Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

General Review Article

Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review

Author(s): Chih-Sheng Ko, Jen-Hao Chen and Wen-Ta Su*

Volume 15, Issue 1, 2020

Page: [61 - 76] Pages: 16

DOI: 10.2174/1574888X14666191018122109

Price: $65

Abstract

Stem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth. SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG, which make SHED to have a significant impact on clinical applications. SHED possess higher rates of proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters, and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation and banking method, the current development of SHED in regenerative medicine and tissue engineering in vitro and in vivo.

Keywords: Stem cells from human exfoliated deciduous teeth, dental stem cells, isolation, banking, ESCs, HSCs.

[1]
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9(5): 641-50.
[http://dx.doi.org/10.1002/jor.1100090504] [PMID: 1870029]
[2]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[3]
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109(1): 235-42.
[http://dx.doi.org/10.1046/j.1365-2141.2000.01986.x] [PMID: 10848804]
[4]
Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999; 65(1): 22-6.
[PMID: 9915526]
[5]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[6]
Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98(8): 2396-402.
[http://dx.doi.org/10.1182/blood.V98.8.2396] [PMID: 11588036]
[7]
De Bari C. Dell′Accio F, Tylzanowski P, Luyten FP. Mutipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44: 1928-42.
[http://dx.doi.org/10.1002/1529-0131(200108)44:8<1928:AID-ART331>3.0.CO;2-P] [PMID: 11508446]
[8]
Shih DT, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 2005; 23(7): 1012-20.
[http://dx.doi.org/10.1634/stemcells.2004-0125] [PMID: 15941858]
[9]
In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102(4): 1548-9.
[http://dx.doi.org/10.1182/blood-2003-04-1291] [PMID: 12900350]
[10]
In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22(7): 1338-45.
[http://dx.doi.org/10.1634/stemcells.2004-0058] [PMID: 15579651]
[11]
Salingcarnboriboon R, Yoshitake H, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 2003; 287(2): 289-300.
[http://dx.doi.org/10.1016/S0014-4827(03)00107-1] [PMID: 12837285]
[12]
Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Stem cells from human hair follicles: First mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig 2017; 4: 58.
[http://dx.doi.org/10.21037/sci.2017.06.04] [PMID: 28725654]
[13]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[14]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[15]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[16]
Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009; 183(12): 7787-98.
[http://dx.doi.org/10.4049/jimmunol.0902318] [PMID: 19923445]
[17]
Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24(2): 155-65.
[http://dx.doi.org/10.1016/j.matbio.2004.12.004] [PMID: 15890265]
[18]
Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cellmediated functional tooth regeneration in swine. PLoS One 2006; 1e79
[http://dx.doi.org/10.1371/journal.pone.0000079] [PMID: 17183711]
[19]
Ikeda E, Yagi K, Kojima M, et al. Multipotent cells from the human third molar: Feasibility of cell-based therapy for liver disease. Differentiation 2008; 76(5): 495-505.
[http://dx.doi.org/10.1111/j.1432-0436.2007.00245.x] [PMID: 18093227]
[20]
Matsubara T, Suardita K, Ishii M, et al. Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 2005; 20(3): 399-409.
[http://dx.doi.org/10.1359/JBMR.041117] [PMID: 15746984]
[21]
Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005; 106(2): 756-63.
[http://dx.doi.org/10.1182/blood-2005-02-0572] [PMID: 15817682]
[22]
Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96(19): 10711-6.
[http://dx.doi.org/10.1073/pnas.96.19.10711] [PMID: 10485891]
[23]
Cheng PH, Snyder B, Fillos D, Ibegbu CC, Huang AH, Chan AW. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee. BMC Cell Biol 2008; 9: 20.
[http://dx.doi.org/10.1186/1471-2121-9-20] [PMID: 18430234]
[24]
Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005; 8(3): 191-9.
[http://dx.doi.org/10.1111/j.1601-6343.2005.00331.x] [PMID: 16022721]
[25]
Ishkitiev N, Yaegaki K, Imai T, et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 2012; 38(4): 475-80.
[http://dx.doi.org/10.1016/j.joen.2011.12.011] [PMID: 22414832]
[26]
Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89(8): 791-6.
[http://dx.doi.org/10.1177/0022034510368647] [PMID: 20395410]
[27]
Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 15: 5.
[PMID: 20504286]
[28]
Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 2010; 19(4): 469-80.
[http://dx.doi.org/10.1089/scd.2009.0314] [PMID: 19795982]
[29]
Coppe C, Zhang Y, Den Besten PK. Characterization of primary dental pulp cells in vitro. Pediatr Dent 2009; 31(7): 467-71.
[PMID: 20108736]
[30]
Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78(1): 55-62.
[PMID: 2070060]
[31]
Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ. Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 1999; 14(1): 47-56.
[http://dx.doi.org/10.1359/jbmr.1999.14.1.47] [PMID: 9893065]
[32]
Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008; 3(3): 229-30.
[http://dx.doi.org/10.1016/j.stem.2008.08.008] [PMID: 18786406]
[33]
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3(3): 301-13.
[http://dx.doi.org/10.1016/j.stem.2008.07.003] [PMID: 18786417]
[34]
Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs (Print) 2006; 184(3-4): 105-16.
[http://dx.doi.org/10.1159/000099617] [PMID: 17409736]
[35]
Morsczeck C, Schmalz G, Reichert TE, Völlner F, Galler K, Driemel O. Somatic stem cells for regenerative dentistry. Clin Oral Investig 2008; 12(2): 113-8.
[http://dx.doi.org/10.1007/s00784-007-0170-8] [PMID: 18172700]
[36]
Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009; 88(9): 792-806.
[http://dx.doi.org/10.1177/0022034509340867] [PMID: 19767575]
[37]
Pivoriuūnas A, Surovas A, Borutinskaite V, et al. Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 2010; 19(7): 1081-93.
[http://dx.doi.org/10.1089/scd.2009.0315] [PMID: 19824824]
[38]
Kunimatsu R, Nakajima K, Awada T, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2018; 501(1): 193-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.213] [PMID: 29730288]
[39]
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 2010; 24(22): 2463-79.
[http://dx.doi.org/10.1101/gad.1971610] [PMID: 21078816]
[40]
Wang H, Zhong Q, Yang T, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol Med Rep 2018; 17(5): 6551-9.
[http://dx.doi.org/10.3892/mmr.2018.8725] [PMID: 29532869]
[41]
Alraies A, Alaidaroos NY, Waddington RJ, Moseley R, Sloan AJ. Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 2017; 18(1): 12.
[http://dx.doi.org/10.1186/s12860-017-0128-x] [PMID: 28148303]
[42]
Inanç B, Elçin YM. Stem cells in tooth tissue regeneration--challenges and limitations. Stem Cell Rev Rep 2011; 7(3): 683-92.
[http://dx.doi.org/10.1007/s12015-011-9237-7] [PMID: 21331452]
[43]
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35(2)e00191
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[44]
Engelholm SA, Spang-Thomsen M, Brünner N, Nøhr I, Vindeløv LL. Disaggregation of human solid tumours by combined mechanical and enzymatic methods. Br J Cancer 1985; 51(1): 93-8.
[http://dx.doi.org/10.1038/bjc.1985.13] [PMID: 3966975]
[45]
Tanaka K, Iwasaki K, Feghali KE, Komaki M, Ishikawa I, Izumi Y. Comparison of characteristics of periodontal ligament cells obtained from outgrowth and enzyme-digested culture methods. Arch Oral Biol 2011; 56(4): 380-8.
[http://dx.doi.org/10.1016/j.archoralbio.2010.10.013] [PMID: 21144495]
[46]
Huang GT, Sonoyama W, Chen J, Park SH. In vitro characterization of human dental pulp cells: Various isolation methods and culturing environments. Cell Tissue Res 2006; 324(2): 225-36.
[http://dx.doi.org/10.1007/s00441-005-0117-9] [PMID: 16440193]
[47]
Bakopoulou A, Leyhausen G, Volk J, et al. Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 2011; 88(2): 130-41.
[http://dx.doi.org/10.1007/s00223-010-9438-0] [PMID: 21153807]
[48]
Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): Saving for the future. J Clin Pediatr Dent 2009; 33(4): 289-94.
[http://dx.doi.org/10.17796/jcpd.33.4.y887672r0j703654] [PMID: 19725233]
[49]
Perry BC, Zhou D, Wu X, et al. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2008; 14(2): 149-56.
[http://dx.doi.org/10.1089/ten.tec.2008.0031] [PMID: 18489245]
[50]
Aghajani F, Hooshmand T, Khanmohammadi M, et al. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol 2016; 58(6): 415-27.
[http://dx.doi.org/10.1007/s12033-016-9941-2] [PMID: 27126695]
[51]
Islam A, Mammadov E, Kendirci R, Aytac E, Cetiner S, Vatansever HS. In vitro cultivation, characterization and osteogenic differentiation of stem cells from human exfoliated deciduous teeth on 3d printed polylactic acid scaffolds. Iran Red Crescent Med J 2017; 19(8)e55593
[http://dx.doi.org/10.5812/ircmj.55593]
[52]
Farea M, Husein A, Halim AS, et al. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 2014; 59(12): 1400-11.
[http://dx.doi.org/10.1016/j.archoralbio.2014.08.015] [PMID: 25222336]
[53]
Chadipiralla K, Yochim JM, Bahuleyan B, et al. Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth. Cell Tissue Res 2010; 340(2): 323-33.
[http://dx.doi.org/10.1007/s00441-010-0953-0] [PMID: 20309582]
[54]
Viale-Bouroncle S, Gosau M, Küpper K, et al. Rigid matrix supports osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Differentiation 2012; 84(5): 366-70.
[http://dx.doi.org/10.1016/j.diff.2012.08.005] [PMID: 23142732]
[55]
Su WT, Chou WL, Chou CM. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate. Mater Sci Eng C 2015; 52: 46-53.
[http://dx.doi.org/10.1016/j.msec.2015.03.025] [PMID: 25953539]
[56]
Huang TY, Su WT, Chen PH. Comparing the effects of chitosan scaffolds containing various divalent metal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Biol Trace Elem Res 2018; 185(2): 316-26.
[http://dx.doi.org/10.1007/s12011-018-1256-7] [PMID: 29399740]
[57]
Liu YJ, Su WT, Chen PH. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro. J Biomater Appl 2018; 32(6): 765-74.
[http://dx.doi.org/10.1177/0885328217740730] [PMID: 29119879]
[58]
Su WT, Wu PS, Huang TY. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Mater Sci Eng C 2015; 46: 427-34.
[http://dx.doi.org/10.1016/j.msec.2014.10.076] [PMID: 25492007]
[59]
Su WT, Wu PS, Ko CS, Huang TY. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold. Mater Sci Eng C 2014; 41: 152-60.
[http://dx.doi.org/10.1016/j.msec.2014.04.048] [PMID: 24907748]
[60]
Su WT, Chiou WL, Yu HH, Huang TY. Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. Mater Sci Eng C 2016; 58: 1036-45.
[http://dx.doi.org/10.1016/j.msec.2015.09.077] [PMID: 26478401]
[61]
Chen K, Xiong H, Xu N, Shen Y, Huang Y, Liu C. Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontol Scand 2014; 72(8): 664-72.
[http://dx.doi.org/10.3109/00016357.2014.888756] [PMID: 24580092]
[62]
Zhang N, Chen B, Wang W, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep 2016; 14(1): 95-102.
[http://dx.doi.org/10.3892/mmr.2016.5214] [PMID: 27151462]
[63]
Lee TJ, Jang J, Kang S, et al. Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment. Biochem Biophys Res Commun 2013; 430(2): 793-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.067] [PMID: 23206696]
[64]
Rosa V, Dubey N, Ialam I, Min KS, Nor JE. luripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cell International 2016; 6.
[PMID: 27313627]
[65]
Zhou H, Lin RF, Liu JP, et al. Transforming growth factor beta 3 induced odontoblast-like differentiation of stem cells from human exfoliated deciduous teeth. Chinese J Tissue Eng Res 2014; 18(23): 3745-50.
[66]
Yamaza H, Tomoda E, Sonoda S, Nonaka K, Kukita T, Yamaza T. Bilirubin reversibly affects cell death and odontogenic capacity in stem cells from human exfoliated deciduous teeth. Oral Dis 2018; 24(5): 809-19.
[http://dx.doi.org/10.1111/odi.12827] [PMID: 29316063]
[67]
Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J Cell Physiol 2016; 231(9): 2048-63.
[http://dx.doi.org/10.1002/jcp.25314] [PMID: 26773559]
[68]
Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55(2): 189-95.
[http://dx.doi.org/10.1387/ijdb.103090nn] [PMID: 21671222]
[69]
Jarmalavičiūtė A, Tunaitis V, Strainienė E, et al. A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci 2013; 51: 307-17.
[http://dx.doi.org/10.1007/s12031-013-0046-0] [PMID: 23797732]
[70]
Su WT, Shih YA, Ko CS. Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells. J Tissue Eng Regen Med 2016; 10(6): 507-17.
[http://dx.doi.org/10.1002/term.1783] [PMID: 24130037]
[71]
Su WT, Pan YJ. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds. J Neural Eng 2016; 13(4)046005
[http://dx.doi.org/10.1088/1741-2560/13/4/046005] [PMID: 27217230]
[72]
Su WT, Pan YJ, Huang TY, Huang YC. Hydrophobic PDMS promotes neural progenitor formation from SHEDs by Schwann cells cultivated medium induction. Int J Polymeric Mat Polymeric Biomat 2018; 67(6): 11-9.
[http://dx.doi.org/10.1080/00914037.2017.1297937]
[73]
Kato H, Thi Mai Pham T, Yamaza H, et al. Mitochondria regulate the differentiation of stem cells from human exfoliated deciduous teeth. Cell Struct Funct 2017; 42(2): 105-16.
[http://dx.doi.org/10.1247/csf.17012] [PMID: 28701634]
[74]
Bento LW, Zhang Z, Imai A, et al. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res 2013; 92(1): 51-7.
[http://dx.doi.org/10.1177/0022034512466263] [PMID: 23114032]
[75]
Wang P, Zhu S, Yuan C, Wang L, Xu J, Liu Z. Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. Int J Mol Med 2018; 42(4): 1827-36.
[http://dx.doi.org/10.3892/ijmm.2018.3761] [PMID: 30015843]
[76]
Ishkitiev N, Yaegaki K, Calenic B, et al. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 2010; 36(3): 469-74.
[http://dx.doi.org/10.1016/j.joen.2009.12.022] [PMID: 20171365]
[77]
Okada M, Ishkitiev N, Yaegaki K, et al. Hydrogen sulphide increases hepatic differentiation of human tooth pulp stem cells compared with human bone marrow stem cells. Int Endod J 2014; 47(12): 1142-50.
[http://dx.doi.org/10.1111/iej.12262] [PMID: 24517624]
[78]
Su WT, Chen XW. Stem cells from human exfoliated deciduous teeth differentiate into functional hepatocyte-like cells by herbal medicine. Biomed Mater Eng 2014; 24(6): 2243-7.
[PMID: 25226923]
[79]
Alipour R, Adib M, Masoumi Karimi M, Hashemi-Beni B, Sereshki N. Comparing the immunoregulatory effects of stem cells from human exfoliated deciduous teeth and bone marrow-derived mesenchymal stem cells. Iran J Allergy Asthma Immunol 2013; 12(4): 331-44.
[PMID: 23996709]
[80]
Alipour R, Masoumi Karimi M, Hashemi-Beni B, Adib M, Sereshki N, Sadeghi F. Indoleamine 2,3-dioxygenase is dispensable for the immunomodulatory function of stem cells from human exfoliated deciduous teeth. Cell J 2017; 18(4): 597-608.
[PMID: 28042544]
[81]
Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int 2016.20164682875
[http://dx.doi.org/10.1155/2016/4682875] [PMID: 26770205]
[82]
Whiting D, Chung WO, Johnson JD, Paranjpe A. Characterization of the cellular responses of dental mesenchymal stem cells to the immune system. J Endod 2018; 44(7): 1126-31.
[http://dx.doi.org/10.1016/j.joen.2018.03.018] [PMID: 29884336]
[83]
Dai YY, Ni SY, Ma K, Ma YS, Wang ZS, Zhao XL. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther 2019; 10(1): 39.
[http://dx.doi.org/10.1186/s13287-019-1134-z] [PMID: 30670101]
[84]
Cui D, Li H, Wan M, et al. The origin and identification of mesenchymal stem cells in teeth: From odontogenic to non-odontogenic. Curr Stem Cell Res Ther 2018; 13(1): 39-45.
[PMID: 28901252]
[85]
Kim JH, Kim GH, Kim JW, et al. In vivo angiogenic capacity of stem cells from human exfoliated deciduous teeth with human umbilical vein endothelial cells. Mol Cells 2016; 39(11): 790-6.
[http://dx.doi.org/10.14348/molcells.2016.0131] [PMID: 27871176]
[86]
Gotlieb EL, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth. J Am Dent Assoc 2008; 139(4): 457-65.
[http://dx.doi.org/10.14219/jada.archive.2008.0189] [PMID: 18385030]
[87]
Cordeiro MM, Dong Z, Kaneko T, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34(8): 962-9.
[http://dx.doi.org/10.1016/j.joen.2008.04.009] [PMID: 18634928]
[88]
Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013; 92(11): 970-5.
[http://dx.doi.org/10.1177/0022034513505772] [PMID: 24056227]
[89]
Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A 2018; 24(17-18): 1341-53.
[http://dx.doi.org/10.1089/ten.tea.2018.0016] [PMID: 29652608]
[90]
Prasad MGS, Ramakrishna J, Babu DN. Allogeneic stem cells derived from human exfoliated deciduous teeth (SHED) for the management of periapical lesions in permanent teeth: Two case reports of a novel biologic alternative treatment. J Dent Res Dent Clin Dent Prospect 2017; 11(2): 117-22.
[http://dx.doi.org/10.15171/joddd.2017.021] [PMID: 28748053]
[91]
Shiehzadeh V, Aghmasheh F, Shiehzadeh F, Joulae M, Kosarieh E, Shiehzadeh F. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: New method and three case reports. Indian J Dent Res 2014; 25(2): 248-53.
[http://dx.doi.org/10.4103/0970-9290.135937] [PMID: 24992862]
[92]
Fu X, Jin L, Ma P, Fan Z, Wang S. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol 2014; 85(6): 845-51.
[http://dx.doi.org/10.1902/jop.2013.130254] [PMID: 24001042]
[93]
Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med 2018; 10(455)eaaf3227
[http://dx.doi.org/10.1126/scitranslmed.aaf3227] [PMID: 30135248]
[94]
Lee JM, Kim HY, Park JS, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med 2019; 13(2): 319-27.
[http://dx.doi.org/10.1002/term.2811] [PMID: 30644640]
[95]
Nakajima K, Kunimatsu R, Ando K, et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2018; 497(3): 876-82.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.156] [PMID: 29477844]
[96]
Omori M, Tsuchiya S, Hara K, et al. A new application of cell-free bone regeneration: Immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther 2015; 6: 124.
[http://dx.doi.org/10.1186/s13287-015-0114-1] [PMID: 26088364]
[97]
Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: Enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg 2013; 71(10): 1758.e1-1758.e13.
[http://dx.doi.org/10.1016/j.joms.2013.05.016] [PMID: 24040948]
[98]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[http://dx.doi.org/10.1177/0022034509333804] [PMID: 19329459]
[99]
Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical-size calvarial defects in mice. Oral Dis 2008; 14(5): 428-34.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01396.x] [PMID: 18938268]
[100]
Ma L, Aijima R, Hoshino Y, et al. Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res Ther 2015; 6: 104.
[http://dx.doi.org/10.1186/s13287-015-0091-4] [PMID: 26012584]
[101]
Liu Y, Wang L, Liu S, et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J Dent Res 2014; 93(11): 1124-32.
[http://dx.doi.org/10.1177/0022034514552675] [PMID: 25252877]
[102]
Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19(9): 1375-83.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[103]
Narbute K, Piļipenko V, Pupure J, et al. Intranasal administration of extracellular vesicles derived from human teeth stem cells improves motor symptoms and normalizes tyrosine hydroxylase expression in the substantia nigra and striatum of the 6-hydroxydopamine-treated rats. Stem Cells Transl Med 2019; 8(5): 490-9.
[http://dx.doi.org/10.1002/sctm.18-0162] [PMID: 30706999]
[104]
Zhang N, Lu X, Wu S, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20(5): 670-86.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.371] [PMID: 29576501]
[105]
Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 2015; 1613: 59-72.
[http://dx.doi.org/10.1016/j.brainres.2015.04.001] [PMID: 25863132]
[106]
Tsuruta T, Sakai K, Watanabe J, Katagiri W, Hibi H. Dental pulp-derived stem cell conditioned medium to regenerate peripheral nerves in a novel animal model of dysphagia. PLoS One 2018; 13(12)e0208938
[http://dx.doi.org/10.1371/journal.pone.0208938] [PMID: 30533035]
[107]
Shimojima C, Takeuchi H, Jin S, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 2016; 196(10): 4164-71.
[http://dx.doi.org/10.4049/jimmunol.1501457] [PMID: 27053763]
[108]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[109]
Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8(1): 198.
[http://dx.doi.org/10.1186/s13287-017-0648-5] [PMID: 28962585]
[110]
Dos Santos FP, Peruch T, Katami SJV, et al. Poly (lactide-co-glycolide) (PLGA) scaffold induces short-term nerve regeneration and functional recovery following sciatic nerve transection in rats. Neuroscience 2019; 396: 94-107.
[http://dx.doi.org/10.1016/j.neuroscience.2018.11.007] [PMID: 30452974]
[111]
Pereira LV, Bento RF, Cruz DB, et al. Stem cells from human exfoliated deciduous teeth (shed) differentiate in vivo and promote facial nerve regeneration. Cell Transplant 2018.963689718809090
[PMID: 30380914]
[112]
Sugimura-Wakayama Y, Katagiri W, Osugi M, et al. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth. Stem Cells Dev 2015; 24(22): 2687-99.
[http://dx.doi.org/10.1089/scd.2015.0104] [PMID: 26154068]
[113]
Prado C, Fratini P, de Sá Schiavo Matias G, et al. Combination of stem cells from deciduous teeth and electroacupuncture for therapy in dogs with chronic spinal cord injury: A pilot study. Res Vet Sci 2019; 123: 247-51.
[http://dx.doi.org/10.1016/j.rvsc.2019.01.011] [PMID: 30703615]
[114]
Nicola F, Marques MR, Odorcyk F, et al. Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion. Mol Neurobiol 2019; 56(1): 748-60.
[http://dx.doi.org/10.1007/s12035-018-1127-4] [PMID: 29796991]
[115]
Nicola FDC, Marques MR, Odorcyk F, et al. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 2017; 1663: 95-105.
[http://dx.doi.org/10.1016/j.brainres.2017.03.015] [PMID: 28322752]
[116]
Nicola FC, Rodrigues LP, Crestani T, et al. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Braz J Med Biol Res 2016; 49(9)e5319
[http://dx.doi.org/10.1590/1414-431x20165319] [PMID: 27509306]
[117]
Taghipour Z, Karbalaie K, Kiani A, et al. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 2012; 21(10): 1794-802.
[http://dx.doi.org/10.1089/scd.2011.0408] [PMID: 21970342]
[118]
Asadi-Golshan R, Razban V, Mirzaei E, et al. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J 2018; 12(5): 785-93.
[http://dx.doi.org/10.31616/asj.2018.12.5.785] [PMID: 30213159]
[119]
Yamagata M, Yamamoto A, Kako E, et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 2013; 44(2): 551-4.
[http://dx.doi.org/10.1161/STROKEAHA.112.676759] [PMID: 23238858]
[120]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[121]
Fujiyoshi J, Yamaza H, Sonoda S, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep 2019; 9(1): 1535.
[http://dx.doi.org/10.1038/s41598-018-38275-y] [PMID: 30733544]
[122]
Yokoyama T, Yagi Mendoza H, Tanaka T, et al. Regulation of CCl4-induced liver cirrhosis by hepatically differentiated human dental pulp stem cells. Hum Cell 2019; 32(2): 125-40.
[http://dx.doi.org/10.1007/s13577-018-00234-0] [PMID: 30637566]
[123]
Matsushita Y, Ishigami M, Matsubara K, et al. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J Tissue Eng Regen Med 2017; 11(6): 1888-96.
[http://dx.doi.org/10.1002/term.2086] [PMID: 28586545]
[124]
Ito T, Ishigami M, Matsushita Y, et al. Secreted ectodomain of SIGLEC-9 and MCP-1 synergistically improve acute liver failure in rats by altering macrophage polarity. Sci Rep 2017; 7: 44043.
[http://dx.doi.org/10.1038/srep44043] [PMID: 28272428]
[125]
Hirata M, Ishigami M, Matsushita Y, et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl Med 2016; 5(10): 1416-24.
[http://dx.doi.org/10.5966/sctm.2015-0353] [PMID: 27280796]
[126]
Yamaza T, Alatas FS, Yuniartha R, et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 2015; 6: 171.
[http://dx.doi.org/10.1186/s13287-015-0154-6] [PMID: 26358689]
[127]
Tseng LS, Chen SH, Lin MT, Lin YC. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice. Cell Transplant 2015; 24(5): 921-37.
[http://dx.doi.org/10.3727/096368914X678580] [PMID: 24612725]
[128]
Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH. Comparative analysis of cardiovascular development related genes in stem cells isolated from deciduous pulp and adipose tissue. ScientificWorldJournal 2014.2014186508
[http://dx.doi.org/10.1155/2014/186508] [PMID: 25548778]
[129]
Izumoto-Akita T, Tsunekawa S, Yamamoto A, et al. Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β-cell function. BMJ Open Diabetes Res Care 2015; 3(1)e000128
[http://dx.doi.org/10.1136/bmjdrc-2015-000128] [PMID: 26504525]
[130]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[131]
Hattori Y, Kim H, Tsuboi N, et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 2015; 10(10)e0140121
[http://dx.doi.org/10.1371/journal.pone.0140121] [PMID: 26509261]
[132]
Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015; 17(8): 1119-29.
[http://dx.doi.org/10.1016/j.jcyt.2015.04.009] [PMID: 26031744]
[133]
Tsai CL, Chuang PC, Kuo HK, Chen YH, Su WH, Wu PC. Differentiation of stem cells from human exfoliated deciduous teeth toward a phenotype of corneal epithelium in vitro. Cornea 2015; 34(11): 1471-7.
[http://dx.doi.org/10.1097/ICO.0000000000000532] [PMID: 26165791]
[134]
Ueda M, Nishino Y. Cell-based cytokine therapy for skin rejuvenation. J Craniofac Surg 2010; 21(6): 1861-6.
[http://dx.doi.org/10.1097/SCS.0b013e3181f43f0a] [PMID: 21119440]
[135]
Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy 2011; 13(5): 598-605.
[http://dx.doi.org/10.3109/14653249.2010.542462] [PMID: 21341975]
[136]
Lv Y, Ge L, Zhao Y. Effect and mechanism of SHED on ulcer wound healing in Sprague-Dawley rat models with diabetic ulcer. Am J Transl Res 2017; 9(2): 489-98.
[PMID: 28337277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy