Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Green Protocols for the Synthesis of 3,3’-spirooxindoles – 2016- mid 2019

Author(s): Ani Deepthi*, Noble V. Thomas and Vidya Sathi

Volume 6, Issue 3, 2019

Page: [210 - 225] Pages: 16

DOI: 10.2174/2213346106666191019144116

Abstract

Spirooxindoles, particularly 3,3’-spirooxindoles constitute a privileged structural scaffold owing to the intensive biological activities which they possess. Because of this over the last twenty years, a large number of methods were devised for their synthesis and some of these molecules have entered pre-clinical trials. Of late, methods for spirooxindole synthesis using green protocols have developed rapidly. Reactions based on multicomponent strategies using non-catalytic / biocatalytic pathways and those done in aqueous media have been largely employed for the synthesis of 3,3’- spirooxindoles. This review focusses on the synthesis of 3,3’-spirooxindoles via green protocols and covers the literature from 2016 onwards (2016 - mid 2019); a review on the same topic has appeared in 2016. The green methods discussed here include reactions done in aqueous media, multicomponent strategies, alternate solvents and photocatalysis.

Keywords: 3, 3'-spirooxindoles, multicomponent reactions, spiropyrans, spiropyrrolidines, catalysts, green.

Graphical Abstract

[1]
Sheldon, R.A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 2012, 41, 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J]
[2]
Brahmachari, G. Synthesis of biologically relevant heterocycles in Aqueous Media. Asian J. Org. Chem., 2018, 7, 1982-2004.
[http://dx.doi.org/10.1002/ajoc.201800396]
[3]
Jangale, A.D.; Dalal, D.S. Green synthetic approaches for biologically relevant organic compounds. Synth. Commun., 2017, 47, 2139-2173.
[http://dx.doi.org/10.1080/00397911.2017.1369544]
[4]
Lashgari, N.; Mohammadi Ziarani, G. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. ARKIVOC, 2012, (i), 277-320.
[5]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. ARKIVOC, 2016, (i), 1-81.
[6]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46, 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342]
[7]
Panda, S.S.; Jones, R.A.; Bachawala, P.; Mohapatra, P.P. Spirooxindoles as potential phamacophores. (Mini-Rev.). Med. Chem., 2017, 17, 1515-1536.
[8]
Yu, B.; Yu, D-Q.; Liu, H-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97, 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056]
[9]
Ye, N.; Chen, H.; Wold, E.; Shi, P.; Zhou, J. Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect. Dis., 2016, 2, 382-392.
[http://dx.doi.org/10.1021/acsinfecdis.6b00041]
[10]
Saraswat, P.; Jeyabalan, G.; Hassan, M.; Rahman, M.; Nyola, N. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moieties. Synth. Commun., 2016, 20, 1643-1664.
[http://dx.doi.org/10.1080/00397911.2016.1211704]
[11]
Gasperi, T.; Miceli, M.; Campagne, J-M.; de Figueiredo, R.M. Non-Covalent organocatalyzed domino reactions involving oxindoles: recent advances. Molecules, 2017, 22, 1636-1666.
[http://dx.doi.org/10.3390/molecules22101636]
[12]
Liu, R-R.; Xu, Y.; Liang, R-X.; Xiang, B.; Xie, H-J.; Gao, J-R.; Jia, Y-X. Spirooxindole synthesis via palladium-catalyzed dearomative reductive-Heck reaction. Org. Biomol. Chem., 2017, 15, 2711-2715.
[http://dx.doi.org/10.1039/C7OB00146K]
[13]
Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P.P.; Tomita, Y.; Parrish, D.A.; Deschamps, J.R.; Wang, S. Structure-based design of potent non-peptide Mdm2 Inhibitors. J. Am. Chem. Soc., 2005, 127, 10130-10131.
[http://dx.doi.org/10.1021/ja051147z]
[14]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408, 307-310.
[http://dx.doi.org/10.1038/35042675]
[15]
Wu, X.; Bayle, J.H.; Olson, D.; Levine, A.J. The p53-Mdm2 autoregulatory feedback loop. Genes Dev., 1993, 7, 1126-1132.
[http://dx.doi.org/10.1101/gad.7.7a.1126]
[16]
Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88, 323-331.
[http://dx.doi.org/10.1016/S0092-8674(00)81871-1]
[17]
Wu, L.; Levine, A.J. Differential regulation of the p21/WAF-1 and Mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the Mdm2 gene. Mol. Med., 1997, 3, 441-451.
[http://dx.doi.org/10.1007/BF03401691]
[18]
Moll, U.M.; Petrenko, O. The Mdm2-p53 Interaction. Mol. Cancer Res., 2003, 1, 1001-1008.
[19]
Garima Kumari, M.M. Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur. J. Med. Chem., 2011, 46, 1181-1188.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.037]
[20]
Vintonyak, V.V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Identification of thiazolidinones spiro‐fused to indolin‐2‐ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. Engl., 2010, 49, 5902-5905.
[http://dx.doi.org/10.1002/anie.201002138]
[21]
Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro β-Carbolines (Spiroindolones): A new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53, 5155-5164.
[http://dx.doi.org/10.1021/jm100410f]
[22]
Murugan, R.; Anbazhagan, S.; Narayanan, S.S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44, 3272-3279.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.035]
[23]
Fensome, A.; Adams, W.R.; Adams, A.L.; Berrodin, T.J.; Cohen, J.; Huselton, C.; Illenberger, A.; Kern, J.C.; Hudak, V.A.; Marella, M.A.; Melenski, E.G.; McComas, C.C.; Mugford, C.A.; Slayden, O.D.; Yudt, M.; Zhang, Z.; Zhang, P.; Zhu, Y.; Winneker, R.C.; Wrobel, J.E. Design, synthesis, and SAR of new pyrrole-oxindole progesterone receptor modulators leading to 5-(7-fluoro-3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-5-yl)-1-methyl-1H-pyrrole-2-carbonitrile. J. Med. Chem., 2008, 51, 1861-1873.
[http://dx.doi.org/10.1021/jm701080t]
[24]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20, 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8]
[25]
Yan, L-J.; Wang, Y-C. Recent Advances in Green Synthesis of 3,3′‐Spirooxindoles via Isatin–based One–pot Multicomponent Cascade Reactions in Aqueous Medium. ChemistrySelect, 2016, 1, 6948-6960.
[http://dx.doi.org/10.1002/slct.201601534]
[26]
Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev., 2014, 114, 6949-6985.
[http://dx.doi.org/10.1021/cr500134h]
[27]
Singh, N.G.; Lily, M.; Devi, S.P.; Rahman, N.; Ahmed, A.; Chandra, A.K.; Nongkhlaw, R. Synthetic, mechanistic and kinetic studies on the organo-nanocatalyzed synthesis of oxygen and nitrogen containing spiro compounds under ultrasonic conditions. Green Chem., 2016, 18, 4216-4227.
[http://dx.doi.org/10.1039/C6GC00724D]
[28]
Jamatia, R.; Gupta, A.; Pal, A.K. Nano-FGT: a green and sustainable catalyst for the synthesis of spirooxindoles in aqueous medium. RSC Advances, 2016, 6, 20994-21000.
[http://dx.doi.org/10.1039/C5RA27552K]
[29]
Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today, 2010, 5, 412-434.
[http://dx.doi.org/10.1016/j.nantod.2010.08.008]
[30]
Demirelli, M.; Karaoglu, E.; Baykal, A.; Sozeri, H.; Uysal, E. Synthesis, characterization and catalytic activity of CoFe2O4-APTES-Pd magnetic recyclable catalyst. J. Alloys Compd., 2014, 582, 201-207.
[http://dx.doi.org/10.1016/j.jallcom.2013.07.174]
[31]
Alemi-Tameh, F.; Safaei-Ghomi, J.; Mahmoudi-Hashemi, M.; Shahbazi-Alavi, H. One-pot multicomponent reaction synthesis of spirooxindoles promoted by guanidine-functionalized magnetic Fe3O4 nanoparticles. RSC Advances, 2016, 6, 74802-74811.
[http://dx.doi.org/10.1039/C6RA08458C]
[32]
Alemi-Tameh, F.; Safaei-Ghomi, J.; Mahmoudi-Hashemi, M.; Monajjemi, M. Amino functionalized nano Fe3O4@SiO2 as a magnetically green catalyst for the one-pot synthesis of spirooxindoles under mild conditions. Polycycl. Aromat. Compd., 2018, 38, 199-212.
[http://dx.doi.org/10.1080/10406638.2016.1179650]
[33]
Kumar, A.S.; Thulasiram, B.; Bala Laxmi, S.; Rawat, V.S.; Sreedhar, B. Magnetic CuFe2O4 nanoparticles: a retrievable catalyst for oxidative amidation of aldehydes with amine hydrochloride salts. Tetrahedron, 2014, 70, 6059-6067.
[http://dx.doi.org/10.1016/j.tet.2014.01.051]
[34]
Baghernejad, M.; Khodabakhshi, S.; Tajik, S. Isatin-based three-component synthesis of new spirooxindoles using magnetic nano-sized copper ferrite. New J. Chem., 2016, 40, 2704-2709.
[http://dx.doi.org/10.1039/C5NJ03027G]
[35]
Hasani, H.; Irizeh, M. One-pot synthesis of spirooxindole derivatives catalyzed by ZnFe2O4 as a magnetic nanoparticles. Asian J. Green Chem., 2018, 2, 85-95.
[36]
Moradi, L.; Ataei, Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem. Lett. Rev., 2017, 10, 380-386.
[http://dx.doi.org/10.1080/17518253.2017.1390611]
[37]
Moradi, A.V. A multicomponent reaction as a versatile tool for the synthesis of spirooxindoles using N-alkylisatins; efficient catalysis by ZnO nanoparticles. J. Chem. Res., 2017, 41, 7-11.
[http://dx.doi.org/10.3184/174751917X14815427219086]
[38]
Zhan, G.; Huang, J.; Du, M.; Abdul-Rauf, I.; Ma, Y.; Li, Q. Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Mater. Lett., 2011, 65, 2989-2991.
[http://dx.doi.org/10.1016/j.matlet.2011.06.079]
[39]
Rashid, Z.; Moadi, T.; Ghahremanzadeh, R. Green synthesis and characterization of silver nanoparticles using Ferula latisecta leaf extract and their application as a catalyst for the safe and simple one-pot preparation of spirooxindoles in water. New J. Chem., 2016, 40, 3343-3349.
[http://dx.doi.org/10.1039/C5NJ02656C]
[40]
Pathan, M.Y.; Chavan, S.S.; Shaikh, T.M.Y.; Thorat, S.H.; Gonnade, R.G.; Mulla, S.A. Facile one-pot multi-component synthesis of spirooxindoles and 3, 3′-disubstituted oxindoles via sp3 C-H activation/functionalization of azaarenes. ChemistrySelect, 2017, 2, 9147-9152.
[http://dx.doi.org/10.1002/slct.201701507]
[41]
Allahresani, A.; Taheri, B.; Nasseri, M.A. A green synthesis of spirooxindole derivatives catalyzed by SiO2@g-C3N4 nanocomposite. Res. Chem. Intermed., 2018, 44, 1173-1188.
[http://dx.doi.org/10.1007/s11164-017-3160-8]
[42]
Esmaeilpour, M.; Sardarian, A.R.; Firouzabadi, H. Theophylline supported on modified silica‐coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one‐pot synthesis of spirooxindoles and phenazines. ChemistrySelect, 2018, 3, 9236-9248.
[http://dx.doi.org/10.1002/slct.201801506]
[43]
Allahresani, A.; Taheri, B.; Nasseri, M.A. Synthesis of spirooxindole derivatives catalyzed by GN/SO3H nanocomposite as a heterogeneous solid acid. Res. Chem. Int., 2018, 44, 6979-6993.
[http://dx.doi.org/10.1007/s11164-018-3535-5]
[44]
Pradhan, S.; Mishra, B.G. CsxH3-xPW12O40 nanoparticles dispersed in the porous network of Zr-pillared α-zirconium phosphate as efficient heterogeneous catalyst for synthesis of spirooxindoles. Mol. Catal., 2018, 446, 58-71.
[http://dx.doi.org/10.1016/j.mcat.2017.12.013]
[45]
Bajpai, S.; Singh, S.; Srivastava, V. Monoclinic zirconia nanoparticle-catalyzed regioselective synthesis of some novel substituted spirooxindoles through one-pot multicomponent reaction in a ball mill: A step toward green and sustainable chemistry. Synth. Commun., 2017, 47, 1514-1525.
[http://dx.doi.org/10.1080/00397911.2017.1336244]
[46]
Sadjadi, S.; Heravi, M.M.; Malmir, M.; Masoumi, B. HPA decorated Halloysite Nanoclay: An efficient catalyst for the green synthesis of spirooxindole derivatives. Appl. Organomet. Chem., 2018, 32e4113
[http://dx.doi.org/10.1002/aoc.4113]
[47]
Liang, X.Z.; Zeng, M.F.; Qi, C.Z. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon, 2010, 48, 1844-1848.
