Abstract
Objective: An efficient and catalyst-free procedure for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones has been developed in 2,2,2-trifluoroethanol or deep eutectic solvent(DESs) as a clean reaction media.
Methods: All of the obtained products are known compounds and identified by IR, 1HNMR,13CNMR, and melting points. Result: Various products were obtained in good to excellent yields under reaction conditions. Conclusion: We have efficiently developed a practical and catalyst-free approach for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones employing TFE as a clean and reusable media.Keywords: Fluorinated alcohols, green chemistry, triazole, multicomponent, heterocyclic, anticancer.
Graphical Abstract
[1]
Belwal, S. Green revolution in chemistry by microwave assisted synthesis: A review. Modern Chem., 2013, 1, 22-25.
[http://dx.doi.org/10.11648/j.mc.20130103.11]
[http://dx.doi.org/10.11648/j.mc.20130103.11]
[2]
Cruz, H.; Jordão, N.; Branco, L.C. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green Chem., 2017, 19, 1653-1658.
[http://dx.doi.org/10.1039/C7GC00347A]
[http://dx.doi.org/10.1039/C7GC00347A]
[3]
Khaksar, S. Fluorinated alcohols: A magic medium for the synthesis of heterocyclic compounds. J. Fluor. Chem., 2015, 172, 51-61.
[http://dx.doi.org/10.1016/j.jfluchem.2015.01.008]
[http://dx.doi.org/10.1016/j.jfluchem.2015.01.008]
[4]
Begue, J-P.; Bonnet-Delpon, D.; Crousse, B. Fluorinated alcohols: A new medium for selective and clean reaction. Synlett, 2004, 2004, 18-29.
[5]
Liu, P.; Hao, J-W.; Mo, L-P.; Zhang, Z-H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[http://dx.doi.org/10.1039/C5RA05746A]
[6]
Ruß, C.; König, B. Low melting mixtures in organic synthesis-an alternative to ionic liquids? Green Chem., 2012, 14, 2969-2982.
[http://dx.doi.org/10.1039/c2gc36005e]
[http://dx.doi.org/10.1039/c2gc36005e]
[7]
Li, G-X.; Qu, J. Friedel-Crafts alkylation of arenes with epoxides promoted by fluorinated alcohols or water. Chem. Commun. (Camb.), 2010, 46(15), 2653-2655.
[http://dx.doi.org/10.1039/b926684d] [PMID: 20449331]
[http://dx.doi.org/10.1039/b926684d] [PMID: 20449331]
[8]
Tang, R-J.; Milcent, T.; Crousse, B. Friedel–Crafts alkylation reaction with fluorinated alcohols as hydrogen-bond donors and solvents. RSC Advances, 2018, 8, 10314-10317.
[http://dx.doi.org/10.1039/C8RA01397G]
[http://dx.doi.org/10.1039/C8RA01397G]
[9]
Wang, A.; Xing, P.; Zheng, X.; Cao, H.; Yang, G.; Zheng, X. Deep eutectic solvent catalyzed Friedel–Crafts alkylation of electron-rich arenes with aldehydes. RSC Advances, 2015, 5, 59022-59026.
[http://dx.doi.org/10.1039/C5RA08950F]
[http://dx.doi.org/10.1039/C5RA08950F]
[10]
Berkessel, A.; Adrio, J.A. Dramatic acceleration of olefin epoxidation in fluorinated alcohols: activation of hydrogen peroxide by multiple h-bond networks. J. Am. Chem. Soc., 2006, 128(41), 13412-13420.
[http://dx.doi.org/10.1021/ja0620181] [PMID: 17031953]
[http://dx.doi.org/10.1021/ja0620181] [PMID: 17031953]
[11]
Berkessel, A.; Andreae, M.R.; Schmickler, H.; Lex, J. Baeyer-Villiger oxidations with hydrogen peroxide in fluorinated alcohols: lactone formation by a nonclassical mechanism. Angew. Chem. Int. Ed. Engl., 2002, 41(23), 4481-4484.
[http://dx.doi.org/10.1002/1521-3773(20021202)41:23<4481:AID-ANIE4481>3.0.CO;2-7] [PMID: 12458512]
[http://dx.doi.org/10.1002/1521-3773(20021202)41:23<4481:AID-ANIE4481>3.0.CO;2-7] [PMID: 12458512]
[12]
Xu, Z.; Hang, Z.; Liu, Z-Q. Free-radical triggered ordered domino reaction: an approach to C–C bond formation via selective functionalization of α-hydroxyl-(sp3) C–H in fluorinated alcohols. Org. Lett., 2016, 18(18), 4470-4473.
[http://dx.doi.org/10.1021/acs.orglett.6b01946] [PMID: 27560642]
[http://dx.doi.org/10.1021/acs.orglett.6b01946] [PMID: 27560642]
[13]
Mahire, V.N.; Patel, V.E.; Mahulikar, P.P. Facile DES-mediated synthesis and antioxidant potency of benzimidazoquinazolinone motifs. Res. Chem. Intermed., 2017, 43, 1847-1861.
[http://dx.doi.org/10.1007/s11164-016-2734-1]
[http://dx.doi.org/10.1007/s11164-016-2734-1]
[14]
Zhao, H.; Baker, G.A.; Holmes, S. Protease activation in glycerol-based deep eutectic solvents. J. Mol. Catal., B Enzym., 2011, 72(3-4), 163-167.
[http://dx.doi.org/10.1016/j.molcatb.2011.05.015] [PMID: 21909232]
[http://dx.doi.org/10.1016/j.molcatb.2011.05.015] [PMID: 21909232]
[15]
del Monte, F.; Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L. Deep eutectic solvents in polymerizations: A greener alternative to conventional syntheses. ChemSusChem, 2014, 7(4), 999-1009.
[http://dx.doi.org/10.1002/cssc.201300864] [PMID: 24376090]
[http://dx.doi.org/10.1002/cssc.201300864] [PMID: 24376090]
[16]
Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.; Hashim, M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J., 2015, 273, 551-567.
[http://dx.doi.org/10.1016/j.cej.2015.03.091]
[http://dx.doi.org/10.1016/j.cej.2015.03.091]
[17]
Kshirsagar, U.A. Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem., 2015, 13(36), 9336-9352.
[http://dx.doi.org/10.1039/C5OB01379H] [PMID: 26278395]
[http://dx.doi.org/10.1039/C5OB01379H] [PMID: 26278395]
[18]
Kato, F.; Kimura, H.; Omatsu, M.; Yamamoto, K.; Miyamoto, R.Miyamoto. European Patent Application,, WO 02/040485. (2002).
[19]
Alagarsamy, V. Synthesis and pharmacological investigation of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin-4-ones as histamine H1-receptor blockers. Pharmazie, 2004, 59(10), 753-755.
[PMID: 15544052]
[PMID: 15544052]
[20]
Alagarsamy, V.; Pathak, U.S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem., 2007, 15(10), 3457-3462.
[http://dx.doi.org/10.1016/j.bmc.2007.03.007] [PMID: 17391966]
[http://dx.doi.org/10.1016/j.bmc.2007.03.007] [PMID: 17391966]
[21]
Alagarsamy, V.; Murugananthan, G.; Venkateshperumal, R. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-methyl-3-substituted quinazolin-4-(3H)-ones. Biol. Pharm. Bull., 2003, 26(12), 1711-1714.
[http://dx.doi.org/10.1248/bpb.26.1711] [PMID: 14646176]
[http://dx.doi.org/10.1248/bpb.26.1711] [PMID: 14646176]
[22]
Alagarsamy, V.; Revathi, R.; Meena, S.; Ramaseshu, K.; Rajasekaran, S.; De Clerco, E. AntiHIV, antibacterial and antifungal activities of some 2, 3-disubstituted quinazolin-4 (3H)-ones. Indian J. Pharm. Sci., 2004, 66, 459.
[23]
Hubschwerlen, C.; Pflieger, P.; Specklin, J.L.; Gubernator, K.; Gmünder, H.; Angehrn, P.; Kompis, I. Pyrimido[1,6-a]benzimidazoles: a new class of DNA gyrase inhibitors. J. Med. Chem., 1992, 35(8), 1385-1392.
[http://dx.doi.org/10.1021/jm00086a006] [PMID: 1315393]
[http://dx.doi.org/10.1021/jm00086a006] [PMID: 1315393]
[24]
Puligoundla, R.G.; Karnakanti, S.; Bantu, R.; Nagaiah, K.; Kondra, S.B.; Nagarapu, L. A simple, convenient one-pot synthesis of [1, 2, 4] triazolo/benzimidazolo quinazolinone derivatives by using molecular iodine. Tetrahedron Lett., 2013, 54, 2480-2483.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.099]
[http://dx.doi.org/10.1016/j.tetlet.2013.02.099]
[25]
Hour, M-J.; Huang, L-J.; Kuo, S-C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K-H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43(23), 4479-4487.
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]
[26]
Chen, L-H.; Chung, T-W.; Narhe, B.D.; Sun, C-M. A Novel Mechanistic Study on Ultrasound-Assisted, One-Pot Synthesis of Functionalized Benzimidazo[2,1-b]quinazolin-1(1H)-ones. ACS Comb. Sci., 2016, 18(3), 162-169.
[http://dx.doi.org/10.1021/acscombsci.5b00186] [PMID: 26871300]
[http://dx.doi.org/10.1021/acscombsci.5b00186] [PMID: 26871300]
[27]
Novanna, M.; Kannadasan, S.; Shanmugam, P. Phosphotungstic acid mediated, microwave assisted solvent-free green synthesis of highly functionalized 2ˈ-spiro and 2, 3-dihydro quinazolinone and 2-methylamino benzamide derivatives from aryl and heteroaryl 2-amino amides. Tetrahedron Lett., 2019, 60, 201-206.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.011]
[http://dx.doi.org/10.1016/j.tetlet.2018.12.011]
[28]
Heravi, M.M.; Ranjbar, L.; Derikvand, F.; Alimadadi, B.; Oskooie, H.A.; Bamoharram, F.F. A three component one-pot procedure for the synthesis of [1,2,4]triazolo/benzimidazolo-quinazolinone derivatives in the presence of H6P2W18O(62).18H2O as a green and reusable catalyst. Mol. Divers., 2008, 12(3-4), 181-185.
[http://dx.doi.org/10.1007/s11030-008-9086-8] [PMID: 18780153]
[http://dx.doi.org/10.1007/s11030-008-9086-8] [PMID: 18780153]
[29]
Heravi, M.M.; Derikvand, F.; Ranjbar, L. Sulfamic acid–catalyzed, three-component, one-pot synthesis of [1, 2, 4] triazolo/benzimidazolo quinazolinone derivatives. Synth. Commun., 2010, 40, 677-685.
[http://dx.doi.org/10.1080/00397910903009489]
[http://dx.doi.org/10.1080/00397910903009489]
[30]
Mousavi, M.R.; Maghsoodlou, M.T. Nano-SiO2: A green, efficient, and reusable heterogeneous catalyst for the synthesis of quinazolinone derivatives. J. Indian Chem. Soc., 2015, 12, 743-749.
[31]
Seyyedi, N.; Shirini, F.; Nikoo, M.S.; Jashnani, S. A simple and convenient synthesis of [1, 2, 4] triazolo/benzimidazolo quinazolinone and [1, 2, 4] triazolo [1, 5-a] pyrimidine derivatives catalyzed by DABCO-based ionic liquids. J. Indian Chem. Soc., 2017, 14, 1859-1867.
[32]
Bodaghifard, A.M.; Faraki, Z.; R Karimi, A. Mild synthesis of mono-, bis-and tris 1, 2-dihydrobenzo [4, 5] imidazo [1, 2-a] pyrimidine derivatives using alkyl disulfamic acid functionalized magnetic nanoparticles. Curr. Org. Chem., 2016, 20, 1648-1654.
[http://dx.doi.org/10.2174/1385272820666160218233729]
[http://dx.doi.org/10.2174/1385272820666160218233729]
[33]
Ghosh, S.K.; Nagarajan, R. Deep eutectic solvent mediated synthesis of quinazolinones and dihydroquinazolinones: Synthesis of natural products and drugs. RSC Advances, 2016, 6, 27378-27387.
[http://dx.doi.org/10.1039/C6RA00855K]
[http://dx.doi.org/10.1039/C6RA00855K]
[34]
Ayati, A.; Daraie, M.; Heravi, M.M.; Tanhaei, B. H4 [W12SiO40] grafted on magnetic chitosan: a green nanocatalyst for the synthesis of [1, 2, 4] triazolo/benzimidazolo quinazolinone derivatives. Micro Nano Lett., 2017, 12, 964-969.
[http://dx.doi.org/10.1049/mnl.2017.0053]
[http://dx.doi.org/10.1049/mnl.2017.0053]
[35]
Chebanov, V.A.; Muravyova, E.A.; Desenko, S.M.; Musatov, V.I.; Knyazeva, I.V.; Shishkina, S.V.; Shishkin, O.V.; Kappe, C.O. Microwave-assisted three-component synthesis of 7-aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]-pyrimidine-6-carboxamides and their selective reduction. J. Comb. Chem., 2006, 8(3), 427-434.
[http://dx.doi.org/10.1021/cc060021a] [PMID: 16677013]
[http://dx.doi.org/10.1021/cc060021a] [PMID: 16677013]
[36]
Khaksar, S.; Rouhollahpour, A.; Talesh, S.M. A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo [b] pyrans using 2, 2, 2-trifluoroethanol as a metal-free and reusable medium. J. Fluor. Chem., 2012, 141, 11-15.
[http://dx.doi.org/10.1016/j.jfluchem.2012.05.014]
[http://dx.doi.org/10.1016/j.jfluchem.2012.05.014]
[37]
Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H.R. One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J. Fluor. Chem., 2009, 130, 609-614.
[http://dx.doi.org/10.1016/j.jfluchem.2009.03.014]
[http://dx.doi.org/10.1016/j.jfluchem.2009.03.014]
[38]
Heydari, A.; Khaksar, S.; Tajbakhsh, M. Trifluoroethanol as a metal-free, homogeneous and recyclable medium for the efficient one-pot synthesis of α-amino nitriles and α-amino phosphonates. Tetrahedron Lett., 2009, 50, 77-80.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.106]
[http://dx.doi.org/10.1016/j.tetlet.2008.10.106]
[39]
Khaksar, S.; Heydari, A.; Tajbakhsh, M.; Vahdat, S.M. Lewis acid catalyst free synthesis of benzimidazoles and formamidines in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol. J. Fluor. Chem., 2010, 131, 1377-1381.
[http://dx.doi.org/10.1016/j.jfluchem.2010.10.002]
[http://dx.doi.org/10.1016/j.jfluchem.2010.10.002]
[40]
Khaksar, S.; Rostamnezhad, F. A novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols. Bull. Korean Chem. Soc., 2012, 33, 2581-2584.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2581]
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2581]
[41]
Vibhute, S.; Jamale, D.; Undare, S.; Valekar, N.; Kolekar, G.; Anbhule, P. An efficient, one-pot three components synthesis of [1, 2, 4] triazoloquinazolinone derivatives using anthranilic acid as green catalyst. Res. Chem. Intermed., 2017, 43, 4561-4574.
[http://dx.doi.org/10.1007/s11164-017-2896-5]
[http://dx.doi.org/10.1007/s11164-017-2896-5]
[42]
Mousavi, M.R.; Maghsoodlou, M.T. Catalytic systems containing p-toluenesulfonic acid monohydrate catalyzed the synthesis of triazoloquinazolinone and benzimidazoquinazolinone derivatives. Monatshefte für Chemie-Chemical Monthly, 2014, 145, 1967-1973.
[http://dx.doi.org/10.1007/s00706-014-1273-y]
[http://dx.doi.org/10.1007/s00706-014-1273-y]