos., 2013, 41(2), 263-269.
[http://dx.doi.org/10.1124/dmd.112.046276] [PMID: 22837389]
[17]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[18]
Smirnova, O.V. [Sex differences in drug action: the role of multidrug-resistance proteins (MRPs)]. Fiziol Cheloveka, 2012, 38(3), 124-136.
[PMID: 22830252]
[19]
Amacher, D.E. Female gender as a susceptibility factor for drug-induced liver injury. Hum. Exp. Toxicol., 2014, 33(9), 928-939.
[http://dx.doi.org/10.1177/0960327113512860] [PMID: 24299907]
[20]
Yang, L.; Li, Y.; Hong, H.; Chang, C.W.; Guo, L.W.; Lyn-Cook, B.; Shi, L.; Ning, B. Sex differences in the expression of drug-metabolizing and transporter genes in human liver. J. Drug Metab. Toxicol., 2012, 3(3)1000119
[http://dx.doi.org/10.4172/2157-7609.1000119] [PMID: 29177108]
[21]
Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet., 2009, 48(3), 143-157.
[http://dx.doi.org/10.2165/00003088-200948030-00001] [PMID: 19385708]
[22]
Soldin, O.P.; Chung, S.H.; Mattison, D.R. Sex differences in drug disposition. J. Biomed. Biotechnol., 2011, 2011187103
[http://dx.doi.org/10.1155/2011/187103] [PMID: 21403873]
[23]
Mazure, C.M.; Fiellin, D.A. Women and opioids: something different is happening here. Lancet, 2018, 392(10141), 9-11.
[http://dx.doi.org/10.1016/S0140-6736(18)31203-0] [PMID: 30047402]
[24]
Liang, Y.; Goros, M.W.; Turner, B.J. Drug overdose: differing risk models for women and men among opioid users with non-cancer pain. Pain Med., 2016, 17(12), 2268-2279.
[http://dx.doi.org/10.1093/pm/pnw071] [PMID: 28025361]
[25]
Alomar, M.J. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm. J., 2014, 22(2), 83-94.
[http://dx.doi.org/10.1016/j.jsps.2013.02.003] [PMID: 24648818]
[26]
Vital signs: overdoses of prescription opioid pain relievers and other drugs among women-United States, 1999-2010. MMWR Morb. Mortal. Wkly. Rep., 2013, 62(26), 537-542.
[PMID: 23820967]
[27]
Kashimada, K.; Koopman, P. Sry: the master switch in mammalian sex determination. Development, 2010, 137(23), 3921-3930.
[http://dx.doi.org/10.1242/dev.048983] [PMID: 21062860]
[28]
Wilhelm, D.; Palmer, S.; Koopman, P. Sex determination and gonadal development in mammals. Physiol. Rev., 2007, 87(1), 1-28.
[http://dx.doi.org/10.1152/physrev.00009.2006] [PMID: 17237341]
[29]
MacLaughlin, D.T.; Donahoe, P.K. Sex determination and differentiation. N. Engl. J. Med., 2004, 350(4), 367-378.
[http://dx.doi.org/10.1056/NEJMra022784] [PMID: 14736929]
[30]
Berta, P.; Hawkins, J.R.; Sinclair, A.H.; Taylor, A.; Griffiths, B.L.; Goodfellow, P.N.; Fellous, M. Genetic evidence equating SRY and the testis-determining factor. Nature, 1990, 348(6300), 448-450.
[http://dx.doi.org/10.1038/348448a0] [PMID: 2247149]
[31]
Imbeaud, S.; Faure, E.; Lamarre, I.; Mattéi, M.G.; di Clemente, N.; Tizard, R.; Carré-Eusèbe, D.; Belville, C.; Tragethon, L.; Tonkin, C.; Nelson, J.; McAuliffe, M.; Bidart, J.M.; Lababidi, A.; Josso, N.; Cate, R.L.; Picard, J.Y. Insensitivity to anti-müllerian hormone due to a mutation in the human anti-müllerian hormone receptor. Nat. Genet., 1995, 11(4), 382-388.
[http://dx.doi.org/10.1038/ng1295-382] [PMID: 7493017]
[32]
Cate, R.L.; Mattaliano, R.J.; Hession, C.; Tizard, R.; Farber, N.M.; Cheung, A.; Ninfa, E.G.; Frey, A.Z.; Gash, D.J.; Chow, E.P.; Fisher, R.A.; Bertonis, J.M.; Torres, G.; Wallner, B.P.; Ramchandran, K.L.; Regin, R.C.; Maganaro, T.F.; MacLaughlin, D.T.; Donahoe, P.K. Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell, 1986, 45(5), 685-698.
[http://dx.doi.org/10.1016/0092-8674(86)90783-X] [PMID: 3754790]
[33]
Whitley, H.; Lindsey, W. Sex-based differences in drug activity. Am. Fam. Physician, 2009, 80(11), 1254-1258.
[PMID: 19961138]
[34]
Franconi, F.; Brunelleschi, S.; Steardo, L.; Cuomo, V. Gender differences in drug responses. Pharmacol. Res., 2007, 55(2), 81-95.
[http://dx.doi.org/10.1016/j.phrs.2006.11.001] [PMID: 17129734]
[35]
Shi, R.; Derendorf, H. Pediatric dosing and body size in biotherapeutics. Pharmaceutics, 2010, 2(4), 389-418.
[http://dx.doi.org/10.3390/pharmaceutics2040389] [PMID: 27721364]
[36]
Vambheim, S.M.; Flaten, M.A. A systematic review of sex differences in the placebo and the nocebo effect. J. Pain Res., 2017, 10, 1831-1839.
[http://dx.doi.org/10.2147/JPR.S134745] [PMID: 28831271]
[37]
Pud, D.; Yarnitsky, D.; Sprecher, E.; Rogowski, Z.; Adler, R.; Eisenberg, E. Can personality traits and gender predict the response to morphine? An experimental cold pain study. Eur. J. Pain, 2006, 10(2), 103-112.
[http://dx.doi.org/10.1016/j.ejpain.2005.01.010] [PMID: 16310713]
[38]
Olofsen, E.; Romberg, R.; Bijl, H.; Mooren, R.; Engbers, F.; Kest, B.; Dahan, A. Alfentanil and placebo analgesia: no sex differences detected in models of experimental pain. Anesthesiology, 2005, 103(1), 130-139.
[http://dx.doi.org/10.1097/00000542-200507000-00020] [PMID: 15983465]
[39]
Mencke, T.; Schreiber, J.U.; Knoll, H.; Stracke, C.; Kleinschmidt, S.; Rensing, H.; Silomon, M. Women report more pain on injection of a precurarization dose of rocuronium: a randomized, prospective, placebo-controlled trial. Acta Anaesthesiol. Scand., 2004, 48(10), 1245-1248.
[http://dx.doi.org/10.1111/j.1399-6576.2004.00506.x] [PMID: 15504183]
[40]
Averbuch, M.; Katzper, M. Gender and the placebo analgesic effect in acute pain. Clin. Pharmacol. Ther., 2001, 70(3), 287-291.
[http://dx.doi.org/10.1067/mcp.2001.118366] [PMID: 11557917]
[41]
Saxon, L.; Hiltunen, A.J.; Hjemdahl, P.; Borg, S. Gender-related differences in response to placebo in benzodiazepine withdrawal: a single-blind pilot study. Psychopharmacology (Berl.), 2001, 153(2), 231-237.
[http://dx.doi.org/10.1007/s002130000574] [PMID: 11205424]
[42]
Gear, R.W.; Miaskowski, C.; Gordon, N.C.; Paul, S.M.; Heller, P.H.; Levine, J.D. The kappa opioid nalbuphine produces gender- and dose-dependent analgesia and antianalgesia in patients with postoperative pain. Pain, 1999, 83(2), 339-345.
[http://dx.doi.org/10.1016/S0304-3959(99)00119-0] [PMID: 10534607]
[43]
Wilcox, C.S.; Cohn, J.B.; Linden, R.D.; Heiser, J.F.; Lucas, P.B.; Morgan, D.L.; DeFrancisco, D. Predictors of placebo response: a retrospective analysis. Psychopharmacol. Bull., 1992, 28(2), 157-162.
[PMID: 1513918]
[44]
Couto, N.; Al-Majdoub, Z.M.; Achour, B.; Wright, P.C.; Rostami-Hodjegan, A.; Barber, J. Quantification of proteins involved in drug metabolism and disposition in the human liver using label-free global proteomics. Mol. Pharm., 2019, 16(2), 632-647.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00941] [PMID: 30608694]
[45]
Krysiak, R.; Szkróbka, W.; Okopień, B. Different effects of fenofibrate on cardiometabolic risk factors in young women with and without hyperprolactinemia. Pharmacol. Rep., 2019, 71(1), 61-66.
[http://dx.doi.org/10.1016/j.pharep.2018.09.004] [PMID: 30469130]
[46]
Ratajczak-Wrona, W.; Nowak, K.; Garley, M.; Tynecka, M.; Jablonska, E. Sex-specific differences in the regulation of inducible nitric oxide synthase by bisphenol A in neutrophils. Hum. Exp. Toxicol., 2019, 38(2), 239-246.
[http://dx.doi.org/10.1177/0960327118793188] [PMID: 30112920]
[47]
Thelen, C.; Flaherty, E.; Saurine, J.; Sens, J.; Mohamed, S.; Pitychoutis, P.M. Sex differences in the temporal neuromolecular and synaptogenic effects of the rapid-acting antidepressant drug ketamine in the mouse brain. Neuroscience, 2019, 398, 182-192.
[http://dx.doi.org/10.1016/j.neuroscience.2018.11.053] [PMID: 30537521]
[48]
Bara, A.; Manduca, A.; Bernabeu, A.; Borsoi, M.; Serviado, M.; Lassalle, O.; Murphy, M.; Wager-Miller, J.; Mackie, K.; Pelissier-Alicot, A.L.; Trezza, V.; Manzoni, O.J. Sex-dependent effects of in utero cannabinoid exposure on cortical function.eLife, 2018. 7e36234
[http://dx.doi.org/10.7554/eLife.36234] [PMID: 30201092]
[49]
Hernández-Moreno, D.; Míguez, M.P.; Soler, F.; Pérez-López, M. Influence of sex on biomarkers of oxidative stress in the kidney, lungs, and liver of rabbits after exposure to diazinon. Environ. Sci. Pollut. Res. Int., 2018, 25(32), 32458-32465.
[http://dx.doi.org/10.1007/s11356-018-3258-6] [PMID: 30232776]
[50]
Galeazzi, R.; Olivieri, F.; Spazzafumo, L.; Rose, G.; Montesanto, A.; Giovagnetti, S.; Cecchini, S.; Malatesta, G.; Di Pillo, R.; Antonicelli, R. Clustering of ABCB1 and CYP2C19 genetic variants predicts risk of major bleeding and thrombotic events in elderly patients with acute coronary syndrome receiving dual antiplatelet therapy with aspirin and clopidogrel. Drugs Aging, 2018, 35(7), 649-656.
[http://dx.doi.org/10.1007/s40266-018-0555-1] [PMID: 29936693]
[51]
Zhang, Q.; Cong, M.; Wang, N.; Li, X.; Zhang, H.; Zhang, K.; Jin, M.; Wu, N.; Qiu, C.; Li, J. Association of angiotensin-converting enzyme 2 gene polymorphism and enzymatic activity with essential hypertension in different gender: A case-control study. Medicine (Baltimore), 2018, 97(42)e12917
[http://dx.doi.org/10.1097/MD.0000000000012917] [PMID: 30335025]
[52]
Bochud, M.; Guessous, I. Gene-environment interactions of selected pharmacogenes in arterial hypertension. Expert Rev. Clin. Pharmacol., 2012, 5(6), 677-686.
[http://dx.doi.org/10.1586/ecp.12.58] [PMID: 23234325]
[53]
Myburgh, R.; Hochfeld, W.E.; Dodgen, T.M.; Ker, J.; Pepper, M.S. Cardiovascular pharmacogenetics. Pharmacol. Ther., 2012, 133(3), 280-290.
[http://dx.doi.org/10.1016/j.pharmthera.2011.11.002] [PMID: 22123178]
[54]
Bray, P.F.; Howard, T.D.; Vittinghoff, E.; Sane, D.C.; Herrington, D.M. Effect of genetic variations in platelet glycoproteins Ibalpha and VI on the risk for coronary heart disease events in postmenopausal women taking hormone therapy. Blood, 2007, 109(5), 1862-1869.
[http://dx.doi.org/10.1182/blood-2006-03-013151] [PMID: 17105818]
[55]
Peng, L.; Zhong, X. Epigenetic regulation of drug metabolism and transport. Acta Pharm. Sin. B, 2015, 5(2), 106-112.
[http://dx.doi.org/10.1016/j.apsb.2015.01.007] [PMID: 26579435]
[56]
Campesi, I.; Carru, C.; Zinellu, A.; Occhioni, S.; Sanna, M.; Palermo, M.; Tonolo, G.; Mercuro, G.; Franconi, F. Regular cigarette smoking influences the transsulfuration pathway, endothelial function, and inflammation biomarkers in a sex-gender specific manner in healthy young humans. Am. J. Transl. Res., 2013, 5(5), 497-509.
[PMID: 23977409]
[57]
Ingelman-Sundberg, M.; Zhong, X.B.; Hankinson, O.; Beedanagari, S.; Yu, A.M.; Peng, L.; Osawa, Y. Potential role of epigenetic mechanisms in the regulation of drug metabolism and transport. Drug Metab. Dispos., 2013, 41(10), 1725-1731.
[http://dx.doi.org/10.1124/dmd.113.053157] [PMID: 23918665]
[58]
Zhong, X.B.; Leeder, J.S. Epigenetic regulation of ADME-related genes: focus on drug metabolism and transport. Drug Metab. Dispos., 2013, 41(10), 1721-1724.
[http://dx.doi.org/10.1124/dmd.113.053942] [PMID: 23935066]
[59]
Zhang, F.F.; Cardarelli, R.; Carroll, J.; Fulda, K.G.; Kaur, M.; Gonzalez, K.; Vishwanatha, J.K.; Santella, R.M.; Morabia, A. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics, 2011, 6(5), 623-629.
[http://dx.doi.org/10.4161/epi.6.5.15335] [PMID: 21739720]
[60]
El-Maarri, O.; Becker, T.; Junen, J.; Manzoor, S.S.; Diaz-Lacava, A.; Schwaab, R.; Wienker, T.; Oldenburg, J. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum. Genet., 2007, 122(5), 505-514.
[http://dx.doi.org/10.1007/s00439-007-0430-3] [PMID: 17851693]
[61]
Kaminsky, Z.; Wang, S.C.; Petronis, A. Complex disease, gender and epigenetics. Ann. Med., 2006, 38(8), 530-544.
[http://dx.doi.org/10.1080/07853890600989211] [PMID: 17438668]
[62]
Mizuno, N.; Niwa, T.; Yotsumoto, Y.; Sugiyama, Y. Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev., 2003, 55(3), 425-461.
[http://dx.doi.org/10.1124/pr.55.3.1] [PMID: 12869659]
[63]
Nelson, D.R.; Goldstone, J.V.; Stegeman, J.J. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1612)20120474
[http://dx.doi.org/10.1098/rstb.2012.0474] [PMID: 23297357]
[64]
Rittle, J.; Green, M.T. Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science, 2010, 330(6006), 933-937.
[http://dx.doi.org/10.1126/science.1193478] [PMID: 21071661]
[65]
Murphy, P.J. Xenobiotic metabolism: a look from the past to the future. Drug Metab. Dispos., 2001, 29(6), 779-780.
[PMID: 11353742]
[66]
Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm., 2017, 112, 234-248.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.034] [PMID: 27914234s]
[67]
Singh, B.N.; Malhotra, B.K. Effects of food on the clinical pharmacokinetics of anticancer agents: underlying mechanisms and implications for oral chemotherapy. Clin. Pharmacokinet., 2004, 43(15), 1127-1156.
[http://dx.doi.org/10.2165/00003088-200443150-00005] [PMID: 15568891]
[68]
Fletcher, C.V.; Acosta, E.P.; Strykowski, J.M. Gender differences in human pharmacokinetics and pharmacodynamics. J. Adolesc. Health, 1994, 15(8), 619-629.
[http://dx.doi.org/10.1016/S1054-139X(94)90628-9] [PMID: 7696281]
[69]
Calabrese, V.P. A micromethod for absorption of specific antibody using an enzyme-linked immunosorbent assay (ELISA). J. Neurosci. Methods, 1984, 11(2), 137-141.
[http://dx.doi.org/10.1016/0165-0270(84)90031-1] [PMID: 6207389]
[70]
DiBlasi, R.M. Clinical controversies in aerosol therapy for infants and children. Respir. Care, 2015, 60(6), 894-914.
[71]
Ulleberg, E.K.; Comi, I.; Holm, H.; Herud, E.B.; Jacobsen, M.; Vegarud, G.E. Human gastrointestinal juices intended for use in in vitro digestion models. Food Dig., 2011, 2(1-3), 52-61.
[http://dx.doi.org/10.1007/s13228-011-0015-4] [PMID: 22558059]
[72]
Lu, P.J.; Hsu, P.I.; Chen, C.H.; Hsiao, M.; Chang, W.C.; Tseng, H.H.; Lin, K.H.; Chuah, S.K.; Chen, H.C. Gastric juice acidity in upper gastrointestinal diseases. World J. Gastroenterol., 2010, 16(43), 5496-5501.
[http://dx.doi.org/10.3748/wjg.v16.i43.5496] [PMID: 21086570]
[73]
Murray, F.A.; Erskine, J.P.; Fielding, J. Gastric secretion in pregnancy. J. Obstet. Gynaecol. Br. Emp., 1957, 64(3), 373-381.
[http://dx.doi.org/10.1111/j.1471-0528.1957.tb02656.x] [PMID: 13449660]
[74]
Desai, H.G.; Anta, P.; Gupte, U.V.; Potnis, P.R. Dose of histamine for maximal stimulation of gastric acid secretion. Modified subcutaneous histamine test. Gastroenterology, 1969, 57(6), 636-640.
[http://dx.doi.org/10.1016/S0016-5085(19)33818-1] [PMID: 5352727]
[75]
Mojaverian, P.; Rocci, M.L., Jr; Conner, D.P.; Abrams, W.B.; Vlasses, P.H. Effect of food on the absorption of enteric-coated aspirin: correlation with gastric residence time. Clin. Pharmacol. Ther., 1987, 41(1), 11-17.
[http://dx.doi.org/10.1038/clpt.1987.3] [PMID: 3802700]
[76]
Chrostek, L.; Jelski, W.; Szmitkowski, M.; Puchalski, Z. Gender-related differences in hepatic activity of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in humans. J. Clin. Lab. Anal., 2003, 17(3), 93-96.
[http://dx.doi.org/10.1002/jcla.10076] [PMID: 12696080]
[77]
Parlesak, A.; Billinger, M.H.; Bode, C.; Bode, J.C. Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a caucasian population. Alcohol Alcohol., 2002, 37(4), 388-393.
[http://dx.doi.org/10.1093/alcalc/37.4.388] [PMID: 12107043]
[78]
Bruha, R.; Dvorak, K.; Petrtyl, J. Alcoholic liver disease. World J. Hepatol., 2012, 4(3), 81-90.
[http://dx.doi.org/10.4254/wjh.v4.i3.81] [PMID: 22489260]
[79]
Prakash, O.; Nelson, S. Alcohol and liver disease. Ochsner J., 2002, 4(4), 241-244.
[PMID: 22826666]
[80]
Trobec, K.; Kerec Kos, M.; von Haehling, S.; Springer, J.; Anker, S.D.; Lainscak, M. Pharmacokinetics of drugs in cachectic patients: a systematic review. PLoS One, 2013, 8(11)e79603
[http://dx.doi.org/10.1371/journal.pone.0079603] [PMID: 24282510]
[81]
Hanley, M.J.; Abernethy, D.R.; Greenblatt, D.J. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet., 2010, 49(2), 71-87.
[http://dx.doi.org/10.2165/11318100-000000000-00000] [PMID: 20067334]
[82]
Schwartz, J.B. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin. Pharmacol. Ther., 2007, 82(1), 87-96.
[http://dx.doi.org/10.1038/sj.clpt.6100226] [PMID: 17495875]
[83]
Martins, I.J. Increased risk for obesity and diabetes with neurodegeneration in developing countries.In Top 10 contribution on genetics. EBook., www.avid.science.com2018 pp. 1-36
[84]
Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.C.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; Torp-Pedersen, C.; Atar, D.; Lewis, B.S.; Agewall, S. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother., 2017, 3(3), 163-182.
[http://dx.doi.org/10.1093/ehjcvp/pvw042] [PMID: 28329228]
[85]
Orshal, J.M.; Khalil, R.A. Gender, sex hormones, and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(2), R233-R249.
[http://dx.doi.org/10.1152/ajpregu.00338.2003] [PMID: 14707008]
[86]
Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci., 2013, 18(7), 601-610.
[PMID: 24516494]
[87]
Duan, L.P.; Wang, H.H.; Ohashi, A.; Wang, D.Q. Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(2), G269-G276.
[http://dx.doi.org/10.1152/ajpgi.00172.2005] [PMID: 16179600]
[88]
Waxman, D.J.; Holloway, M.G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol., 2009, 76(2), 215-228.
[http://dx.doi.org/10.1124/mol.109.056705] [PMID: 19483103]
[89]
Kim, Y.B.; Sung, T.Y.; Yang, H.S. Factors that affect the onset of action of non-depolarizing neuromuscular blocking agents. Korean J. Anesthesiol., 2017, 70(5), 500-510.
[http://dx.doi.org/10.4097/kjae.2017.70.5.500] [PMID: 29046769]
[90]
Kaan, N.; Kocaturk, O.; Kurt, I.; Cicek, H. The incidence of residual neuromuscular blockade associated with single dose of intermediate-acting neuromuscular blocking drugs. Middle East J. Anaesthesiol., 2012, 21(4), 535-541.
[PMID: 23327026]
[91]
Xue, F.S.; An, G.; Liao, X.; Zou, Q.; Luo, L.K. The pharmacokinetics of vecuronium in male and female patients. Anesth. Analg., 1998, 86(6), 1322-1327.
[PMID: 9620528]
[92]
Xue, F.S.; Tong, S.Y.; Liao, X.; Liu, J.H.; An, G.; Luo, L.K. Dose-response and time course of effect of rocuronium in male and female anesthetized patients. Anesth. Analg., 1997, 85(3), 667-671.
[http://dx.doi.org/10.1213/00000539-199709000-00033] [PMID: 9296428]
[93]
Butera, L.; Feinfeld, D.A.; Bhargava, M. Sex differences in the subunits of glutathione-S-transferase isoenzyme from rat and human kidney. Enzyme, 1990, 43(4), 175-182.
[http://dx.doi.org/10.1159/000468728] [PMID: 2101797]
[94]
Griffin, C.E., III; Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J., 2013, 13(2), 214-223.
[PMID: 23789008]
[95]
Ochs, H.R.; Greenblatt, D.J.; Divoll, M.; Abernethy, D.R.; Feyerabend, H.; Dengler, H.J. Diazepam kinetics in relation to age and sex. Pharmacology, 1981, 23(1), 24-30.
[http://dx.doi.org/10.1159/000137524] [PMID: 7312934]
[96]
Joyner, M.J.; Wallin, B.G.; Charkoudian, N. Sex differences and blood pressure regulation in humans. Exp. Physiol., 2016, 101(3), 349-355.
[http://dx.doi.org/10.1113/EP085146] [PMID: 26152788]
[97]
Wheatley, C.M.; Snyder, E.M.; Johnson, B.D.; Olson, T.P. Sex differences in cardiovascular function during submaximal exercise in humans. Springerplus, 2014, 3, 445.
[http://dx.doi.org/10.1186/2193-1801-3-445] [PMID: 25191635]
[98]
McEwen, B.S.; Milner, T.A. Understanding the broad influence of sex hormones and sex differences in the brain. J. Neurosci. Res., 2017, 95(1-2), 24-39.
[http://dx.doi.org/10.1002/jnr.23809] [PMID: 27870427]
[99]
Tuck, C.H.; Holleran, S.; Berglund, L. Hormonal regulation of lipoprotein(a) levels: effects of estrogen replacement therapy on lipoprotein(a) and acute phase reactants in postmenopausal women. Arterioscler. Thromb. Vasc. Biol., 1997, 17(9), 1822-1829.
[http://dx.doi.org/10.1161/01.ATV.17.9.1822] [PMID: 9327783]
[100]
Brinkman-Van der Linden, C.M.; Havenaar, E.C.; Van Ommen, C.R.; Van Kamp, G.J.; Gooren, L.J.; Van Dijk, W. Oral estrogen treatment induces a decrease in expression of sialyl Lewis x on alpha 1-acid glycoprotein in females and male-to-female transsexuals. Glycobiology, 1996, 6(4), 407-412.
[http://dx.doi.org/10.1093/glycob/6.4.407] [PMID: 8842704]
[101]
Succari, M.; Foglietti, M.J.; Percheron, F. Microheterogeneity of alpha 1-acid glycoprotein: variation during the menstrual cycle in healthy women, and profile in women receiving estrogen-progestogen treatment. Clin. Chim. Acta, 1990, 187(3), 235-241.
[http://dx.doi.org/10.1016/0009-8981(90)90108-5] [PMID: 2323063]
[102]
Lebreton, J.P.; Hiron, M.; Biou, D.; Daveau, M. Regulation of alpha 1-acid glycoprotein plasma concentration by sex steroids and adrenal-cortical hormones during experimental inflammation in the rat. Inflammation, 1988, 12(5), 413-424.
[http://dx.doi.org/10.1007/BF00919435] [PMID: 3198247]
[103]
Syme, M.R.; Paxton, J.W.; Keelan, J.A. Drug transfer and metabolism by the human placenta. Clin. Pharmacokinet., 2004, 43(8), 487-514.
[http://dx.doi.org/10.2165/00003088-200443080-00001] [PMID: 15170365]
[104]
Ahmed, S.; Zhou, Z.; Zhou, J.; Chen, S.Q. Corrigendum to pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genom. Proteom. Bioinform., 2018, 16(2), 152-153. [Genomics Proteomics Bioinformatics 14 (5) (2016) 298-313].
[http://dx.doi.org/10.1016/j.gpb.2018.04.001] [PMID: 29691129]
[105]
Cazet, L.; Bulteau, S.; Evin, A.; Spiers, A.; Caillet, P.; Kuhn, E.; Pivette, J.; Chaslerie, A.; Jolliet, P.; Victorri-Vigneau, C. Interaction between CYP2D6 inhibitor antidepressants and codeine: is this relevant? Expert Opin. Drug Metab. Toxicol., 2018, 14(8), 879-886.
[http://dx.doi.org/10.1080/17425255.2018.1496236] [PMID: 29963937]
[106]
Bahar, M.A.; Hak, E.; Bos, J.H.J.; Borgsteede, S.D.; Wilffert, B. The burden and management of cytochrome P450 2D6 (CYP2D6)-mediated drug-drug interaction (DDI): co-medication of metoprolol and paroxetine or fluoxetine in the elderly. Pharmacoepidemiol. Drug Saf., 2017, 26(7), 752-765.
[http://dx.doi.org/10.1002/pds.4200] [PMID: 28345306]
[107]
Zastrozhin, M.S.; Smirnov, V.V.; Sychev, D.A.; Savchenko, L.M.; Bryun, E.A.; Matis, O.A. CYP3A4 activity and haloperidol effects in alcohol addicts. Int. J. Risk Saf. Med., 2015, 27(1)(Suppl. 1), S23-S24.
[http://dx.doi.org/10.3233/JRS-150676] [PMID: 26639694]
[108]
Llerena, A.; Dorado, P.; Ramírez, R.; Calzadilla, L.R.; Peñas-Lledó, E.; Álvarez, M.; Naranjo, M.E.; González, I.; Pérez, B. CYP2D6 -1584C>G promoter polymorphism and debrisoquine ultrarapid hydroxylation in healthy volunteers. Pharmacogenomics, 2013, 14(16), 1973-1977.
[http://dx.doi.org/10.2217/pgs.13.181] [PMID: 24279852]
[109]
Shibano, Y.; Taki, S.; Miyamoto, A.; Uchikura, K. Development and application of a method to investigate drug-metabolizing enzyme inhibitors using sparteine for probe of cytochrome P450 2D6 and tris(2,2′-bipyridine)ruthenium(II)-electrogenerated chemiluminescence detection. Chem. Pharm. Bull. (Tokyo), 2011, 59(2), 249-253.
[http://dx.doi.org/10.1248/cpb.59.249] [PMID: 21297307]
[110]
Wojtczak, A.; Rychlik-Sych, M.; Krochmalska-Ulacha, E.; Skretkowicz, J. CYP2D6 phenotyping with dextromethorphan. Pharmacol. Rep., 2007, 59(6), 734-738.
[PMID: 18195464]
[111]
Juif, P.E.; Boehler, M.; Donazzolo, Y.; Bruderer, S.; Dingemanse, J. A pharmacokinetic drug-drug interaction study between selexipag and midazolam, a CYP3A4 substrate, in healthy male subjects. Eur. J. Clin. Pharmacol., 2017, 73(9), 1121-1128.
[http://dx.doi.org/10.1007/s00228-017-2282-7] [PMID: 28639119]
[112]
Ishikawa, Y.; Akiyoshi, T.; Imaoka, A.; Ohtani, H. Inactivation kinetics and residual activity of CYP3A4 after treatment with erythromycin. Biopharm. Drug Dispos., 2017, 38(7), 420-425.
[http://dx.doi.org/10.1002/bdd.2078] [PMID: 28425104]
[113]
Sun, B.; Guo, Y.; Gao, J.; Shi, W.; Fan, G.; Li, X.; Qiu, J.; Qin, Y.; Liu, G. Influence of CYP3A and ABCB1 polymorphisms on cyclosporine concentrations in renal transplant recipients. Pharmacogenomics, 2017, 18(16), 1503-1513.
[http://dx.doi.org/10.2217/pgs-2017-0127] [PMID: 28952408]
[114]
Uehara, S.; Uno, Y.; Nakanishi, K.; Ishii, S.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset Cytochrome P450 3A4 ortholog expressed in liver and small-intestine tissues efficiently metabolizes midazolam, alprazolam, nifedipine, and testosterone. Drug Metab. Dispos., 2017, 45(5), 457-467.
[http://dx.doi.org/10.1124/dmd.116.074898] [PMID: 28196829]
[115]
Zhang, J.; Zhu, J.; Yao, X.; Duan, Y.; Zhou, X.; Yang, M.; Li, X. Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in chinese han volunteers living at low altitude and in native han and tibetan chinese volunteers living at high altitude. Pharmacology, 2016, 97(3-4), 107-113.
[http://dx.doi.org/10.1159/000443332] [PMID: 26730802]
[116]
Ganesan, S.; Sahu, R.; Walker, L.A.; Tekwani, B.L. Cytochrome P450-dependent toxicity of dapsone in human erythrocytes. J. Appl. Toxicol., 2010, 30(3), 271-275.
[PMID: 19998329]
[117]
Olmos, I.; Ibarra, M.; Vázquez, M.; Maldonado, C.; Fagiolino, P.; Giachetto, G. Population pharmacokinetics of clozapine and norclozapine and switchability assessment between brands in uruguayan patients with schizophrenia. BioMed Res. Int., 2019, 20193163502
[http://dx.doi.org/10.1155/2019/3163502] [PMID: 30956977]
[118]
Czerwensky, F.; Leucht, S.; Steimer, W. CYP1A2*1D and *1F polymorphisms have a significant impact on olanzapine serum concentrations. Ther. Drug Monit., 2015, 37(2), 152-160.
[http://dx.doi.org/10.1097/FTD.0000000000000119] [PMID: 25090458]
[119]
Sasaki, S.; Limpar, M.; Sata, F.; Kobayashi, S.; Kishi, R. Interaction between maternal caffeine intake during pregnancy and CYP1A2 C164A polymorphism affects infant birth size in the Hokkaido study. Pediatr. Res., 2017, 82(1), 19-28.
[http://dx.doi.org/10.1038/pr.2017.70] [PMID: 28355205]
[120]
Xu, S.; Liu, J.; Shi, J.; Wang, Z.; Ji, L. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside exacerbates acetaminophen-induced hepatotoxicity by inducing hepatic expression of CYP2E1, CYP3A4 and CYP1A2. Sci. Rep., 2017, 7(1), 16511.
[http://dx.doi.org/10.1038/s41598-017-16688-5] [PMID: 29184146]
[121]
Bedada, S.K.; Neerati, P. The effect of quercetin on the pharmacokinetics of chlorzoxazone, a CYP2E1 substrate, in healthy subjects. Eur. J. Clin. Pharmacol., 2018, 74(1), 91-97.
[http://dx.doi.org/10.1007/s00228-017-2345-9] [PMID: 28983678]
[122]
Abdelmegeed, M.A.; Choi, Y.; Ha, S.K.; Song, B.J. Cytochrome P450-2E1 is involved in aging-related kidney damage in mice through increased nitroxidative stress. Food Chem. Toxicol., 2017, 109(Pt 1), 48-59.
[http://dx.doi.org/10.1016/j.fct.2017.08.022] [PMID: 28843596]
[123]
Lee, K.S.; Kim, S.K. Direct and metabolism-dependent cytochrome P450 inhibition assays for evaluating drug-drug interactions. J. Appl. Toxicol., 2013, 33(2), 100-108.
[http://dx.doi.org/10.1002/jat.1720] [PMID: 21915887]
[124]
Basma, H.A.; Kobeissi, L.H.; Jabbour, M.E.; Moussa, M.A.; Dhaini, H.R. CYP2E1 and NQO1 genotypes and bladder cancer risk in a Lebanese population. Int. J. Mol. Epidemiol. Genet., 2013, 4(4), 207-217.
[PMID: 24319536]
[125]
Jose, M.; Mathaiyan, J.; Kattimani, S.; Adithan, S.; Chandrasekaran, A. Role of CYP2C19 gene polymorphism in acute alcohol withdrawal treatment with loading dose of diazepam in a South Indian population. Eur. J. Clin. Pharmacol., 2016, 72(7), 807-812.
[http://dx.doi.org/10.1007/s00228-016-2061-x] [PMID: 27099220]
[126]
Jogamoto, T.; Yamamoto, Y.; Fukuda, M.; Suzuki, Y.; Imai, K.; Takahashi, Y.; Inoue, Y.; Ohtsuka, Y. Add-on stiripentol elevates serum valproate levels in patients with or without concomitant topiramate therapy. Epilepsy Res., 2017, 130, 7-12.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.12.014] [PMID: 28081475]
[127]
Silvado, C.E.; Terra, V.C.; Twardowschy, C.A. CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. Pharm. Genomics Pers. Med., 2018, 11, 51-58.
[http://dx.doi.org/10.2147/PGPM.S108113] [PMID: 29636628]
[128]
Hummel, M.A.; Gannett, P.M.; Aguilar, J.; Tracy, T.S. Substrate proton to heme distances in CYP2C9 allelic variants and alterations by the heterotropic activator, dapsone. Arch. Biochem. Biophys., 2008, 475(2), 175-183.
[http://dx.doi.org/10.1016/j.abb.2008.04.034] [PMID: 18485885]
[129]
Papageorgiou, I.; Court, M.H. Identification and validation of the microRNA response elements in the 3′-untranslated region of the UDP glucuronosyltransferase (UGT) 2B7 and 2B15 genes by a functional genomics approach. Biochem. Pharmacol., 2017, 146, 199-213.
[http://dx.doi.org/10.1016/j.bcp.2017.09.013] [PMID: 28962835]
[130]
Mehboob, H.; Iqbal, T.; Jamil, A.; Khaliq, T. Genetic polymorphism of UDP-glucuronosyltransferase (UGT2B15) and glucuronidation of paracetamol in healthy population. Pak. J. Pharm. Sci., 2016, 29(3)(Suppl.), 1037-1041.
[PMID: 27383482]
[131]
Chow, H.H.; Garland, L.L.; Hsu, C.H.; Vining, D.R.; Chew, W.M.; Miller, J.A.; Perloff, M.; Crowell, J.A.; Alberts, D.S. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. (Phila.), 2010, 3(9), 1168-1175.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0155] [PMID: 20716633]
[132]
Ladumor, M.K.; Bhatt, D.K.; Gaedigk, A.; Sharma, S.; Thakur, A.; Pearce, R.E.; Leeder, J.S.; Bolger, M.B.; Singh, S.; Prasad, B. Ontogeny of hepatic sulfotransferases (SULTs) and prediction of agedependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab. Dispos, 2019. pii: dmd.119.086462.
[133]
Zhou, T.; Chen, Y.; Huang, C.; Chen, G. Caffeine induction of sulfotransferases in rat liver and intestine. J. Appl. Toxicol., 2012, 32(10), 804-809.
[http://dx.doi.org/10.1002/jat.1698] [PMID: 21721019]
[134]
Zhang, J.; Bai, W.; Wang, W.; Jiang, H.; Jin, B.; Liu, Y.; Liu, S.; Wang, K.; Jia, J.; Qin, L. Mechanisms underlying alterations in norepinephrine levels in the locus coeruleus of ovariectomized rats: Modulation by estradiol valerate and black cohosh. Neuroscience, 2017, 354, 110-121.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.029] [PMID: 28457819]
[135]
Alves, E.; Lukoyanov, N.; Serrão, P.; Moura, D.; Moreira-Rodrigues, M. Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors. Psychopharmacology (Berl.), 2016, 233(11), 2099-2108.
[http://dx.doi.org/10.1007/s00213-016-4254-5] [PMID: 26935825]
[136]
Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev., 2018, 70(2), 384-411.
[http://dx.doi.org/10.1124/pr.117.014407] [PMID: 29514871]
[137]
Allen, C.E.; Doll, M.A.; Hein, D.W. N-acetyltransferase 2 genotype-dependent N-acetylation of hydralazine in human hepatocytes. Drug Metab. Dispos., 2017, 45(12), 1276-1281.