[http://dx.doi.org/10.1016/j.carbon.2010.01.030]
[48]
Li, C.; Zhang, F. Convenient synthesis of spirooxindole-fused pyrazolopyridine derivatives. ChemistrySelect, 2018, 3, 1815-1819.
[http://dx.doi.org/10.1002/slct.201702942]
[49]
Tailor, Y.K.; Khandelwal, S.; Verma, K.; Gopal, R.; Kumar, M. Diversity‐oriented synthesis of spirooxindoles using surface‐modified TiO2 nanoparticles as heterogeneous acid catalyst. ChemistrySelect, 2017, 2, 5933-5941.
[http://dx.doi.org/10.1002/slct.201700648]
[50]
Mohammadi, A.A.; Taheri, S.; Amouzegar, A. An efficient one‐pot four‐component synthesis of some new spirooxindole dihydropyridine using alum as a heterogeneous green catalyst. J. Het. Chem., 2017, 54, 2085-2089.
[http://dx.doi.org/10.1002/jhet.2757]
[51]
Shrestha, R.; Sharma, K.; Lee, Y.K.; Wee, Y-J. Cerium oxide-catalyzed multicomponent condensation approach to spirooxindoles in water. Mol. Divers., 2016, 20, 847-858.
[http://dx.doi.org/10.1007/s11030-016-9670-2]
[52]
Kumar, A. Thiamine hydrochloride as a promoter for the efficient and green synthesis of spirooxindoles and its derivatives in aqueous micellar medium. Het. Lett., 2017, 7, 959-966.
[53]
Satheesh, M.; Balachandran, A.L.; Devi, P.R.; Deepthi, A. An expedient synthesis of spirooxindoles incorporating 2-amino pyran-3-carbonitrile unit employing dialkyl acetone-1,3-dicarboxylates. Synth. Commun., 2018, 48, 582-587.
[http://dx.doi.org/10.1080/00397911.2017.1416143]
[54]
Hegade, P.G.; Chinchkar, S.D.; Pore, D.M. DABCO catalyzed pseudo multi-component synthesis of functionalized spirooxindoles. Monatsh. Chem., 2016, 147, 1243-1249.
[http://dx.doi.org/10.1007/s00706-015-1637-y]
[55]
Arupula, S.K.; Guin, S.; Yadav, A.; Mobin, S.M.; Samanta, S. Stereoselective synthesis of 3,3-disubstituted oxindoles and spirooxindoles via allylic alkylation of Morita–Baylis–Hillman carbonates of isatins with cyclic sulfamidate imines catalyzed by DABCO. J. Org. Chem., 2018, 83, 2660-2675.
[http://dx.doi.org/10.1021/acs.joc.7b03090]
[56]
Zhang, W.; Cue, B. Green techniques for organic synthesis and medicinal chemistry; Wiley: New Jersey, 2012, p. 217.
[http://dx.doi.org/10.1002/9780470711828]
[57]
Koeller, K.M.; Wong, C.H. Enzymes for chemical synthesis. Nature, 2001, 409, 232-240.
[http://dx.doi.org/10.1038/35051706]
[58]
Lopez-Iglesias, M.; Gotor-Fernandez, V. Recent advances in biocatalytic promiscuity: hydrolase‐catalyzed reactions for nonconventional transformations. Chem. Rec., 2015, 15, 743-759.
[http://dx.doi.org/10.1002/tcr.201500008]
[59]
Guan, Z.; Li, L.Y.; He, Y.H. Hydrolase-catalyzed asymmetric carbon–carbon bond formation in organic synthesis. RSC Advances, 2015, 5, 16801-16814.
[http://dx.doi.org/10.1039/C4RA11462K]
[60]
Eastoe, J.E. The amino acid composition of fish collagen and gelatin. Biochem. J., 1957, 65, 363-368.
[http://dx.doi.org/10.1042/bj0650363]
[61]
Javanshir, S.; Pourshir, N.S.; Dolatkhah, Z.; Farhadnia, M. Caspian Isinglass, a versatile and sustainable biocatalyst for domino synthesis of spirooxindoles and spiroacenaphthylenes in water. Monatsh. Chem., 2017, 148, 703-710.
[http://dx.doi.org/10.1007/s00706-016-1779-6]
[62]
Liang, Y-R.; Hu, Y-J.; Zhou, X-H.; Wu, Q.; Lin, X-F. One-pot construction of spirooxindole backbone via biocatalytic domino reaction. Tetrahedron Lett., 2017, 58, 2923-2926.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.031]
[63]
Kausar, N.; Al Masum, A.; Islam, M.; Das, A.R. A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol. Divers., 2017, 21, 325-337.
[http://dx.doi.org/10.1007/s11030-017-9728-9]
[64]
Elinson, M.N.; Ryzhkov, F.V.; Zaimovskaya, T.A.; Egorov, M.P. Solvent-free multicomponent assembling of isatins, malononitrile, and dimedone: fast and efficient way to functionalized spirooxindole system. Monatsh. Chem., 2016, 147, 755-760.
[http://dx.doi.org/10.1007/s00706-015-1617-2]
[65]
Elinson, M.N.; Vereshchagin, A.N.; Ryzhkov, F.V.; Anisina, Y.E. ‘Solvent-free’ and ‘on-solvent’ multicomponent reaction of isatins, malononitrile, and bicyclic CH-acids: fast and efficient way to medicinal privileged spirooxindole scaffold. ARKIVOC, 2018, iv, 276-285.
[http://dx.doi.org/10.24820/ark.5550190.p010.640]
[66]
Molla, A.; Ranjan, S.; Rao, M.S.; Dar, A.H.; Shyam, M.; Jayaprakash, V.; Hussain, S. Borax catalysed domino synthesis of highly functionalised spirooxindole and chromenopyridine derivatives: X‐Ray Structure, Hirshfeld Surface analysis and molecular docking studies. ChemistrySelect, 2018, 3, 8669-8677.
[http://dx.doi.org/10.1002/slct.201801867]
[67]
Laevens, B.A.; Tao, J.; Murphy, G.K. Iodide-mediated synthesis of spirooxindolo dihydrofurans from iodonium ylides and 3-alkylidene-2-oxindoles. J. Org. Chem., 2017, 82, 11903-11908.
[http://dx.doi.org/10.1021/acs.joc.7b01639]
[68]
Liu, D.; Lei, A. Iodine‐catalyzed oxidative coupling reactions utilizing C. H and X. H as nucleophiles. Chem. Asian J., 2015, 10, 806-823.
[http://dx.doi.org/10.1002/asia.201403248]
[69]
Ren, Y-M.; Cai, C.; Yang, R-C. Molecular iodine-catalyzed multicomponent reactions: an efficient catalyst for organic synthesis. RSC Advances, 2013, 3, 7182-7204.
[http://dx.doi.org/10.1039/c3ra23461d]
[70]
Zhang, M.; Yang, W.; Qian, M.; Zhao, T.; Yang, L.; Zhu, C. Iodine-promoted three-component reaction for the synthesis of spirooxindoles. Tetrahedron, 2018, 74, 955-961.
[http://dx.doi.org/10.1016/j.tet.2018.01.001]
[71]
Wu, X-F.; Gong, J-L.; Qi, X. A powerful combination: recent achievements on using TBAI and TBHP as oxidation system. Org. Biomol. Chem., 2014, 12, 5807-5817.
[http://dx.doi.org/10.1039/C4OB00276H]
[72]
Jazinizadeh, T.; Maghsoodlou, M.T.; Heydari, R.; Yazdani-Elah-Abadi, A. Na2EDTA: an efficient, green and reusable catalyst for the synthesis of biologically important spirooxindoles, spiroacenaphthylenes and spiro-2-amino-4H-pyrans under solvent-free conditions. J. Iran Chem. Soc., 2017, 14, 2117-2125.
[http://dx.doi.org/10.1007/s13738-017-1148-3]
[73]
Zhao, H-W.; Li, B.; Tian, T.; Song, X-Q.; Pang, H-L.; Chen, X-Q.; Yang, Z.; Meng, W. Facile construction of novel imidazolidine-spirooxindoles via diastereoselective cycloaddition of N-acylhydrazine-derived imines with 3-isothiocyanato oxindoles. RSC Advances, 2016, 6, 27690-27695.
[http://dx.doi.org/10.1039/C6RA01962E]
[74]
Nair, V.; Deepthi, A. Cerium(IV) Ammonium Nitrate - A versatile single-electron oxidant. Chem. Rev., 2007, 107, 1862-1891.
[http://dx.doi.org/10.1021/cr068408n]
[75]
Sridharan, V.; Menéndez, J.C. Cerium(IV) Ammonium Nitrate as a catalyst in organic synthesis. Chem. Rev., 2010, 110, 3805-3849.
[http://dx.doi.org/10.1021/cr100004p]
[76]
Nair, V.; Deepthi, A. Recent advances in CAN mediated reactions in organic synthesis. Tetrahedron, 2009, 65, 10745-10755.
[http://dx.doi.org/10.1016/j.tet.2009.10.083]
[77]
Joshi, R.; Kumawat, A.; Singh, S.; Roy, T.K.; Pardasani, R.M. Synthesis of spirooxindoles through cyclocondensation of isatin and cyclic 1,3‐diones. J. Het. Chem., 2018, 55, 1783-1790.
[http://dx.doi.org/10.1002/jhet.3217]
[78]
Ramesh, P.; Rao, K.S.; Trivedi, R.; Kumar, B.S.; Prakasham, R.S.; Sridhar, B. Highly efficient regio and diastereoselective synthesis of functionalized bis-spirooxindoles and their antibacterial properties. RSC Advances, 2016, 6, 26546-26552.
[http://dx.doi.org/10.1039/C6RA00613B]
[79]
Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P.T. Novel spirooxindole–pyrrolidine compounds: Synthesis, anticancer and molecular docking studies. Eur. J. Med. Chem., 2014, 74, 50-64.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.027]
[80]
Yang, F.; Sun, J.; Gao, H.; Yan, C.G. Unprecedented formation of spiro[indoline-3,7′-pyrrolo[1,2-a]azepine] from multicomponent reaction of L-proline, isatin and but-2-ynedioate. RSC Advances, 2015, 5, 32786-32794.
[http://dx.doi.org/10.1039/C5RA04102C]
[81]
Wang, C-S.; Zhu, R-Y.; Zheng, J.; Shi, F. Tu, S. -J. Enantioselective construction of spiro[indoline-3,2′-pyrrole] framework via catalytic asymmetric 1,3-dipolar cycloadditions using allenes as equivalents of alkynes. J. Org. Chem., 2015, 80, 512-520.
[http://dx.doi.org/10.1021/jo502516e]
[82]
Yan, J. Synthesis of novel dispiro [1-benzothiophene-5,3′-pyrrolidine-2′,3″-indole] derivatives via 1,3-dipolar cycloaddition of azomethine ylide. J. Chem. Res., 2014, 38, 50-53.
[http://dx.doi.org/10.3184/174751914X13865875476588]
[83]
Ren, D.; Hu, X.; Huang, Y.; Li, X. Synthesis of dispiro[indeno[1,2-b]quinoxaline-11,3′-pyrrolizine-2′,2″-[1,3] thiazolo[3,2-a]pyrimidine via cycloaddition reactions. J. Chem. Res., 2018, 42, 453-455.
[http://dx.doi.org/10.3184/174751918X15349264445767]
[84]
Sathi, V.; Krishnan, P.; Jayasree, D.V.; Deepthi, A.; Biju, P.G. Synthesis of heterocycle appended spiro(oxindole-3,2′-pyrrolidine) derivatives from heterocyclic ylidenes and azomethine ylide through 1,3-dipolar cycloaddition reactions. Synth. Commun., 2019, 49, 1592-1602.
[http://dx.doi.org/10.1080/00397911.2019.1605444]
[85]
Nayak, S.; Mishra, S.K.; Bhakta, S.; Panda, P.; Baral, N.; Mohapatra, S.; Purohit, C.S.; Satha, P. Green synthesis of spirooxindole-pyrrolidine/piperidine fused nitrochromane: one pot three component stereo and regioselective cycloaddition. Lett. Org. Chem., 2016, 13, 11-21.
[http://dx.doi.org/10.2174/1570178612666151030213735]
[86]
Kumar, R.S.; Antonisamy, P.; Almansour, A.I.; Arumugam, N.; Periyasami, G.; Altaf, M.; Kim, H-R.; Kwon, K-B. Functionalized spirooxindole-indolizine hybrids: Stereoselective green synthesis and evaluation of anti-inflammatory effect involving TNF-α and nitrite inhibition. Eur. J. Med. Chem., 2018, 152, 417-423.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.060]
[87]
Zhang, X.; Liu, M.; Qiu, W.; Evans, J.; Kaur, M.; Jasinski, J.P.; Zhang, W. One-pot synthesis of polycyclic spirooxindoles via montmorillonite K10-catalyzed C–H functionalization of cyclic amines. ACS Sustain. Chem.& Eng., 2018, 6, 5574-5579.
[http://dx.doi.org/10.1021/acssuschemeng.8b00555]
[88]
Wang, Y-C.; Wang, J-L.; Burgess, K.S.; Zhang, J-W.; Zheng, Q-M.; Pu, Y-D.; Yan, L-J.; Chen, X-B. Green synthesis of new pyrrolidine-fused spirooxindoles via three-component domino reaction in EtOH/H2O. RSC Advances, 2018, 8, 5702-5713.
[http://dx.doi.org/10.1039/C7RA13207G]
[89]
Kumar, R.S.; Almansour, A.L.; Arumugam, N.; Soliman, S.M.; Kumar, R.R.; Altaf, M.; Ghabbour, H.A.; Krishnamoorthy, B.S. Stereoselective green synthesis and molecular structures of highly functionalized spirooxindole-pyrrolidine hybrids – A combined experimental and theoretical investigation. J. Mol. Struct., 2018, 1152, 266-275.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.073]
[90]
El-Hashash, M.A.; Rizk, S.A. One‐pot synthesis of novel spirooxindoles as antibacterial and antioxidant agents. J. Het. Chem., 2017, 54, 1776-1784.
[http://dx.doi.org/10.1002/jhet.2758]
[91]
Padvi, S.A.; Tayade, Y.A.; Wagh, Y.B.; Dalal, D.S. [bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature. Chin. Chem. Lett., 2016, 27, 714-720.
[http://dx.doi.org/10.1016/j.cclet.2016.01.016]
[92]
Bhupathi, R.S.; Madhu, B.; Reddy, V.R.; Devi, B.R.; Dubey, P.K. Ionic liquid mediated green synthesis of spirooxindoles from n‐methyl quinolones and their anti-bacterial activity. J. Het. Chem., 2017, 54, 2326-2332.
[http://dx.doi.org/10.1002/jhet.2821]
[93]
Kamal, A.; Malik, M.S.; Bajee, S.; Azeeza, S.; Faazil, S.; Ramakrishna, S.; Naidu, V.G.M.; Vishnuwardhan, M.V.P.S. Synthesis and biological evaluation of conformationally flexible as well as restricted dimers of monastrol and related dihydropyrimidones. Eur. J. Med. Chem., 2011, 46, 3274-3281.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.048]
[94]
Khanna, G.; Aggarwal, K.; Khurana, J.M. Efficient catalyst-free synthesis of diversified bis (spirooxindoles) via one-pot, three-component reaction. Synth. Commun., 2016, 46, 1880-1886.
[http://dx.doi.org/10.1080/00397911.2016.1233437]
[95]
Hasaninejad, A.; Beyrati, M. Eco-friendly polyethylene glycol (PEG-400): a green reaction medium for one-pot, four-component synthesis of novel asymmetrical bis-spirooxindole derivatives at room temperature. RSC Advances, 2018, 8, 1934-1939.
[http://dx.doi.org/10.1039/C7RA13133J]
[96]
Safari, E.; Maryamabadi, A.; Hasaninejad, A. Highly efficient, one-pot synthesis of novel bis-spirooxindoles with skeletal diversity via sequential multi-component reaction in PEG-400 as a biodegradable solvent. RSC Advances, 2017, 7, 39502-39511.
[http://dx.doi.org/10.1039/C7RA06017C]
[97]
Modugu, N.R.; Pittala, P.K. Polyethylene glycol (PEG-400) promoted as an efficient and recyclable reaction medium for the one-pot eco-friendly synthesis of functionalized isoxazole substituted spirooxindole derivatives. New J. Chem., 2017, 41, 14062-14066.
[http://dx.doi.org/10.1039/C7NJ03515B]
[98]
Kumari, S.; Singh, H.; Khurana, J.M. An efficient green approach for the synthesis of novel triazolyl spirocyclic oxindole derivatives via one-pot five component protocol using DBU as catalyst in PEG-400. Tetrahedron Lett., 2016, 57, 3081-3085.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.084]
[99]
Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural deep eutectic solvents: properties, applications, and perspectives. J. Nat. Prod., 2018, 81, 679-690.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00945]
[100]
Aroso, I.M.; Paiva, A.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. J. Mol. Liq., 2017, 241, 654-661.
[http://dx.doi.org/10.1016/j.molliq.2017.06.051]
[101]
Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionisio, M.; Barreiros, S.; Reis, R.S.; Duarte, A.R.C.; Paiva, A. Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq., 2016, 215, 534-540.
[http://dx.doi.org/10.1016/j.molliq.2016.01.038]
[102]
Zhang, W-H.; Chen, M-N.; Hao, Y.; Jiang, X.; Zhou, X-L.; Zhang, Z-H. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines J. Mol. Liq., 2019, 278, 124-129.
[http://dx.doi.org/10.1016/j.molliq.2019.01.065]
[103]
Chandam, D.R.; Mulik, A.G.; Patil, D.R.; Deshmukh, M.B. Oxalic acid dihydrate: proline as a new recyclable designer solvent: a sustainable, green avenue for the synthesis of spirooxindole. Res. Chem. Intermed., 2016, 42, 1411-1423.
[http://dx.doi.org/10.1007/s11164-015-2093-3]
[104]
Herna’ndez, J.G.; Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem., 2017, 82, 4007-4019.
[http://dx.doi.org/10.1021/acs.joc.6b02887]
[105]
Do, J-L. Frisˇcˇic´, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci., 2017, 3, 13-19.
[http://dx.doi.org/10.1021/acscentsci.6b00277]
[106]
Jia, K-Y.; Yu, J-B.; Jiang, Z-J. Su, W.-K.; Mechanochemically activated oxidative coupling of indoles with acrylates through C–H activation: Synthesis of 3-vinylindoles and β,β-diindolyl propionates and study of the mechanism. J. Org. Chem., 2016, 81, 6049- 6055.
[http://dx.doi.org/10.1021/acs.joc.6b01138]
(b) bZhao, Y.; Rocha, S.V. Swager, T. M. Mechanochemical Synthesis of Extended Iptycenes. J. Am. Chem. Soc, 2016, 138, 13834-13837.
[107]
Hermann, G.N.; Jung, C.L.; Bolm, C. Mechanochemical indole synthesis by rhodium-catalysed oxidative coupling of acetanilides and alkynes under solventless conditions in a ball mill. Green Chem., 2017, 19, 2520-2523.
[http://dx.doi.org/10.1039/C7GC00499K]
[108]
Karanjule, N.B.; Samant, S.D. Microwave assisted, 4-dimethylaminopyridine (dmap) mediated, one-pot, three-component, regio- and diastereoselective synthesis of trans- 2,3-dihydrofuro[3,2-c]coumarins. Curr. Microw. Chem., 2014, 1, 135.
[http://dx.doi.org/10.2174/2213335601666140529003616]
[109]
Paneri, M.; Joshi, A.; Khan, S. A straightforward microwave assisted green synthesis of functionalized spirooxindole-pyrrolothiazole derivatives via three-component 1,3-dipolar cycloaddition reactions. Chem. Biol. Interface., 2016, 6, 224-233.
[110]
Tabatabaei Rezaei, T.J.; Nabid, M.R.; Yari, A.; Ng, S.W. Ultrasound-promoted synthesis of novel spirooxindolo/spiroacenaphthen dicyano pyrrolidines and pyrrolizidines through regioselective azomethine ylide cycloaddition reaction. Ultrason. Sonochem., 2011, 18, 49-53.
[http://dx.doi.org/10.1016/j.ultsonch.2010.05.016]
[111]
Nishtala, V.B.; Nanubolu, J.B.; Basavoju, S. Ultrasound-assisted rapid and efficient one-pot synthesis of furanyl spirooxindolo and spiroquinoxalinopyrrolizidines by 1,3-dipolar cycloaddition: a green protocol. Res. Chem. Intermed., 2017, 43, 1365-1381.
[http://dx.doi.org/10.1007/s11164-016-2703-8]
[112]
Tóth, B.L.; Tischler, O.; Novák, Z. Recent advances in dual transition metal–visible light photoredox catalysis. Tetrahedron Lett., 2016, 57, 4505-4513.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.081]
[113]
Deepthi, A.; Sathi, V.; Nair, V. Recent topics of radical-based carbon-carbon bond formations. Tetrahedron Lett., 2018, 59, 2767-2777.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.029]
[114]
Zhang, M.; Fu, Q-Y.; Gao, G.; He, H-Y.; Zhang, Y.; Wu, Y-S.; Zhang, Z-H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain. Chem.& Eng., 2017, 5, 6175-6182.
[http://dx.doi.org/10.1021/acssuschemeng.7b01102]
[115]
Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem., 2010, 12, 2099-2119.
[http://dx.doi.org/10.1039/c0gc00382d]
[116]
Darvish, Z.M.; Mirza, B.; Makarem, S. Electrocatalytic multicomponent reaction for synthesis of nanoparticles of spirooxindole derivatives from isatins, malononitrile, and dimedone. J. Het. Chem., 2017, 54, 1763-1766.
[http://dx.doi.org/10.1002/jhet.2755]

© 2025 Bentham Science Publishers | Privacy Policy