[1]
Masson, P.; Froment, M.T.; Fortier, P.L.; Visicchio, J.E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta, 1998, 8, 1-2.
[2]
Shram, M.J.; Cohen-Barak, O.; Chakraborty, B.; Bassan, M.; Schoedel, K.A.; Hallak, H.; Eyal, E.; Weiss, S.; Gilgun-Serki, Y.; Sellers, E.M.; Faulknor, J.; Spiegelstein, O. Assessment of pharmacokinetic and pharmacodynamic interactions between albumin-fused mutated butyrylcholinesterase and intravenously administered cocaine in recreational cocaine users. J. Clin. Psychopharmacol., 2015, 35(4), 396-405.
[3]
Hyatt, J.L.; Moak, T.; Hatfield, M.J.; Tsurkan, L.; Edwards, C.C.; Wierdl, M.; Danks, M.K.; Wadkins, R.M.; Potter, P.M. Selective inhibition of carboxylesterases by isatins, indole-2,3-diones. J. Med. Chem., 2007, 50(8), 1876-1885.
[4]
Pohanka, M. Butyrylcholinesterase as a biochemical marker, a review. Brat. Med. J., 2013, 114(12), 726-734.
[5]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc, 2011, 155(3), 219-229.
[6]
Klinkerberg, I.; Sambeth, A.; Blokland, A. Acetylcholine and attention. Behav. Brain Res., 2011, 221(2), 430-442.
[7]
Campoy, F.J.; Vidal, C.J.; Munoz-Delgado, E.; Montenegro, M.F.; Cabezas-Herrera, J.; Nieto-Ceron, S. Cholinergic system and cell proliferation. Chem. Biol. Interact., 2016, 259(Pt B), 257-265.
[8]
Lewartowski, B.; Mackiewicz, U. The non-neuronal heart’s acetylcholine in health and disease. J. Physiol. Pharmacol., 2015, 66(6), 773-778.
[9]
Pohanka, M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci., 2012, 13(2), 2219-2238.
[10]
Tessier, C.J.G.; Emlaw, J.R.; Cao, Z.Q.; Javier Perez-Areales, F.; Salameh, J.J.; Prinston, J.E.; McNulty, M.S.; daCosta, C.J.B. Back to the future: Rational maps for exploring acetylcholine receptor space and time. Biochim. Biophys. Acta, 2017, 24(17), 30186-30183.
[11]
Changeux, J.P. The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily. J. Biol. Chem., 2012, 287(48), 40207-40215.
[12]
De Angelis, F.; Tata, A.M. Analgesic effects mediated by muscarinic receptors: Mechanisms and pharmacological approaches. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16(3), 218-226.
[13]
Sundeen, G.; Barbieri, J.T. Vaccines against botulism. Toxins, 2017, 9(9), 268.
[14]
Dutta, S.R.; Passi, D.; Singh, M.; Singh, P.; Sharma, S.; Sharma, A. Botulinum toxin the poison that heals: A brief review. Natl. J. Maxillofac. Surg., 2016, 7(1), 10-16.
[15]
Ramirez-Castaneda, J.; Jankovic, J.; Comella, C.; Dashtipour, K.; Fernandez, H.H.; Mari, Z. Diffusion, spread, and migration of botulinum toxin. Mov. Disord., 2013, 28(13), 1775-1783.
[16]
Wheeler, A.; Smith, H.S. Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology, 2013, 306, 124-146.
[17]
Petroianu, G.A. Pharmacists adolf schall and ernst ratzlaff and the synthesis of tabun-like compounds: A brief history. Pharmazie, 2014, 69(10), 780-784.
[18]
Lopez-Munoz, F.; Garcia-Garcia, P.; Alamo, C. The pharmaceutical industry and the german national socialist regime: Ig farben and pharmacological research. J. Clin. Pharm. Ther., 2009, 34(1), 67-77.
[19]
Mashkovsky, M.D.; Kruglikova-Lvova, R.P. On the pharmacology of the new alkaloid galantamine. Farmakologiea Toxicologia (Moscow), 1951, 14, 27-30.
[20]
Rainer, M. Galanthamine in alzheimer’s disease - a new alternative to tacrine? CNS Drugs, 1997, 7(2), 89-97.
[21]
Crismon, M.L. Tacrine: First drug approved for alzheimer’s disease. Ann. Pharmacother., 1994, 28(6), 744-751.
[22]
Bell, C.; Gershon, S. Experimental anticholinergic psychoto-mimetics - antagonism of yohimbine + tacrine (tha). Med. Experiment., 1964, 10(1), 15.
[23]
Delalande, I.S.; Porter, R.B. Actions of tacrine and amiphenazole on acetylcholine metabolims in guinea pig ileum. Aust. J. Exp. Biol. Med. Sci., 1963, 41(2), 149.
[24]
Pope, C.N.; Brimijoin, S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol., 2018, 31(18), 30050-30059.
[25]
Triantafylidis, L.K.; Clemons, J.S.; Peron, E.P.; Roefaro, J.; Zimmerman, K.M. Brain over bladder: A systematic review of dual cholinesterase inhibitor and urinary anticholinergic use. Drugs Aging, 2018, 35(1), 27-41.
[26]
Bourne, Y.; Marchot, P. Hot spots for protein partnerships at the surface of cholinesterases and related alpha/beta hydrolase fold proteins or domains-a structural perspective. Molecules, 2017, 23(1), 35.
[27]
Sahoo, A.K.; Dandapat, J.; Dash, U.C.; Kanhar, S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat alzheimer’s disease. J. Ethnopharmacol., 2018, 215, 42-73.
[28]
Renn, B.N.; Asghar-Ali, A.A.; Thielke, S.; Catic, A.; Martini, S.R.; Mitchell, B.G.; Kunik, M.E. A systematic review of practice guidelines and recommendations for discontinuation of cholinesterase inhibitors in dementia. Am. J. Geriatr. Psychiatry, 2018, 26(2), 134-147.
[29]
Khoury, R.; Patel, K.; Gold, J.; Hinds, S.; Grossberg, G.T. Recent progress in the pharmacotherapy of alzheimer’s disease. Drugs Aging, 2017, 34(11), 811-820.
[30]
Panek, D.; Wichur, T.; Godyn, J.; Pasieka, A.; Malawska, B. Advances toward multifunctional cholinesterase and beta-amyloid aggregation inhibitors. Future Med. Chem., 2017, 9(15), 1835-1854.
[31]
Mehta, N.; Rodrigues, C.; Lamba, M.; Wu, W.; Bronskill, S.E.; Herrmann, N.; Gill, S.S.; Chan, A.W.; Mason, R.; Day, S.; Gurwitz, J.H.; Rochon, P.A. Systematic review of sex-specific reporting of data: Cholinesterase inhibitor example. J. Am. Geriatr. Soc., 2017, 65(10), 2213-2219.
[32]
Ramsay, R.R.; Tipton, K.F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules, 2017, 22(7), 1192.
[33]
Mohammad, D.; Chan, P.; Bradley, J.; Lanctot, K.; Herrmann, N. Acetylcholinesterase inhibitors for treating dementia symptoms - a safety evaluation. Expert Opin. Drug Saf., 2017, 16(9), 1009-1019.
[34]
Masson, P.; Nachon, F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem., 2017, 2, 26-40.
[35]
Knez, D.; Sova, M.; Kosak, U.; Gobec, S. Dual inhibitors of cholinesterases and monoamine oxidases for alzheimer’s disease. Future Med. Chem., 2017, 9(8), 811-832.
[36]
Shafferman, A.; Kronman, C.; Flashner, Y.; Leitner, M.; Grosfeld, H.; Ordentlich, A.; Gozes, Y.; Cohen, S.; Ariel, N.; Barak, D.; Harel, M.; Silman, I.; Sussman, J.L.; Velan, B. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem., 1992, 267(25), 17640-17648.
[37]
Massoulie, J.; Anselmet, A.; Bon, S.; Krejci, E.; Legay, C.; Morel, N.; Simon, S. The polymorphism of acetylcholinesterase: Post-translational processing, quaternary associations and localization. Chem. Biol. Interact., 1999, 120, 29-42.
[38]
Pezzementi, L.; Nachon, F.; Chatonnet, A. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: An atypical butyrylcholinesterase from the medaka oryzias latipes. PLoS One, 2011, 6(2) 0017396.
[39]
Nawaz, S.A.; Ayaz, M.; Brandt, W.; Wessjohann, L.A.; Westermann, B. Cation-π and π-π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochem. Biophys. Res. Commun., 2011, 404(4), 935-940.
[40]
Pohanka, M. Acetylcholinesterase inhibitors: A patent review (2008 - present). Expert Opin. Ther. Pat., 2012, 22(8), 871-886.
[41]
Johnson, G.; Moore, S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225.
[42]
Saxena, A.; Redman, A.M.; Jiang, X.; Lockridge, O.; Doctor, B.P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 1997, 36(48), 14642-14651.
[43]
Cometa, M.F.; Lorenzini, P.; Fortuna, S.; Volpe, M.T.; Meneguz, A.; Palmery, M. In vitro inhibitory effect of aflatoxin b-1 on acetylcholinesterase activity in mouse brain. Toxicology, 2005, 206(1), 125-135.
[44]
Stepurska, K.V.; Soldatkin, O.O.; Arkhypova, V.M.; Soldatkin, A.P.; Lagarde, F.; Jaffrezic-Renault, N.; Dzyadevych, S.V. Development of novel enzyme potentiometric biosensor based on ph-sensitive field-effect transistors for aflatoxin b1 analysis in real samples. Talanta, 2015, 144, 1079-1084.
[45]
Cavalli, A.; Bottegoni, G.; Raco, C.; De Vivo, M.; Recanatini, M. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J. Med. Chem., 2004, 47(16), 3991-3999.
[46]
Mazzanti, C.M.; Spanevello, R.M.; Obregon, A.; Pereira, L.B.; Streher, C.A.; Ahmed, M.; Mazzanti, A.; Graca, D.L.; Morsch, V.M.; Schetinger, M.R. Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chem. Biol. Interact., 2006, 162(2), 121-127.
[47]
Holtje, H.D.; Kjier, L.B. Nature of anionic or alpha-site of cholinesterase. J. Pharm. Sci., 1975, 64(3), 418-420.
[48]
Gilson, M.K.; Straatsma, T.P.; McCammon, J.A.; Ripoll, D.R.; Faerman, C.H.; Axelsen, P.H.; Silman, I.; Sussman, J.L. Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science, 1994, 263(5151), 1276-1278.
[49]
Boopathy, R.; Rajesh, R.V.; Darvesh, S.; Layer, P.G. Human serum cholinesterase from liver pathological samples exhibit highly elevated aryl acylamidase activity. Clin. Chim. Acta, 2007, 380, 151-156.
[50]
Montenegro, M.F.; Maria, T.M.; de la Cadena, M.P.; Campoy, F.J.; Munoz-Delgado, E.; Vidal, C.J. Human butyrylcholinesterase components differ in aryl acylamidase activity. Biol. Chem., 2008, 389(4), 425-432.
[51]
Berg, L.; Andersson, C.D.; Artursson, E.; Hornberg, A.; Tunemalm, A.K.; Linusson, A.; Ekstrom, F. Targeting acetylcholinesterase: Identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 2011, 6(11) e26039.
[52]
Cheewakriengkrai, L.; Gauthier, S. A 10-year perspective on donepezil. Expert Opin. Pharmacother., 2013, 14(3), 331-338.
[53]
Rampa, A.; Belluti, F.; Gobbi, S.; Bisi, A. Hybrid-based multi-target ligands for the treatment of alzheimer’s disease. Curr. Top. Med. Chem., 2011, 11(22), 2716-2730.
[54]
Bai, D.L.; Tang, X.C.; He, X.C. Huperzine a, a potential therapeutic agent for treatment of alzheimer’s disease. Curr. Med. Chem., 2000, 7(3), 355-374.
[55]
Liu, J.; Zhang, H.Y.; Tang, X.C.; Wang, B.; He, X.C.; Bai, D.L. Effects of synthetic (-)-huperzine a on cholinesterase activities and mouse water maze performance. Zhongguo Yao Li Xue Bao, 1998, 19(5), 413-416.
[56]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-alzheimer agents. Eur. J. Med. Chem., 2011, 46(6), 2609-2616.
[57]
Jogani, V.V.; Shah, P.J.; Mishra, P.; Mishra, A.K.; Misra, A.R. Nose-to-brain delivery of tacrine. J. Pharm. Pharmacol., 2007, 59(9), 1199-1205.
[58]
Knapp, M.J.; Gracon, S.I.; Davis, C.S.; Solomon, P.R.; Pendlebury, W.W.; Knopman, D.S. Efficacy and safety of high-dose tacrine - a 30 week evaluation Alzheimer Dis. Assoc. Dis., 1994, 8, S22-S31.
[59]
Davis, K.L.; Thal, L.J.; Gamzu, E.R.; Davis, C.S.; Woolson, R.F.; Gracon, S.I.; Drachman, D.A.; Schneider, L.S.; Whitehouse, P.J.; Hoover, T.M.; Morris, J.C.; Kawas, C.H.; Knopman, D.S.; Earl, N.L.; Kumar, V.; Doody, R.S. A double-blind, placebo-controlled multicenter study of tacrine for alzheimers-disease. N. Engl. J. Med., 1992, 327(18), 1253-1259.
[60]
Pohanka, M. Spectrophotomeric assay of aflatoxin b1 using acetylcholinesterase immobilized on standard microplates. Anal. Lett., 2013, 46(8), 1306-1315.
[61]
Arduini, F.; Amine, A.; Moscone, D.; Palleschi, G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin b-1 detection (review). Microchim. Acta, 2010, 170(3-4), 193-214.
[62]
Pohanka, M.; Dobes, P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci., 2013, 14, 9873-9882.
[63]
Pohanka, M. The effects of caffeine on the cholinergic system. Mini Rev. Med. Chem., 2014, 16(6), 543-549.
[64]
da Silva, V.B.; de Andrade, P.; Kawano, D.F.; Morais, P.A.B.; de Almeida, J.R.; Carvalho, I.; Taft, C.A.; da Silva, C. In silico design and search for acetylcholinesterase inhibitors in alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem., 2011, 3(8), 947-960.
[65]
Lilienfeld, S. Galantamine - a novel cholinergic drug with a unique dual mode of action for the treatment of patients with alzheimer’s disease. CNS Drug. Rev., 2002, 8(2), 159-176.
[66]
Darreh-Shori, T.; Soininen, H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with alzheimer’s disease: A review of recent clinical studies. Curr. Alzheimer Res., 2010, 7(1), 67-73.
[67]
Thomsen, T.; Kewitz, H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci., 1990, 46(21), 1553-1558.
[68]
Jokanovic, M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett., 2009, 190(2), 107-115.
[69]
Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[70]
Darvesh, S.; Darvesh, K.V.; McDonald, R.S.; Mataija, D.; Walsh, R.; Mothana, S.; Lockridge, O.; Martin, E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem., 2008, 51(14), 4200-4212.
[71]
Marrs, T.C.; Maynard, R.L. Neurotranmission systems as targets for toxicants: A review. Cell Biol. Toxicol., 2013, 29(6), 381-396.
[72]
Kalasz, H.; Nurulain, S.M.; Veress, G.; Antus, S.; Darvas, F.; Adeghate, E.; Adem, A.; Hashemi, F.; Tekes, K. Mini review on blood-brain barrier penetration of pyridinium aldoximes. J. Appl. Toxicol., 2015, 35(2), 116-123.
[73]
Costantino, H.R.; Leonard, A.K.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal administration of acetylcholinesterase inhibitors. BMC Neurosci., 2008, 10(9), 1471-2202.
[74]
Worek, F.; Thiermann, H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther., 2013, 139(2), 249-259.
[75]
Alfirevic, A.; Mills, T.; Carr, D.; Barratt, B.J.; Jawaid, A.; Sherwood, J.; Smith, J.C.; Tugwood, J.; Hartkoorn, R.; Owen, A.; Park, K.B.; Pirmohamed, M. Tacrine-induced liver damage: An analysis of 19 candidate genes. Pharmacogenet. Genomics, 2007, 17(12), 1091-1100.
[76]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2017, 4(10), 13439.
[77]
Crane, P.K.; Trittschuh, E.; Mukherjee, S.; Saykin, A.J.; Sanders, R.E.; Larson, E.B.; McCurry, S.M.; McCormick, W.; Bowen, J.D.; Grabowski, T.; Moore, M.; Bauman, J.; Gross, A.L.; Keene, C.D.; Bird, T.D.; Gibbons, L.E.; Mez, J. Incidence of cognitively defined late-onset alzheimer’s dementia subgroups from a prospective cohort study. Alzheimers Dement., 2017, 15(17), 30216-30219.
[78]
Kukull, W.A.; Higdon, R.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Schellenberg, G.D.; van Belle, G.; Jolley, L.; Larson, E.B. Dementia and alzheimer disease incidence: A prospective cohort study. Arch. Neurol., 2002, 59(11), 1737-1746.
[79]
Lobo, A.; Lopez-Anton, R.; Santabarbara, J.; de-la-Camara, C.; Ventura, T.; Quintanilla, M.A.; Roy, J.F.; Campayo, A.J.; Lobo, E.; Palomo, T.; Rodriquez-Jimenez, R.; Saz, P.; Marcos, G. Incidence and lifetime risk of dementia and alzheimer’s disease in a southern european population. Acta Psychiatr. Scand., 2011, 124(5), 372-383.
[80]
Dimitrov, I.; Tzourio, C.; Milanov, I.; Deleva, N.; Traykov, L. Prevalence of dementia and mild cognitive impairment in a bulgarian urban population. Am. J. Alzheimers Dis. Other Demen., 2012, 27(2), 131-135.
[81]
Himmelstein, D.S.; Ward, S.M.; Lancia, J.K.; Patterson, K.R.; Binder, L.I. Tau as a therapeutic target in neurodegenerative disease. Pharmacol. Ther., 2012, 136(1), 8-22.
[82]
Pohanka, M. Alzheimer’s disease and oxidative stress. A review. Curr. Med. Chem., 2014, 21(3), 356-364.
[83]
Hamlett, E.D.; Ledreux, A.; Potter, H.; Chial, H.J.; Patterson, D.; Espinosa, J.M.; Bettcher, B.M.; Granholm, A.C. Exosomal biomarkers in down syndrome and alzheimer's disease. Free Radic. Biol. Med., 2017, 5(17), 028.
[84]
He, J.; Liao, T.; Zhong, G.X.; Zhang, J.D.; Chen, Y.P.; Wang, Q.; Zeng, Q.P. Alzheimer‘s disease-like early-phase brain pathogenesis: Self-curing amelioration of neurodegeneration from pro-inflammatory ’wounding’ to anti-inflammatory ‘healing’. Curr. Alzheimer Res., 2017, 17(10) 1567205014666170417111420.
[85]
Pouryamout, L.; Dams, J.; Wasem, J.; Dodel, R.; Neumann, A. Economic evaluation of treatment options in patients with alzheimer’s disease: A systematic review of cost-effectiveness analyses. Drugs, 2012, 72(6), 789-802.
[86]
Patel, L.; Grossberg, G.T. Combination therapy for alzheimer’s disease. Drugs Aging, 2011, 28(7), 539-546.
[87]
Ehret, M.J.; Chamberlin, K.W. Current practices in the treatment of alzheimer disease: Where is the evidence after the phase iii trials? Clin. Ther., 2015, 37(8), 1604-1616.
[88]
Deardorff, W.J.; Feen, E.; Grossberg, G.T. The use of cholinesterase inhibitors across all stages of alzheimer’s disease. Drugs Aging, 2015, 32(7), 537-547.
[89]
Pohanka, M. Vaccination to alzheimer disease. Is it a promising tool or a blind way? Curr. Med. Chem., 2016, 23(14), 1432-1441.
[90]
Sterner, R.M.; Takahashi, P.Y.; Yu Ballard, A.C. Active vaccines for alzheimer disease treatment. J. Am. Med. Dir. Assoc., 2016, 17(9), 25.
[91]
Hartig, W.; Saul, A.; Kacza, J.; Grosche, J.; Goldhammer, S.; Michalski, D.; Wirths, O. Immunolesion-induced loss of cholinergic projection neurones promotes beta-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice. Neuropathol. Appl. Neurobiol., 2014, 40(2), 106-120.
[92]
Abdel-Salam, O.M. Stem cell therapy for alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2011, 10(4), 459-485.
[93]
Hiremathad, A.; Piemontese, L. Heterocyclic compounds as key structures for the interaction with old and new targets in alzheimer’s disease therapy. Neural Regen. Res., 2017, 12(8), 1256-1261.
[94]
Makhaeva, G.F.; Lushchekina, S.V.; Boltneva, N.P.; Serebryakova, O.G.; Rudakova, E.V.; Ustyugov, A.A.; Bachurin, S.O.; Shchepochkin, A.V.; Chupakhin, O.N.; Charushin, V.N.; Richardson, R.J. 9-substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for alzheimer’s disease treatment. Bioorg. Med. Chem., 2017, 20(17), 31509-31502.
[95]
Skibinski, R.; Czarnecka, K.; Girek, M.; Bilichowski, I.; Chufarova, N.; Mikiciuk-Olasik, E.; Szymanski, P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem. Biol. Drug Des., 2017, 25(10), 13111.
[96]
Teponnou, G.A.K.; Joubert, J.; Malan, S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for alzheimer’s disease therapy. Open Med. Chem. J., 2017, 11, 24-37.
[97]
Boulebd, H.; Ismaili, L.; Bartolini, M.; Bouraiou, A.; Andrisano, V.; Martin, H.; Bonet, A.; Moraleda, I.; Iriepa, I.; Chioua, M.; Belfaitah, A.; Marco-Contelles, J. Imidazopyranotacrines as non-hepatotoxic, selective acetylcholinesterase inhibitors, and antioxidant agents for alzheimer’s disease therapy. Molecules, 2016, 21(4), 400.
[98]
Unzeta, M.; Esteban, G.; Bolea, I.; Fogel, W.A.; Ramsay, R.R.; Youdim, M.B.; Tipton, K.F.; Marco-Contelles, J. Multi-target directed donepezil-like ligands for alzheimer’s disease. Front. Neurosci., 2016, 10, 205.
[99]
Bautista-Aguilera, O.M.; Esteban, G.; Bolea, I.; Nikolic, K.; Agbaba, D.; Moraleda, I.; Iriepa, I.; Samadi, A.; Soriano, E.; Unzeta, M.; Marco-Contelles, J. Design, synthesis, pharmacological evaluation, qsar analysis, molecular modeling and admet of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of alzheimer’s disease. Eur. J. Med. Chem., 2014, 75, 82-95.
[100]
Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R. A novel class of thiosemicarbazones show multi-functional activity for the treatment of alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 612-632.
[101]
Luo, L.; Li, Y.; Qiang, X.; Cao, Z.; Xu, R.; Yang, X.; Xiao, G.; Song, Q.; Tan, Z.; Deng, Y. Multifunctional thioxanthone derivatives with acetylcholinesterase, monoamine oxidases and beta-amyloid aggregation inhibitory activities as potential agents against alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(6), 1997-2009.
[102]
Xiao, G.; Li, Y.; Qiang, X.; Xu, R.; Zheng, Y.; Cao, Z.; Luo, L.; Yang, X.; Sang, Z.; Su, F.; Deng, Y. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(3), 1030-1041.
[103]
Sturm, A.; Hansen, P. Altered cholinesterase and monooxygenase levels in daphnia magna and chironomus riparius exposed to environmental pollutants. Ecotoxicol. Environ. Saf., 1999, 42(1), 9-15.
[104]
Mutch, E.; Daly, A.K.; Leathart, J.B.; Blain, P.G.; Williams, F.M. Do multiple cytochrome p450 isoforms contribute to parathion metabolism in man? Arch. Toxicol., 2003, 77(6), 313-320.
[105]
Jan, Y.H.; Richardson, J.R.; Baker, A.A.; Mishin, V.; Heck, D.E.; Laskin, D.L.; Laskin, J.D. Novel approaches to mitigating parathion toxicity: Targeting cytochrome p450-mediated metabolism with menadione. Ann. N. Y. Acad. Sci., 2016, 1, 80-86.
[106]
Buratti, F.M.; Testai, E. Evidences for cyp3a4 autoactivation in the desulfuration of dimethoate by the human liver. Toxicology, 2007, 241(1-2), 33-46.
[107]
Feyereisen, R. Insect p450 enzymes. Annu. Rev. Entomol., 1999, 44, 507-533.
[108]
Pohanka, M.; Novotny, L.; Pikula, J. Metrifonate alters antioxidant levels and caspase activity in cerebral cortex of wistar rats. Toxicol. Mech. Method., 2011, 21(8), 585-590.
[109]
Nordberg, A.; Svensson, A.L. Cholinesterase inhibitors in the treatment of alzheimer’s disease - a comparison of tolerability and pharmacology. Drug Saf., 1998, 19(6), 465-480.
[110]
López-Arrieta, J.M.; Schneider, L. Metrifonate for alzheimer’s disease. Cochrane Database Syst. Rev., 2006, (2) CD003155.
[111]
Cummings, J.L.; Nadel, A.; Masterman, D.; Cyrus, P.A. Efficacy of metrifonate in improving the psychiatric and behavioral disturbances of patients with alzheimer’s disease. J. Geriatr. Psychiatry Neurol., 2001, 14(2), 101-108.
[112]
Mirck, M.H. Use of trichlorfon as an anthelmintic in horses. Tijdschr. Diergeneeskd., 1980, 105(14), 564-566.
[113]
Lopes, W.D.; dos Santos, T.R.; Borges Fde, A.; Sakamoto, C.A.; Soares, V.E.; Costa, G.H.; Camargo, G.; Pulga, M.E.; Bhushan, C.; da Costa, A.J. Anthelmintic efficacy of oral trichlorfon solution against ivermectin resistant nematode strains in cattle. Vet. Parasitol., 2009, 166(1-2), 98-102.
[114]
Fiel, C.; Guzman, M.; Steffan, P.; Rodriguez, E.; Prieto, O.; Bhushan, C. The efficacy of trichlorphon and naphthalophos against multiple anthelmintic-resistant nematodes of naturally infected sheep in argentina. Parasitol. Res., 2011, 109(1), 011-2410.
[115]
Lopez-Arias, A.; Villar-Argaiz, D.; Chaparro-Gutierrez, J.J.; Miller, R.J.; Perez de Leon, A.A. Reduced efficacy of commercial acaricides against populations of resistant cattle tick rhipicephalus microplus from two municipalities of antioquia, colombia. Environ. Health Insights, 2015, 8(Suppl. 2), 71-80.
[116]
Fernandes, L.S.; Emerick, G.L.; dos Santos, N.A.; de Paula, E.S.; Barbosa, F., Jr.; dos Santos, A.C. In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate. Toxicol. In Vitro, 2015, 29(3), 522-528.
[117]
Martin, R.J.; Puttachary, S.; Buxton, S.K.; Verma, S.; Robertson, A.P. The conqueror worm: Recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs. J. Helminthol., 2015, 89(4), 387-397.
[118]
Zinser, E.W.; Wolf, M.L.; Alexander-Bowman, S.J.; Thomas, E.M.; Davis, J.P.; Groppi, V.E.; Lee, B.H.; Thompson, D.P.; Geary, T.G. Anthelmintic paraherquamides are cholinergic antagonists in gastrointestinal nematodes and mammals. J. Vet. Pharmacol. Ther., 2002, 25(4), 241-250.
[119]
Aas, P. In vitro effects of toxogonin, hi-6 and hlö-7 on the release of [3h]acetylcholine from peripheral cholinergic nerves in rat airway smooth muscle. Eur. J. Pharmacol., 1996, 301(1-3), 59-66.
[120]
Cetkovic, S.; Cvetkovic, M.; Jandric, D.; Cosic, M.; Boskovic, B. Effect of pam-2 cl, hi-6, and hgg-12 in poisoning by tabun and its thiocholine-like analog in the rat. Fundam. Appl. Toxicol., 1984, 4(2), S116-S123.
[121]
Nyberg, A.G.; Cassel, G.; Jeneskog, T.; Karlsson, L.; Larsson, R.; Lundstrom, M.; Palmer, L.; Persson, S.A. Pharmacokinetics of hi-6 and atropine in anesthetized pigs after administration by a new autoinjector. Biopharm. Drug Dispos., 1995, 16(8), 635-651.
[122]
Crenshaw, M.D.; Hayes, T.L.; Miller, T.L.; Shannon, C.M. Comparison of the hydrolytic stability of s-(n,n-diethylaminoethyl) isobutyl methylphosphonothiolate with vx in dilute solution. J. Appl. Toxicol., 2001, 21, S3-S6.
[123]
Dejong, L.P.A.; Vandijk, C.; Berhitoe, D.; Benschop, H.P. Hydrolysis and binding of a toxic stereoisomer of soman in plasma and tissue-homogentaes from rat, guinea-pig and marmoset, and in human plasma. Biochem. Pharmacol., 1993, 46(8), 1413-1419.
[124]
Tuovinen, K.; Kaliste-Korhonen, E.; Raushel, F.M.; Hanninen, O. Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication. Toxicology, 1999, 134(2-3), 169-178.
[125]
Cho, Y.; Kim, W.S.; Hur, G.H.; Ha, Y.C. Minimum effective drug concentrations of a transdermal patch system containing procyclidine and physostigmine for prophylaxis against soman poisoning in rhesus monkeys. Environ. Toxicol. Pharmacol., 2012, 33(1), 1-8.
[126]
Lamproglou, I.; Barbier, L.; Diserbo, M.; Fauvelle, F.; Fauquette, W.; Amourette, C. Repeated stress in combination with pyridostigmine part i: Long-term behavioural consequences. Behav. Brain Res., 2009, 197(2), 301-310.
[127]
Gordon, R.K.; Haigh, J.R.; Garcia, G.E.; Feaster, S.R.; Riel, M.A.; Lenz, D.E.; Aisen, P.S.; Doctor, B.P. Oral administration of pyridostigmine bromide and huperzine a protects human whole blood cholinesterases from ex vivo exposure to soman. Chem. Biol. Interact., 2005, 157, 239-246.
[128]
Golomb, B.A. Acetylcholinesterase inhibitors and gulf war illnesses. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(11), 4295-4300.
[129]
Auxemery, Y. The gulf war syndrome twenty years on. Enceph.-. Rev. Psychiatr. Clin. Biol. Ther., 2013, 39(5), 332-338.
[130]
Dubovicky, M.; Paton, S.; Morris, M.; Mach, M.; Lucot, J.B. Effects of combined exposure to pyridostigmine bromide and shaker stress on acoustic startle response, pre-pulse inhibition and open field behavior in mice. J. Appl. Toxicol., 2007, 27(3), 276-283.
[131]
Romi, F.; Hong, Y.; Gilhus, N.E. Pathophysiology and immunological profile of myasthenia gravis and its subgroups. Curr. Opin. Immunol., 2017, 49, 9-13.
[132]
Hehir, M.K.; Hobson-Webb, L.D.; Benatar, M.; Barnett, C.; Silvestri, N.J.; Howard, J.F., Jr; Howard, D.; Visser, A.; Crum, B.A.; Nowak, R.; Beekman, R.; Kumar, A.; Ruzhansky, K.; Chen, I.A.; Pulley, M.T.; LaBoy, S.M.; Fellman, M.A.; Greene, S.M.; Pasnoor, M.; Burns, T.M. Rituximab as treatment for anti-musk myasthenia gravis: Multicenter blinded prospective review. Neurology, 2017, 89(10), 1069-1077.
[133]
Muto, K.; Matsui, N.; Unai, Y.; Sakai, W.; Haji, S.; Udaka, K.; Miki, H.; Furukawa, T.; Abe, M.; Kaji, R. Memory b cell resurgence requires repeated rituximab in myasthenia gravis. Neuromuscul. Disord., 2017, 27(10), 918-922.
[134]
Alkhawajah, N.M.; Oger, J. Treatment of myasthenia gravis in the aged. Drugs Aging, 2015, 32(9), 689-697.
[135]
Khan, M.S.; Tiwari, A.; Khan, Z.; Sharma, H.; Taleb, M.; Hammersley, J. Pyridostigmine induced prolonged asystole in a patient with myasthenia gravis successfully treated with hyoscyamine. Case Rep. Cardiol., 2017, 6956298(10), 14.
[136]
Patil, S.A.; Bokoliya, S.C.; Nagappa, M.; Taly, A.B. Diagnosis of myasthenia gravis: Comparison of anti-nicotinic acetyl choline receptor antibodies, repetitive nerve stimulation and neostigmine tests at a tertiary neuro care centre in india, a ten year study. J. Neuroimmunol., 2016, 292, 81-84.
[137]
Nazari, F.; Abdi, S. Pyridostigmine-induced bradycardia in patient with musk-ab-positive myasthenia gravis and alopecia universalis. J. Clin. Neuromuscul. Dis., 2017, 19(1), 49-50.
[138]
Petrov, K. Macrocyclic derivatives of 6-methyluracil: New ligands of the peripheral anionic site of acetylcholinesterase. Int. J. Risk Saf. Med., 2015, 27(1) JRS-150695.
[139]
Kharlamova, A.D.; Lushchekina, S.V.; Petrov, K.A.; Kots, E.D.; Nachon, F.; Villard-Wandhammer, M.; Zueva, I.V.; Krejci, E.; Reznik, V.S.; Zobov, V.V.; Nikolsky, E.E.; Masson, P. Slow-binding inhibition of acetylcholinesterase by an alkylammonium derivative of 6-methyluracil: Mechanism and possible advantages for myasthenia gravis treatment. Biochem. J., 2016, 473(9), 1225-1236.
[140]
Feng, X.; Wang, X.; Liu, Y.; Di, X. Linarin inhibits the acetylcholinesterase activity in-vitro and ex-vivo. Iran. J. Pharm. Res., 2015, 14(3), 949-954.
[141]
Tracey, K.J. Reflex control of immunity. Nat. Rev. Immunol., 2009, 9(6), 418-428.
[142]
Rosas-Ballina, M.; Tracey, K.J. Cholinergic control of inflammation. J. Intern. Med., 2009, 265(6), 663-679.
[143]
Zabrodskii, P.F.; Lim, V.G.; Shekhter, M.S.; Kuzmin, A.V. Role of nicotinic and muscarinic cholinoreceptors in the realization of the cholinergic anti-inflammatory pathway during the early phase of sepsis. Bull. Exp. Biol. Med., 2012, 153(5), 700-703.
[144]
Tonhajzerova, I.; Mokra, D.; Visnovcova, Z. Vagal function indexed by respiratory sinus arrhythmia and cholinergic anti-inflammatory pathway. Respir. Physiol. Neurobiol., 2013, 187(1), 78-81.
[145]
Noelker, C.; Stuckenholz, V.; Reese, J.P.; Alvarez-Fischer, D.; Sankowski, R.; Rausch, T.; Oertel, W.H.; Hartmann, A.; van Patten, S.; Al-Abed, Y.; Bacher, M. Cni-1493 attenuates neuroinflammation and dopaminergic neurodegeneration in the acute mptp mouse model of parkinson’s disease. Neurodegener. Dis., 2013, 12(2), 103-110.
[146]
Forsythe, P. The nervous system as a critical regulator of immune responses underlying allergy. Curr. Pharm. Des., 2012, 18(16), 2290-2304.
[147]
Song, F.; Zhao, L.; Zhu, R.; Song, Q.; Deng, J.; Tian, R.; Wang, F.; Qian, Y. Protective effect of an alpha 7 nicotinic acetylcholine receptor agonist against enterovirus 71 infection in neuronal cells. Antiviral Res., 2017, 9(17), 30451-30455.
[148]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcho-linesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[150]
Pohanka, M. Effect of hi-6 on cytokines production after immunity stimulation by keyhole limpet hemocyanin in a mouse model. Neuroendocrinol. Lett., 2014, 35, 155-157.
[151]
Pohanka, M. Hi-6 modulates immunization efficacy in a balb/c mouse model. Environ. Toxicol. Pharmacol., 2013, 36(3), 801-806.
[152]
Wang, Z.F.; Wang, J.; Zhang, H.Y.; Tang, X.C. Huperzine a exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J. Neurochem., 2008, 106(4), 1594-1603.
[153]
Wang, Z.F.; Tang, X.C. Huperzine a protects c6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Lett., 2007, 581(4), 596-602.
[154]
Kalb, A.; von Haefen, C.; Sifringer, M.; Tegethoff, A.; Paeschke, N.; Kostova, M.; Feldheiser, A.; Spies, C.D. Acetylcholinesterase inhibitors reduce neuroinflammation and -degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One, 2013, 8(5) e62679.