[http://dx.doi.org/10.1124/dmd.117.078543] [PMID: 29018032]
[138]
Hemanth Kumar, A.K.; Ramesh, K.; Kannan, T.; Sudha, V.; Haribabu, H.; Lavanya, J.; Swaminathan, S.; Ramachandran, G. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis. Indian J. Med. Res., 2017, 145(1), 118-123.
[http://dx.doi.org/10.4103/ijmr.IJMR_2013_15] [PMID: 28574024]
[139]
Potočnjak, I.; Likić, R.; Šimić, I.; Juričić Nahal, D.; Čegec, I.; Ganoci, L.; Božina, N. Dapsone-induced agranulocytosis-possible involvement of low-activity N-acetyltransferase 2. Fundam. Clin. Pharmacol., 2017, 31(5), 580-586.
[http://dx.doi.org/10.1111/fcp.12287] [PMID: 28322460]
[140]
Scandlyn, M.J.; Stuart, E.C.; Rosengren, R.J. Sex-specific differences in CYP450 isoforms in humans. Expert Opin. Drug Metab. Toxicol., 2008, 4(4), 413-424.
[http://dx.doi.org/10.1517/17425255.4.4.413] [PMID: 18524030]
[141]
Anderson, G.D. Sex differences in drug metabolism: cytochrome P-450 and uridine diphosphate glucuronosyltransferase. J. Gend. Specif. Med., 2002, 5(1), 25-33.
[PMID: 11859684]
[142]
Seeman, M.V. Secondary effects of antipsychotics: women at greater risk than men. Schizophr. Bull., 2009, 35(5), 937-948.
[http://dx.doi.org/10.1093/schbul/sbn023] [PMID: 18400811]
[143]
Kluge, M.; Schuld, A.; Himmerich, H.; Dalal, M.; Schacht, A.; Wehmeier, P.M.; Hinze-Selch, D.; Kraus, T.; Dittmann, R.W.; Pollmächer, T. Clozapine and olanzapine are associated with food craving and binge eating: results from a randomized double-blind study. J. Clin. Psychopharmacol., 2007, 27(6), 662-666.
[http://dx.doi.org/10.1097/jcp.0b013e31815a8872] [PMID: 18004133]
[144]
Dean, L. Warfarin therapy and VKORC1 and CYP genotype.In: Medical Genetics Summaries; Pratt, V.; McLeod, H.; Rubinstein, W.; Dean, L.; Kattman, B.; Malheiro, A., Eds.; National Center for Biotechnology Information: Bethesda; http://www.ncbi.nlm.nih.gov/ books/NBK84174
[145]
Keeling, D.; Baglin, T.; Tait, C.; Watson, H.; Perry, D.; Baglin, C.; Kitchen, S.; Makris, M. British committee for standards in haematology. guidelines on oral anticoagulation with warfarin - fourth edition.Br. J. Haematol; , 2011, 154, pp. (3)311-324.
[146]
Garcia, D.; Regan, S.; Crowther, M.; Hughes, R.A.; Hylek, E.M. Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest, 2005, 127(6), 2049-2056.
[http://dx.doi.org/10.1378/chest.127.6.2049] [PMID: 15947319]
[147]
Garbacz, W.G.; Jiang, M.; Xie, W. Sex-Dependent Role of Estrogen sulfotransferase and steroid sulfatase in metabolic homeostasis. Adv. Exp. Med. Biol., 2017, 1043, 455-469.
[http://dx.doi.org/10.1007/978-3-319-70178-3_21] [PMID: 29224107]
[148]
Tamm, R.; Mägi, R.; Tremmel, R.; Winter, S.; Mihailov, E.; Smid, A.; Möricke, A.; Klein, K.; Schrappe, M.; Stanulla, M.; Houlston, R.; Weinshilboum, R.; Mlinarič Raščan, I.; Metspalu, A.; Milani, L.; Schwab, M.; Schaeffeler, E. Polymorphic variation in TPMT is the principal determinant of TPMT phenotype: A meta-analysis of three genome-wide association studies. Clin. Pharmacol. Ther., 2017, 101(5), 684-695.
[http://dx.doi.org/10.1002/cpt.540] [PMID: 27770449]
[149]
Aksoy, I.A.; Sochorová, V.; Weinshilboum, R.M. Human liver dehydroepiandrosterone sulfotransferase: nature and extent of individual variation. Clin. Pharmacol. Ther., 1993, 54(5), 498-506.
[http://dx.doi.org/10.1038/clpt.1993.181] [PMID: 8222492]
[150]
Szumlanski, C.L.; Honchel, R.; Scott, M.C.; Weinshilboum, R.M. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics, 1992, 2(4), 148-159.
[http://dx.doi.org/10.1097/00008571-199208000-00002] [PMID: 1306116]
[151]
Harrison, P.J.; Tunbridge, E.M. Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology, 2008, 33(13), 3037-3045.
[http://dx.doi.org/10.1038/sj.npp.1301543] [PMID: 17805313]
[152]
Boudíková, B.; Szumlanski, C.; Maidak, B.; Weinshilboum, R. Human liver catechol-O-methyltransferase pharmacogenetics. Clin. Pharmacol. Ther., 1990, 48(4), 381-389.
[http://dx.doi.org/10.1038/clpt.1990.166] [PMID: 2225698]
[153]
McGill, M.R.; Jaeschke, H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res., 2013, 30(9), 2174-2187.
[http://dx.doi.org/10.1007/s11095-013-1007-6] [PMID: 23462933]
[154]
Bock, K.W.; Schrenk, D.; Forster, A.; Griese, E.U.; Mörike, K.; Brockmeier, D.; Eichelbaum, M. The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyl-transferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics, 1994, 4(4), 209-218.
[http://dx.doi.org/10.1097/00008571-199408000-00005] [PMID: 7987405]
[155]
Rathore, S.S.; Wang, Y.; Krumholz, H.M. Sex-based differences in the effect of digoxin for the treatment of heart failure. N. Engl. J. Med., 2002, 347(18), 1403-1411.
[http://dx.doi.org/10.1056/NEJMoa021266] [PMID: 12409542]
[156]
Yukawa, E.; Honda, T.; Ohdo, S.; Higuchi, S.; Aoyama, T. Population-based investigation of relative clearance of digoxin in Japanese patients by multiple trough screen analysis: an update. J. Clin. Pharmacol., 1997, 37(2), 92-100.
[http://dx.doi.org/10.1002/j.1552-4604.1997.tb04766.x] [PMID: 9055134]
[157]
Moulin, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Rucker-Martin, C.; Gressette, M.; Lefebvre, F.; Gresikova, M.; Solgadi, A.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Sexual dimorphism of doxorubicin-mediated cardiotoxicity: potential role of energy metabolism remodeling. Circ Heart Fail, 2015, 8(1), 98-108.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001180] [PMID: 25420486]
[158]
Dobbs, N.A.; Twelves, C.J.; Gillies, H.; James, C.A.; Harper, P.G.; Rubens, R.D. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother. Pharmacol., 1995, 36(6), 473-476.
[http://dx.doi.org/10.1007/BF00685796] [PMID: 7554038]
[159]
Milano, G.; Etienne, M.C.; Cassuto-Viguier, E.; Thyss, A.; Santini, J.; Frenay, M.; Renee, N.; Schneider, M.; Demard, F. Influence of sex and age on fluorouracil clearance. J. Clin. Oncol., 1992, 10(7), 1171-1175.
[http://dx.doi.org/10.1200/JCO.1992.10.7.1171] [PMID: 1607921]
[160]
Zappia, M.; Annesi, G.; Nicoletti, G.; Arabia, G.; Annesi, F.; Messina, D.; Pugliese, P.; Spadafora, P.; Tarantino, P.; Carrideo, S.; Civitelli, D.; De Marco, E.V.; Cirò-Candiano, I.C.; Gambardella, A.; Quattrone, A. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch. Neurol., 2005, 62(4), 601-605.
[http://dx.doi.org/10.1001/archneur.62.4.601] [PMID: 15824260]
[161]
Lilleyman, J.S.; Lennard, L.; Rees, C.A.; Morgan, G.; Maddocks, J.L. Childhood lymphoblastic leukaemia: sex difference in 6-mercaptopurine utilization. Br. J. Cancer, 1984, 49(6), 703-707.
[http://dx.doi.org/10.1038/bjc.1984.111] [PMID: 6587901]
[162]
Walle, T.; Walle, K.; Mathur, R.S.; Palesch, Y.Y.; Conradi, E.C. Propranolol metabolism in normal subjects: association with sex steroid hormones. Clin. Pharmacol. Ther., 1994, 56(2), 127-132.
[http://dx.doi.org/10.1038/clpt.1994.115] [PMID: 8062488]
[163]
Bano, S.; Akhter, S.; Afridi, M.I. Gender based response to fluoxetine hydrochloride medication in endogenous depression. J. Coll. Physicians Surg. Pak., 2004, 14(3), 161-165.
[PMID: 15228850]
[164]
Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry, 2000, 157(9), 1445-1452.
[http://dx.doi.org/10.1176/appi.ajp.157.9.1445] [PMID: 10964861]
[165]
Smiderle, L.; Lima, L.O.; Hutz, M.H.; Van der Sand, C.R.; Van der Sand, L.C.; Ferreira, M.E.; Pires, R.C.; Almeida, S.; Fiegenbaum, M. Evaluation of sexual dimorphism in the efficacy and safety of simvastatin/atorvastatin therapy in a southern Brazilian cohort. Arq. Bras. Cardiol., 2014, 103(1), 33-40.
[http://dx.doi.org/10.5935/abc.20140085] [PMID: 25120083]
[166]
Kang, D.; Verotta, D.; Krecic-Shepard, M.E.; Modi, N.B.; Gupta, S.K.; Schwartz, J.B. Population analyses of sustained-release verapamil in patients: effects of sex, race, and smoking. Clin. Pharmacol. Ther., 2003, 73(1), 31-40.
[http://dx.doi.org/10.1067/mcp.2003.21] [PMID: 12545141]
[167]
Krecic-Shepard, M.E.; Barnas, C.R.; Slimko, J.; Schwartz, J.B. Faster clearance of sustained release verapamil in men versus women: continuing observations on sex-specific differences after oral administration of verapamil. Clin. Pharmacol. Ther., 2000, 68(3), 286-292.
[http://dx.doi.org/10.1067/mcp.2000.109356] [PMID: 11014410]
[168]
Dadashzadeh, S.; Javadian, B.; Sadeghian, S. The effect of gender on the pharmacokinetics of verapamil and norverapamil in human. Biopharm. Drug Dispos., 2006, 27(7), 329-334.
[http://dx.doi.org/10.1002/bdd.512] [PMID: 16892180]
[169]
Gupta, S.K.; Atkinson, L.; Tu, T.; Longstreth, J.A. Age and gender related changes in stereoselective pharmacokinetics and pharmacodynamics of verapamil and norverapamil. Br. J. Clin. Pharmacol., 1995, 40(4), 325-331.
[http://dx.doi.org/10.1111/j.1365-2125.1995.tb04554.x] [PMID: 8554934]
[170]
Chow, S.C. Bioavailability and Bioequivalence in Drug Development. Wiley Interdiscip. Rev. Comput. Stat., 2014, 6(4), 304-312.
[http://dx.doi.org/10.1002/wics.1310] [PMID: 25215170]
[171]
Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm., 2013, 2013848043
[http://dx.doi.org/10.1155/2013/848043] [PMID: 24459591]
[172]
Franconi, F.; Campesi, I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br. J. Pharmacol., 2014, 171(3), 580-594.
[http://dx.doi.org/10.1111/bph.12362] [PMID: 23981051]
[173]
Mitra, A.; Kesisoglou, F. Impaired drug absorption due to high stomach pH: a review of strategies for mitigation of such effect to enable pharmaceutical product development. Mol. Pharm., 2013, 10(11), 3970-3979.
[http://dx.doi.org/10.1021/mp400256h] [PMID: 23844623]
[174]
Adelman, E.E.; Lisabeth, L.; Brown, D.L. Gender differences in the primary prevention of stroke with aspirin. Womens Health (Lond), 2011, 7(3), 341-352.
[http://dx.doi.org/10.2217/WHE.11.21] [PMID: 21612354]
[175]
Berger, J.S.; Roncaglioni, M.C.; Avanzini, F.; Pangrazzi, I.; Tognoni, G.; Brown, D.L. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA, 2006, 295(3), 306-313.
[http://dx.doi.org/10.1001/jama.295.3.306] [PMID: 16418466]
[176]
Masereeuw, R.; Russel, F.G. Mechanisms and clinical implications of renal drug excretion. Drug Metab. Rev., 2001, 33(3-4), 299-351.
[http://dx.doi.org/10.1081/DMR-120000654] [PMID: 11768771]
[177]
Silvaggio, T.; Mattison, D.R. Setting occupational health standards: toxicokinetic differences among and between men and women. J. Occup. Med., 1994, 36(8), 849-854.
[PMID: 7807264]
[178]
Fenton, A.; Montgomery, E.; Nightingale, P.; Peters, A.M.; Sheerin, N.; Wroe, A.C.; Lipkin, G.W. Glomerular filtration rate: new age- and gender- specific reference ranges and thresholds for living kidney donation. BMC Nephrol., 2018, 19(1), 336.
[http://dx.doi.org/10.1186/s12882-018-1126-8] [PMID: 30466393]
[179]
Cheung, K.L.; Lafayette, R.A. Renal physiology of pregnancy. Adv. Chronic Kidney Dis., 2013, 20(3), 209-214.
[http://dx.doi.org/10.1053/j.ackd.2013.01.012] [PMID: 23928384]
[180]
Feghali, M.; Venkataramanan, R.; Caritis, S. Pharmacokinetics of drugs in pregnancy. Semin. Perinatol., 2015, 39(7), 512-519.
[http://dx.doi.org/10.1053/j.semperi.2015.08.003] [PMID: 26452316]
[181]
Napso, T.; Yong, H.E.J.; Lopez-Tello, J.; Sferruzzi-Perri, A.N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front. Physiol., 2018, 9, 1091.
[http://dx.doi.org/10.3389/fphys.2018.01091] [PMID: 30174608]
[182]
Burgoyne, P.S. A Y-chromosomal effect on blastocyst cell number in mice. Development, 1993, 117(1), 341-345.
[PMID: 8223257]
[183]
DiPietro, J.A.; Voegtline, K.M. The gestational foundation of sex differences in development and vulnerability. Neuroscience, 2017, 342, 4-20.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.068] [PMID: 26232714]
[184]
Broere-Brown, Z.A.; Baan, E.; Schalekamp-Timmermans, S.; Verburg, B.O.; Jaddoe, V.W.; Steegers, E.A. Sex-specific differences in fetal and infant growth patterns: a prospective population-based cohort study. Biol. Sex Differ., 2016, 7, 65.
[http://dx.doi.org/10.1186/s13293-016-0119-1] [PMID: 27980713]
[185]
Nagy, E.; Orvos, H.; Bárdos, G.; Molnár, P. Gender-related heart rate differences in human neonates. Pediatr. Res., 2000, 47(6), 778-780.
[http://dx.doi.org/10.1203/00006450-200006000-00016] [PMID: 10832737]
[186]
Yang, C.C.; Chen, T.C.; Wu, C.S.; Cheng, B.C.; Lam, K.K.; Chien, Y.S.; Chuang, F.R.; Lee, C.T. Sex differences in kidney size and clinical features of patients with uremia. Gend. Med., 2010, 7(5), 451-457.
[http://dx.doi.org/10.1016/j.genm.2010.09.001] [PMID: 21056871]
[187]
Strolin Benedetti, M.; Whomsley, R.; Baltes, E.L. Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin. Drug Metab. Toxicol., 2005, 1(3), 447-471.
[http://dx.doi.org/10.1517/17425255.1.3.447] [PMID: 16863455]
[188]
Webster-Gandy, J.; Warren, J.; Henry, C.J. Sexual dimorphism in fat patterning in a sample of 5 to 7-year-old children in Oxford. Int. J. Food Sci. Nutr., 2003, 54(6), 467-471.
[http://dx.doi.org/10.1080/09637480310001322323] [PMID: 14522692]
[189]
Karceski, S.; Morrell, M.J. Women with epilepsy: current treatment strategies. J. Gend. Specif. Med., 2002, 5(5), 22-26.
[PMID: 12380197]
[190]
Chouinard, S.; Yueh, M.F.; Tukey, R.H.; Giton, F.; Fiet, J.; Pelletier, G.; Barbier, O.; Bélanger, A. Inactivation by UDP-glucuronosyltransferase enzymes: the end of androgen signaling. J. Steroid Biochem. Mol. Biol., 2008, 109(3-5), 247-253.
[http://dx.doi.org/10.1016/j.jsbmb.2008.03.016] [PMID: 18467088]
[191]
You, L. Steroid hormone biotransformation and xenobiotic induction of hepatic steroid metabolizing enzymes. Chem. Biol. Interact., 2004, 147(3), 233-246.
[http://dx.doi.org/10.1016/j.cbi.2004.01.006] [PMID: 15135080]
[192]
Song, W.C.; Melner, M.H. Steroid transformation enzymes as critical regulators of steroid action in vivo. Endocrinology, 2000, 141(5), 1587-1589.
[http://dx.doi.org/10.1210/endo.141.5.7526] [PMID: 10803564]
[193]
Waxman, D.J.; LeBlanc, G.A.; Morrissey, J.J.; Staunton, J.; Lapenson, D.P. Adult male-specific and neonatally programmed rat hepatic P-450 forms RLM2 and 2a are not dependent on pulsatile plasma growth hormone for expression. J. Biol. Chem., 1988, 263(23), 11396-11406.
[PMID: 3403535]
[194]
Driscoll, M.D.; Sathya, G.; Muyan, M.; Klinge, C.M.; Hilf, R.; Bambara, R.A. Sequence requirements for estrogen receptor binding to estrogen response elements. J. Biol. Chem., 1998, 273(45), 29321-29330.
[http://dx.doi.org/10.1074/jbc.273.45.29321] [PMID: 9792632]
[195]
Puzianowska-Kuznicka, M.; Pawlik-Pachucka, E.; Owczarz, M.; Budzińska, M.; Polosak, J. Small-molecule hormones: molecular mechanisms of action. Int. J. Endocrinol., 2013, 2013601246
[http://dx.doi.org/10.1155/2013/601246] [PMID: 23533406]
[196]
Furukawa, T.; Kurokawa, J. Non-genomic regulation of cardiac ion channels by sex hormones. Cardiovasc. Hematol. Disord. Drug Targets, 2008, 8(4), 245-251.
[http://dx.doi.org/10.2174/187152908786786160] [PMID: 19075634]
[197]
Ikeda, K.; Horie-Inoue, K.; Inoue, S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol. Sin., 2015, 36(1), 24-31.
[http://dx.doi.org/10.1038/aps.2014.123] [PMID: 25500870]
[198]
Bourdeau, V.; Deschênes, J.; Laperrière, D.; Aid, M.; White, J.H.; Mader, S. Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells. Nucleic Acids Res., 2008, 36(1), 76-93.
[http://dx.doi.org/10.1093/nar/gkm945] [PMID: 17986456]
[199]
Horiuchi, S.; Ishida, S.; Hongo, T.; Ishikawa, Y.; Miyajima, A.; Sawada, J.; Ohno, Y.; Nakazawa, K.; Ozawa, S. Global gene expression changes including drug metabolism and disposition induced by three-dimensional culture of HepG2 cells-Involvement of microtubules. Biochem. Biophys. Res. Commun., 2009, 378(3), 558-562.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.088] [PMID: 19056338]
[200]
Barbier, O.; Fontaine, C.; Fruchart, J.C.; Staels, B. Genomic and non-genomic interactions of PPARalpha with xenobiotic-metabolizing enzymes. Trends Endocrinol. Metab., 2004, 15(7), 324-330.
[http://dx.doi.org/10.1016/j.tem.2004.07.007] [PMID: 15350604]
[201]
Lösel, R.; Wehling, M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol., 2003, 4(1), 46-56.
[http://dx.doi.org/10.1038/nrm1009] [PMID: 12511868]
[202]
Simoncini, T.; Genazzani, A.R. Non-genomic actions of sex steroid hormones. Eur. J. Endocrinol., 2003, 148(3), 281-292.
[http://dx.doi.org/10.1530/eje.0.1480281] [PMID: 12611608]
[203]
Gupta, P.D.; Johar, K.; Vasavada, A. Causative and preventive action of calcium in cataracto-genesis. Acta Pharmacol. Sin., 2004, 25(10), 1250-1256.
[PMID: 15456524]
[204]
Azuma, K.; Inoue, S. Genomic and non-genomic actions of estrogen: recent developments. Biomol. Concepts, 2012, 3(4), 365-370.
[http://dx.doi.org/10.1515/bmc-2012-0002] [PMID: 25436542]
[205]
Edwards, D.P. Regulation of signal transduction pathways by estrogen and progesterone. Annu. Rev. Physiol., 2005, 67, 335-376.
[http://dx.doi.org/10.1146/annurev.physiol.67.040403.120151] [PMID: 15709962]
[206]
Helena Mangs, A.; Morris, B.J.A.; Morris, B.J. The human pseudoautosomal region (PAR): origin, function and future. Curr. Genomics, 2007, 8(2), 129-136.
[http://dx.doi.org/10.2174/138920207780368141] [PMID: 18660847]
[207]
Disteche, C.M.; Berletch, J.B. X-chromosome inactivation and escape. J. Genet., 2015, 94(4), 591-599.
[http://dx.doi.org/10.1007/s12041-015-0574-1] [PMID: 26690513]
[208]
Carrel, L.; Cottle, A.A.; Goglin, K.C.; Willard, H.F. A first-generation X-inactivation profile of the human X chromosome. Proc. Natl. Acad. Sci. USA, 1999, 96(25), 14440-14444.
[http://dx.doi.org/10.1073/pnas.96.25.14440] [PMID: 10588724]
[209]
Wood, H. Microglia show sex-specific gene expression profiles. Nat. Rev. Neurol., 2018, 14(8), 452.
[http://dx.doi.org/10.1038/s41582-018-0040-9] [PMID: 29991822]
[210]
Tower, J. Sex-specific gene expression and life span regulation. Trends Endocrinol. Metab., 2017, 28(10), 735-747.
[http://dx.doi.org/10.1016/j.tem.2017.07.002] [PMID: 28780002]
[211]
Cheng, C.; Kirkpatrick, M. Sex-specific selection and sex-biased gene expression in humans and flies. PLoS Genet., 2016, 12(9)e1006170
[http://dx.doi.org/10.1371/journal.pgen.1006170] [PMID: 27658217]
[212]
Ventola, C.L. Role of pharmacogenomic biomarkers in predicting and improving drug response: part 1: the clinical significance of pharmacogenetic variants. P&T, 2013, 38(9), 545-560.
[PMID: 24273401]
[213]
Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med., 2006, 57, 119-137.
[http://dx.doi.org/10.1146/annurev.med.56.082103.104724] [PMID: 16409140]
[214]
Ingelman-Sundberg, M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci., 2004, 25(4), 193-200.
[http://dx.doi.org/10.1016/j.tips.2004.02.007] [PMID: 15063083]
[215]
Rinn, J.L.; Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet., 2005, 21(5), 298-305.
[http://dx.doi.org/10.1016/j.tig.2005.03.005] [PMID: 15851067]
[216]
Wiwi, C.A.; Gupte, M.; Waxman, D.J. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4alpha-deficient mice. Mol. Endocrinol., 2004, 18(8), 1975-1987.
[http://dx.doi.org/10.1210/me.2004-0129] [PMID: 15155787]
[217]
Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 2004, 14(1), 1-18.
[http://dx.doi.org/10.1097/00008571-200401000-00001] [PMID: 15128046]
[218]
Jarukamjorn, K.; Sakuma, T.; Nemoto, N. Sexual dimorphic expression of mouse hepatic CYP2B: alterations during development or after hypophysectomy. Biochem. Pharmacol., 2002, 63(11), 2037-2041.
[http://dx.doi.org/10.1016/S0006-2952(02)00989-9] [PMID: 12093481]
[219]
Sakuma, T.; Endo, Y.; Mashino, M.; Kuroiwa, M.; Ohara, A.; Jarukamjorn, K.; Nemoto, N. Regulation of the expression of two female-predominant CYP3A mRNAs (CYP3A41 and CYP3A44) in mouse liver by sex and growth hormones. Arch. Biochem. Biophys., 2002, 404(2), 234-242.
[http://dx.doi.org/10.1016/S0003-9861(02)00329-6] [PMID: 12147261]
[220]
Sundseth, S.S.; Waxman, D.J. Sex-dependent expression and clofibrate inducibility of cytochrome P450 4A fatty acid omega-hydroxylases. Male specificity of liver and kidney CYP4A2 mRNA and tissue-specific regulation by growth hormone and testosterone. J. Biol. Chem., 1992, 267(6), 3915-3921.
[PMID: 1740439]
[221]
Wilson, N.M.; Christou, M.; Turner, C.R.; Wrighton, S.A.; Jefcoate, C.R. Binding and metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene by seven purified forms of cytochrome P-450. Carcinogenesis, 1984, 5(11), 1475-1483.
[http://dx.doi.org/10.1093/carcin/5.11.1475] [PMID: 6435901]
[222]
Burkhart, B.A.; Harada, N.; Negishi, M. Sexual dimorphism of testosterone 15 alpha-hydroxylase mRNA levels in mouse liver. cDNA cloning and regulation. J. Biol. Chem., 1985, 260(28), 15357-15361.
[PMID: 2415518]
[223]
Krecic-Shepard, M.E.; Park, K.; Barnas, C.; Slimko, J.; Kerwin, D.R.; Schwartz, J.B. Race and sex influence clearance of nifedipine: results of a population study. Clin. Pharmacol. Ther., 2000, 68(2), 130-142.
[http://dx.doi.org/10.1067/mcp.2000.108678] [PMID: 10976544]
[224]
Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet., 2006, 45(1), 13-31.
[http://dx.doi.org/10.2165/00003088-200645010-00002] [PMID: 16430309]
[225]
Schwartz, J.B. The influence of sex on pharmacokinetics. Clin. Pharmacokinet., 2003, 42(2), 107-121.
[http://dx.doi.org/10.2165/00003088-200342020-00001] [PMID: 12537512]
[226]
Gorski, J.C.; Jones, D.R.; Haehner-Daniels, B.D.; Hamman, M.A.; O’Mara, E.M., Jr; Hall, S.D. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin. Pharmacol. Ther., 1998, 64(2), 133-143.
[http://dx.doi.org/10.1016/S0009-9236(98)90146-1] [PMID: 9728893]
[227]
Lew, K.H.; Ludwig, E.A.; Milad, M.A.; Donovan, K.; Middleton, E., Jr; Ferry, J.J.; Jusko, W.J. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther., 1993, 54(4), 402-414.
[http://dx.doi.org/10.1038/clpt.1993.167] [PMID: 8222483]
[228]
Hunt, C.M.; Westerkam, W.R.; Stave, G.M. Effect of age and gender on the activity of human hepatic CYP3A. Biochem. Pharmacol., 1992, 44(2), 275-283.
[http://dx.doi.org/10.1016/0006-2952(92)90010-G] [PMID: 1642641]
[229]
Sinz, M.; Wallace, G.; Sahi, J. Current industrial practices in assessing CYP450 enzyme induction: preclinical and clinical. AAPS J., 2008, 10(2), 391-400.
[http://dx.doi.org/10.1208/s12248-008-9037-4] [PMID: 18686044]
[230]
Jana, S.; Paliwal, J. Molecular mechanisms of cytochrome p450 induction: potential for drug-drug interactions. Curr. Protein Pept. Sci., 2007, 8(6), 619-628.
[http://dx.doi.org/10.2174/138920307783018668] [PMID: 18220847]
[231]
Timsit, Y.E.; Negishi, M. CAR and PXR: the xenobiotic-sensing receptors. Steroids, 2007, 72(3), 231-246.
[http://dx.doi.org/10.1016/j.steroids.2006.12.006] [PMID: 17284330]
[232]
Handschin, C.; Meyer, U.A. Induction of drug metabolism: the role of nuclear receptors. Pharmacol. Rev., 2003, 55(4), 649-673.
[http://dx.doi.org/10.1124/pr.55.4.2] [PMID: 14657421]
[233]
Waxman, D.J. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys., 1999, 369(1), 11-23.
[http://dx.doi.org/10.1006/abbi.1999.1351] [PMID: 10462436s]
[234]
Ramadoss, P.; Marcus, C.; Perdew, G.H. Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opin. Drug Metab. Toxicol., 2005, 1(1), 9-21.
[http://dx.doi.org/10.1517/17425255.1.1.9] [PMID: 16922649]
[235]
Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther., 2007, 116(3), 496-526.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.004] [PMID: 18001838]
[236]
Anderson, G.D. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J. Womens Health (Larchmt.), 2005, 14(1), 19-29.
[http://dx.doi.org/10.1089/jwh.2005.14.19] [PMID: 15692274]
[237]
Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 499-523.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121453] [PMID: 14744256]
[238]
Labots, G.; Jones, A.; de Visser, S.J.; Rissmann, R.; Burggraaf, J. Gender differences in clinical registration trials: is there a real problem? Br. J. Clin. Pharmacol., 2018, 84(4), 700-707.
[http://dx.doi.org/10.1111/bcp.13497] [PMID: 29293280]
[239]
Lee, J.K.; Abe, K.; Bridges, A.S.; Patel, N.J.; Raub, T.J.; Pollack, G.M.; Brouwer, K.L. Sex-dependent disposition of acetaminophen sulfate and glucuronide in the in situ perfused mouse liver. Drug Metab. Dispos., 2009, 37(9), 1916-1921.
[http://dx.doi.org/10.1124/dmd.109.026815] [PMID: 19487254]
[240]
Miners, J.O.; Attwood, J.; Birkett, D.J. Influence of sex and oral contraceptive steroids on paracetamol metabolism. Br. J. Clin. Pharmacol., 1983, 16(5), 503-509.
[http://dx.doi.org/10.1111/j.1365-2125.1983.tb02207.x] [PMID: 6416284]
[241]
Johansson, I.; Ingelman-Sundberg, M. Genetic polymorphism and toxicology- with emphasis on cytochrome p450. Toxicol. Sci., 2011, 120(1), 1-13.
[http://dx.doi.org/10.1093/toxsci/kfq374] [PMID: 21149643]
[242]
Belle, D.J.; Singh, H. Genetic factors in drug metabolism. Am. Fam. Physician, 2008, 77(11), 1553-1560.
[PMID: 18581835]
[243]
Yokomori, N.; Kobayashi, R.; Moore, R.; Sueyoshi, T.; Negishi, M. A DNA methylation site in the male-specific P450 (Cyp 2d-9) promoter and binding of the heteromeric transcription factor GABP. Mol. Cell. Biol., 1995, 15(10), 5355-5362.
[http://dx.doi.org/10.1128/MCB.15.10.5355] [PMID: 7565685]
[244]
Ström, A.; Eguchi, H.; Mode, A.; Legraverend, C.; Tollet, P.; Strömstedt, P.E.; Gustafsson, J.A. Characterization of the proximal promoter and two silencer elements in the CYP2C11 gene expressed in rat liver. DNA Cell Biol., 1994, 13(8), 805-819.
[http://dx.doi.org/10.1089/dna.1994.13.805] [PMID: 8068205]
[245]
Xie, X.; Miao, L.; Yao, J.; Feng, C.; Li, C.; Gao, M.; Liu, M.; Gong, L.; Wang, Y.; Qi, X.; Ren, J. Role of multiple microRNAs in the sexually dimorphic expression of Cyp2b9 in mouse liver. Drug Metab. Dispos., 2013, 41(10), 1732-1737.
[http://dx.doi.org/10.1124/dmd.113.052217] [PMID: 23704697]
[246]
Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol., 2017, 1043, 227-256.
[http://dx.doi.org/10.1007/978-3-319-70178-3_12] [PMID: 29224098]
[247]
Hart-Unger, S.; Arao, Y.; Hamilton, K.J.; Lierz, S.L.; Malarkey, D.E.; Hewitt, S.C.; Freemark, M.; Korach, K.S. Hormone signaling and fatty liver in females: analysis of estrogen receptor α mutant mice. Int. J. Obes., 2017, 41(6), 945-954.
[http://dx.doi.org/10.1038/ijo.2017.50] [PMID: 28220039]
[248]
Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and Inherent cardiovascular risk. Adv. Ther., 2017, 34(6), 1291-1326.
[http://dx.doi.org/10.1007/s12325-017-0556-1] [PMID: 28526997]
[249]
Kurt, Z.; Barrere-Cain, R.; LaGuardia, J.; Mehrabian, M.; Pan, C.; Hui, S.T.; Norheim, F.; Zhou, Z.; Hasin, Y.; Lusis, A.J.; Yang, X. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol. Sex Differ., 2018, 9(1), 46.
[http://dx.doi.org/10.1186/s13293-018-0205-7] [PMID: 30343673]
[250]
Chung, G.E.; Yim, J.Y.; Kim, D.; Lim, S.H.; Yang, J.I.; Kim, Y.S.; Yang, S.Y.; Kwak, M.S.; Kim, J.S.; Cho, S.H. The influence of metabolic factors for nonalcoholic fatty liver disease in women. BioMed Res. Int., 2015, 2015131528
[http://dx.doi.org/10.1155/2015/131528] [PMID: 25973422]
[251]
Venetsanaki, V.; Polyzos, S.A. Menopause and non-alcoholic fatty liver disease: a review focusing on therapeutic perspectives. Curr. Vasc. Pharmacol., 2019, 17(6), 546-555.
[PMID: 29992886]
[252]
Na, A.Y.; Jo, J.J.; Kwon, O.K.; Shrestha, R.; Cho, P.J.; Kim, K.M.; Ki, S.H.; Lee, T.H.; Jeon, T.W.; Jeong, T.C.; Lee, S. Investigation of nonalcoholic fatty liver disease-induced drug metabolism by comparative global toxicoproteomics. Toxicol. Appl. Pharmacol., 2018, 352, 28-37.
[http://dx.doi.org/10.1016/j.taap.2018.05.021] [PMID: 29792946]
[253]
Nd, A.M. Non-alcoholic fatty liver disease, an overview. Integr. Med. (Encinitas), 2019, 18(2), 42-49.
[PMID: 31341444]
[254]
Marino, L.; Jornayvaz, F.R. Endocrine causes of nonalcoholic fatty liver disease. World J. Gastroenterol., 2015, 21(39), 11053-11076.
[http://dx.doi.org/10.3748/wjg.v21.i39.11053] [PMID: 26494962]
[255]
Martins, I.J. Nutrition therapy regulates caffeine metabolism with relevance to NAFLD and induction of type 3 diabetes. J Diabetes Metab Disord., 2017. 4, 019.
[256]
Kane, A.E.; Sinclair, D.A. Sirtuins and NAD(+) in the development and treatment of metabolic and cardiovascular diseases. Circ. Res., 2018, 123(7), 868-885.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312498] [PMID: 30355082]
[257]
Sass, D.A.; Chang, P.; Chopra, K.B. Nonalcoholic fatty liver disease: a clinical review. Dig. Dis. Sci., 2005, 50(1), 171-180.
[http://dx.doi.org/10.1007/s10620-005-1267-z] [PMID: 15712657]
[258]
Yamamoto, M.; Takahashi, Y. The essential role of SIRT1 in hypothalamic-pituitary axis. Front. Endocrinol. (Lausanne), 2018, 9, 605.
[http://dx.doi.org/10.3389/fendo.2018.00605] [PMID: 30405528]
[259]
Lee, H.J.; Yang, S.J. Aging-related correlation between serum sirtuin 1 activities and basal metabolic rate in women, but not in men. Clin. Nutr. Res., 2017, 6(1), 18-26.
[http://dx.doi.org/10.7762/cnr.2017.6.1.18] [PMID: 28168178]
[260]
Konar, A.; Rastogi, M.; Bhambri, A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior. Neurochem. Int., 2019, 129104510
[http://dx.doi.org/10.1016/j.neuint.2019.104510]
[261]
Lee, C.H.; Su, S.C.; Chiang, C.F.; Chien, C.Y.; Hsu, C.C.; Yu, T.Y.; Huang, S.M.; Shieh, Y.S.; Kao, H.W.; Tsai, C.S.; Hung, Y.J.; Lin, C.Y. Estrogen modulates vascular smooth muscle cell function through downregulation of SIRT1. Oncotarget, 2017, 8(66), 110039-110051.
[http://dx.doi.org/10.18632/oncotarget.22546]
[262]
Shintyapina, A.B.; Vavilin, V.A.; Safronova, O.G.; Lyakhovich, V.V. The gene expression profile of a drug me-tabolism system and signal transduction pathways in the liver of mice treated with tert-butylhydroquinone or 3-(3′-tert-butyl-4′ hydroxyphenyl) propylthiosulfonate of sodium. PLoS One, 2017, 12(5)e0176939
[http://dx.doi.org/10.1371/journal.pone.0176939.eCollection2017]]
[263]
Hall, A.M.; Brennan, G.P.; Nguyen, T.M.; Singh-Taylor, A.; Mun, H.S.; Sargious, M.J.; Baram, T.Z. The role of sirt1 in epileptogenesis. eNeuro. , 2017, 4(1) ENEURO.0301-16.2017.
[http://dx.doi.org/10.1523/ENEURO.0301-16.2017]
[264]
Martins, I.J. Sirtuin 1, a Diagnostic protein marker and its relevance to chronic disease and therapeutic drug interven-tions. EC. Pharmacol. Toxicol., 2018, 6.4, 209-215.
[265]
Hajighasem, A.; Farzanegi, P.; Mazaheri, Z.; Naghizadeh, M.; Salehi, G. Effects of resveratrol, exercises and their combina-tion on Farnesoid X receptor, Liver X receptor and Sirtuin 1 gene expression and apoptosis in the liver of elderly rats with nonalcoholic fatty liver. PeerJ, 2018, 6e5522
[http://dx.doi.org/10.7717/peerj.5522.eCollection2018]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy