Letter Article

慢性阻塞性肺疾病和肺癌的高通量多重SNP分析

卷 20, 期 3, 2020

页: [185 - 193] 页: 9

弟呕挨: 10.2174/1566524019666191017123446

价格: $65

conference banner
摘要

背景:已经显示出许多人类炎症性疾病和肿瘤以特定方式引起血浆蛋白糖基化模式的改变。这些高度可变和通用的翻译后修饰通过影响分选,折叠,酶活性和亚细胞定位来微调蛋白质功能。然而,关于该过程的调节因素以及糖基化与疾病之间的确切因果关系的了解相对较少。 目的:本研究的目的是研究编码糖基转移酶和糖苷酶的基因中的某些单核苷酸多态性(SNP)是否可能与慢性阻塞性肺疾病(COPD)和肺腺癌的高风险相关。 方法:选择位于与N-糖基化相关的基因中的32个SNP进行关联分析。募集具有假定的生物学功能(错义或调控变体)的多态性。通过TaqMan OpenArray平台对SNP进行基因分型。基于单碱基扩展的方法与毛细管凝胶电泳相结合用于验证。 结果:TaqMan OpenArray方法提供了准确可靠的基因型数据(全局调用率:94.9%,准确性:99.6%)。如果任何SNP证实了可靠的采样和基因分型,则在健康对照组的样本组中,在获得的基因型频率值和预期的基因型频率值(Hardy-Weinberg平衡)之间未检测到显着差异。在所比较的样本组之间,位于MGAT5基因3''UTR的rs3944508多态性的等位基因频率显着不同。 结论:我们的结果表明rs34944508 SNP可能通过影响MGAT5的表达来调节肺癌的风险。此酶催化在双天线N连接寡糖的α连接甘露糖上以β1-6连接形式添加N-乙酰氨基葡萄糖(GlcNAc),因此增加了侵入性恶性肿瘤的特征性分支。

关键词: SNP,单碱基引物延伸,毛细管电泳,TaqMan OpenArray,肺腺癌,COPD,遗传关联。

[1]
Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein folding and stability. Biochem J 2017; 474(14): 2333-47.
[http://dx.doi.org/10.1042/BCJ20170111] [PMID: 28673927]
[2]
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front Oncol 2019; 9: 380.
[http://dx.doi.org/10.3389/fonc.2019.00380] [PMID: 31157165]
[3]
Bassagañas S, Allende H, Cobler L, et al. Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines. Cytokine 2015; 75(1): 197-206.
[http://dx.doi.org/10.1016/j.cyto.2015.04.006] [PMID: 25934648]
[4]
Zoldoš V, Novokmet M, Bečeheli I, Lauc G. Genomics and epigenomics of the human glycome. Glycoconj J 2013; 30(1): 41-50.
[http://dx.doi.org/10.1007/s10719-012-9397-y] [PMID: 22648057]
[5]
B S GK. Mohan Reddy P, Kottekad S. Comparative site-specific N-glycosylation analysis of lactoperoxidase from buffalo and goat milk using RP-UHPLC-MS/MS reveals a distinct glycan pattern. J Agric Food Chem 2018; 66(43): 11492-9.
[http://dx.doi.org/10.1021/acs.jafc.8b03243] [PMID: 30296068]
[6]
Lageveen-Kammeijer GSM, de Haan N, Mohaupt P, et al. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples. Nat Commun 2019; 10(1): 2137.
[http://dx.doi.org/10.1038/s41467-019-09910-7] [PMID: 31086181]
[7]
Goulabchand R, Vincent T, Batteux F, Eliaou JF, Guilpain P. Impact of autoantibody glycosylation in autoimmune diseases. Autoimmun Rev 2014; 13(7): 742-50.
[http://dx.doi.org/10.1016/j.autrev.2014.02.005] [PMID: 24657512]
[8]
Huang C, Zhan T, Liu Y, et al. Glycomic profiling of carcinoembryonic antigen isolated from human tumor tissue. Clin Proteomics 2015; 12(1): 17.
[http://dx.doi.org/10.1186/s12014-015-9088-3] [PMID: 26157355]
[9]
Kovacs Z, Simon A, Szabo Z, et al. Capillary electrophoresis analysis of N-glycosylation changes of serum paraproteins in multiple myeloma. Electrophoresis 2017; 38(17): 2115-23.
[http://dx.doi.org/10.1002/elps.201700006] [PMID: 28116769]
[10]
Tozawa-Ono A, Kubota M, Honma C, et al. Glycan profiling using formalin-fixed, paraffin-embedded tissues: Hippeastrum hybrid lectin is a sensitive biomarker for squamous cell carcinoma of the uterine cervix. J Obstet Gynaecol Res 2017; 43(8): 1326-34.
[http://dx.doi.org/10.1111/jog.13359] [PMID: 28585749]
[11]
Ceciliani F, Pocacqua V. The acute phase protein alpha1-acid glycoprotein: a model for altered glycosylation during diseases. Curr Protein Pept Sci 2007; 8(1): 91-108.
[http://dx.doi.org/10.2174/138920307779941497] [PMID: 17305563]
[12]
Novokmet M, Lukić E, Vučković F, et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep 2014; 4: 4347.
[http://dx.doi.org/10.1038/srep04347] [PMID: 24614541]
[13]
Theodoratou E, Campbell H, Ventham NT, et al. The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol 2014; 11(10): 588-600.
[http://dx.doi.org/10.1038/nrgastro.2014.78] [PMID: 24912389]
[14]
Drabik A, Bodzon-Kulakowska A, Suder P, Silberring J, Kulig J, Sierzega M. Glycosylation changes in serum proteins identify patients with pancreatic cancer. J Proteome Res 2017; 16(4): 1436-44.
[http://dx.doi.org/10.1021/acs.jproteome.6b00775] [PMID: 28244758]
[15]
Krishnan S, Whitwell HJ, Cuenco J, et al. Evidence of altered glycosylation of serum proteins prior to pancreatic cancer diagnosis. Int J Mol Sci 2017; 18(12): E2670
[http://dx.doi.org/10.3390/ijms18122670] [PMID: 29232830]
[16]
Choi JW, Moon BI, Lee JW, Kim HJ, Jin Y, Kim HJ. Use of CA153 for screening breast cancer: An antibodylectin sandwich assay for detecting glycosylation of CA153 in sera. Oncol Rep 2018; 40(1): 145-54.
[http://dx.doi.org/10.3892/or.2018.6433] [PMID: 29749490]
[17]
Kawaguchi-Sakita N, Kaneshiro-Nakagawa K, Kawashima M, et al. Serum immunoglobulin G Fc region N-glycosylation profiling by matrix-assisted laser desorption/ionization mass spectrometry can distinguish breast cancer patients from cancer-free controls. Biochem Biophys Res Commun 2016; 469(4): 1140-5.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.114] [PMID: 26740182]
[18]
Ruhaak LR, Kim K, Stroble C, et al. Protein-specific differential glycosylation of immunoglobulins in serum of ovarian cancer patients. J Proteome Res 2016; 15(3): 1002-10.
[http://dx.doi.org/10.1021/acs.jproteome.5b01071] [PMID: 26813784]
[19]
Weiz S, Wieczorek M, Schwedler C, et al. Acute-phase glycoprotein N-glycome of ovarian cancer patients analyzed by CE-LIF. Electrophoresis 2016; 37(11): 1461-7.
[http://dx.doi.org/10.1002/elps.201500518] [PMID: 26763099]
[20]
Kazuno S, Fujimura T, Arai T, et al. Multi-sequential surface plasmon resonance analysis of haptoglobin-lectin complex in sera of patients with malignant and benign prostate diseases. Anal Biochem 2011; 419(2): 241-9.
[http://dx.doi.org/10.1016/j.ab.2011.08.029] [PMID: 21907698]
[21]
Ju L, Wang Y, Xie Q, et al. Elevated level of serum glycoprotein bifucosylation and prognostic value in Chinese breast cancer. Glycobiology 2016; 26(5): 460-71.
[http://dx.doi.org/10.1093/glycob/cwv117] [PMID: 26646445]
[22]
Mondal G, Saroha A, Bose PP, Chatterjee BP. Altered glycosylation, expression of serum haptoglobin and alpha-1-antitrypsin in chronic hepatitis C, hepatitis C induced liver cirrhosis and hepatocellular carcinoma patients. Glycoconj J 2016; 33(2): 209-18.
[http://dx.doi.org/10.1007/s10719-016-9658-2] [PMID: 27034286]
[23]
de Andrade M, Li Y, Marks RS, et al. Genetic variants associated with the risk of chronic obstructive pulmonary disease with and without lung cancer. Cancer Prev Res (Phila) 2012; 5(3): 365-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0243] [PMID: 22044695]
[24]
Ayyub A, Saleem M, Fatima I, Tariq A, Hashmi N, Musharraf SG. Glycosylated Alpha-1-acid glycoprotein 1 as a potential lung cancer serum biomarker. Int J Biochem Cell Biol 2016; 70: 68-75.
[http://dx.doi.org/10.1016/j.biocel.2015.11.006] [PMID: 26563422]
[25]
Liang Y, Ma T, Thakur A, et al. Differentially expressed glycosylated patterns of α-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer. Glycobiology 2015; 25(3): 331-40.
[http://dx.doi.org/10.1093/glycob/cwu115] [PMID: 25347993]
[26]
Togayachi A, Iwaki J, Kaji H, et al. Glycobiomarker, fucosylated short-form secretogranin iii levels are increased in serum of patients with small cell lung carcinoma. J Proteome Res 2017; 16(12): 4495-505.
[http://dx.doi.org/10.1021/acs.jproteome.7b00484] [PMID: 28949141]
[27]
Váradi C, Mittermayr S, Szekrényes Á, et al. Analysis of haptoglobin N-glycome alterations in inflammatory and malignant lung diseases by capillary electrophoresis. Electrophoresis 2013; 34(16): 2287-94.
[http://dx.doi.org/10.1002/elps.201300041] [PMID: 23580236]
[28]
Phelan CM, Tsai YY, Goode EL, et al. Polymorphism in the GALNT1 gene and epithelial ovarian cancer in non-Hispanic white women: the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 2010; 19(2): 600-4.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0861] [PMID: 20142253]
[29]
Kovacs-Nagy R, Elek Z, Szekely A, Nanasi T, Sasvari-Szekely M, Ronai Z. Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene. Am J Med Genet B Neuropsychiatr Genet 2013; 162(4): 404-12.
[30]
Elek Z, Németh N, Nagy G, et al. Micro-RNA Binding Site Polymorphisms in the WFS1 Gene Are Risk Factors of Diabetes Mellitus. PLoS One 2015; 10(10): e0139519
[http://dx.doi.org/10.1371/journal.pone.0139519] [PMID: 26426397]
[31]
Srinivasan S, Stephens C, Wilson E, et al. Prostate cancer risk-associated single-nucleotide polymorphism affects prostate-specific antigen glycosylation and its function. Clin Chem 2019; 65(1): e1-9.
[http://dx.doi.org/10.1373/clinchem.2018.295790] [PMID: 30538125]
[32]
Vajaria BN, Patel PS. Glycosylation: a hallmark of cancer? Glycoconj J 2017; 34(2): 147-56.
[http://dx.doi.org/10.1007/s10719-016-9755-2] [PMID: 27975160]
[33]
Banlaki Z, Elek Z, Nanasi T, et al. Polymorphism in the serotonin receptor 2a (HTR2A) gene as possible predisposal factor for aggressive traits. PLoS One 2015; 10(2): e0117792
[http://dx.doi.org/10.1371/journal.pone.0117792] [PMID: 25658328]
[34]
Elek Z, Dénes R, Prokop S, et al. Multicapillary gel electrophoresis based analysis of genetic variants in the WFS1 gene. Electrophoresis 2016; 37(17-18): 2313-21.
[http://dx.doi.org/10.1002/elps.201600251] [PMID: 27377286]
[35]
Zhou F, Wang W, Xing Y, Wang T, Xu X, Wang J. NF-κB target microRNAs and their target genes in TNFα-stimulated HeLa cells. Biochim Biophys Acta 2014; 1839(4): 344-54.
[http://dx.doi.org/10.1016/j.bbagrm.2014.01.006] [PMID: 24418602]
[36]
Satoh J, Kino Y, Niida S. MicroRNA-seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark Insights 2015; 10: 21-31.
[http://dx.doi.org/10.4137/BMI.S25132] [PMID: 25922570]
[37]
Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics 2018; 11(1): 48.
[http://dx.doi.org/10.1186/s12920-018-0365-7] [PMID: 29783973]
[38]
Zhou X, Chen H, Wang Q, Zhang L, Zhao J. Knockdown of Mgat5 inhibits CD133+ human pulmonary adenocarcinoma cell growth in vitro and in vivo. Clin Invest Med 2011; 34(3): E155-62.
[http://dx.doi.org/10.25011/cim.v34i3.15188] [PMID: 21631992]
[39]
Nagae M, Kizuka Y, Mihara E, et al. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9(1): 3380.
[http://dx.doi.org/10.1038/s41467-018-05931-w] [PMID: 30140003]
[40]
Huang W, Luo WJ, Zhu P, et al. Modulation of CD147-induced matrix metalloproteinase activity: role of CD147 N-glycosylation. Biochem J 2013; 449(2): 437-48.
[http://dx.doi.org/10.1042/BJ20120343] [PMID: 23005037]
[41]
Ferdosi S, Rehder DS, Maranian P, et al. Stage dependence, cell-origin independence, and prognostic capacity of serum glycan fucosylation, β1-4 branching, β1-6 branching, and α2-6 sialylation in cancer. J Proteome Res 2018; 17(1): 543-58.
[http://dx.doi.org/10.1021/acs.jproteome.7b00672] [PMID: 29129073]
[42]
Bubka M, Link-Lenczowski P, Janik M, Pocheć E, Lityńska A. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Biochimie 2014; 103: 37-49.
[http://dx.doi.org/10.1016/j.biochi.2014.04.003] [PMID: 24726881]
[43]
Liu J, Liu H, Zhang W, et al. N-acetylglucosaminyltransferase V confers hepatoma cells with resistance to anoikis through EGFR/PAK1 activation. Glycobiology 2013; 23(9): 1097-109.
[http://dx.doi.org/10.1093/glycob/cwt049] [PMID: 23811795]
[44]
Chiang WF, Cheng TM, Chang CC, et al. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation. Oncogene 2018; 37(1): 116-27.
[http://dx.doi.org/10.1038/onc.2017.303] [PMID: 28892050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy