Review Article

近年来DHFR抑制剂作为抗癌药物修饰的设计和构效关系研究

卷 28, 期 5, 2021

发表于: 16 October, 2019

页: [910 - 939] 页: 30

弟呕挨: 10.2174/0929867326666191016151018

价格: $65

摘要

背景:二氢叶酸还原酶(DHFR)几十年来一直被认为是抗菌、抗真菌和抗疟疾治疗的分子靶点。这种酶在新的抗癌药物的设计中变得越来越重要,这已被许多研究证实,包括建模、合成和体外生物研究。本文旨在介绍和讨论具有潜在抗癌活性的新型DHFR抑制剂的研究进展。 方法:过去十年关于DHFR抑制剂的不同类型的科学文献已经被搜索。综述了近年来国内外在设计、合成和构效关系研究方面的研究进展,并根据先导分子及其结构修饰的不同将其划分为几个小领域。介绍了新化合物DHFR抑制剂的各种合成方法、潜在的抗癌活性和可能的实际应用。 结果:本文综述了目前已知的DHFR抑制剂的修饰和80个新分子的结构和寻找,这些新分子被设计为有潜力的抗癌药物。此外,本文还介绍了作用于胸腺酸合成酶(TS)、碳酸酐酶(CA)甚至DNA结合的DHFR抑制剂。 结论:深入的物理化学表征和生物研究突出了DHFR抑制剂的构效关系。这将有助于更好地设计和合成活性化合物,使其具有预期的作用机理和预期的活性。

关键词: 二氢叶酸还原酶(DHFR),甲氨蝶呤,甲氧苄氨嘧啶,抗癌药物,胸腺嘧啶合酶(TS),药物设计,叶酸代谢

[1]
Chan, D.C.M.; Anderson, A.C. Towards species-specific antifolates. Curr. Med. Chem., 2006, 13(4), 377-398.
[http://dx.doi.org/10.2174/092986706775527938] [PMID: 16475929]
[2]
Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol., 2006, 71(7), 941-948.
[http://dx.doi.org/10.1016/j.bcp.2005.10.052] [PMID: 16359642]
[3]
Borst, P.; Ouellette, M. New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol., 1995, 49(1), 427-460.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.002235] [PMID: 8561467]
[4]
Foye, W.O.; Lemke, T.L.; Williams, D.A. Principles of medicinal chemistry, 4th ed.; Williams and Wilkins, Media: Philadelphia; , 2005.
[5]
Snapka, R.M.; Ge, S.; Trask, J.; Robertson, F. Unbalanced growth in mouse cells with amplified dhfr genes. Cell Prolif., 1997, 30(10-12), 385-399.
[http://dx.doi.org/10.1111/j.1365-2184.1997.tb00918.x] [PMID: 9650531]
[6]
Osorio, E.; Aguilera, C.; Naranjo, N.; Marín, M.; Muskus, C. Biochemical characterization of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase from Leishmania (Viannia) and its evaluation as a drug target. Biomedica, 2013, 33(3), 393-401.
[http://dx.doi.org/10.7705/biomedica.v33i3.1434] [PMID: 24652175]
[7]
Berman, E.M.; Werbel, L.M. The renewed potential for folate antagonists in contemporary cancer chemotherapy. J. Med. Chem., 1991, 34(2), 479-485.
[http://dx.doi.org/10.1021/jm00106a001] [PMID: 1995868]
[8]
Kisliuk, R.L. Folate biochemistry in relation to antifolate selectivity. In: Antifolate drugs in cancer therapy. Cancer drug discovery and development; Jackman, A.L, Ed.; Humana Press: Totowa, 1999; 2, pp. 13-36.
[http://dx.doi.org/10.1007/978-1-59259-725-3_2]
[9]
Green, E.; Demos, C.H.; Sirotank, F.M.; Burchal, J.J.; Ensminger, W.B.; Montgomery, J.A. Folate antagonists as therapeutic agents 2. Eds. Academic Press: Orlando, 1984; pp. 191-249.
[10]
Polshakov, V.I. Dihydrofolate reductase: structural aspects of mechanisms of enzyme catalysis and inhibition. Russ. Chem. Bull., 2001, 50, 1733-1751.
[http://dx.doi.org/10.1023/A:1014313625350]
[11]
McGuire, J.J. Anticancer antifolates: current status and future directions. Curr. Pharm. Des., 2003, 9(31), 2593-2613.
[http://dx.doi.org/10.2174/1381612033453712] [PMID: 14529544]
[12]
Then, R.L. Antimicrobial dihydrofolate reductase inhibitors--achievements and future options: review J. Chemother., 2004, 16(1), 3-12.
[http://dx.doi.org/10.1179/joc.2004.16.1.3] [PMID: 15077993]
[13]
Gregson, A.; Plowe, C.V. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev., 2005, 57(1), 117-145.
[http://dx.doi.org/10.1124/pr.57.1.4] [PMID: 15734729]
[14]
Cao, S.L.; Feng, Y.P.; Jiang, Y.Y.; Liu, S.Y.; Ding, G.Y.; Li, R.T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett., 2005, 15(7), 1915-1917.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.083] [PMID: 15780632]
[15]
Wyss, P.C.; Gerber, P.; Hartman, P.G.; Hubschwerlen, C.; Locher, H.; Marty, H.P.; Stahl, M. Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high-throughput synthesis and screening. J. Med. Chem., 2003, 46(12), 2304-2312.
[http://dx.doi.org/10.1021/jm020495y] [PMID: 12773035]
[16]
Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat., 2014, 17(4-6), 89-95.
[http://dx.doi.org/10.1016/j.drup.2014.10.002] [PMID: 25457975]
[17]
Matherly, L.H.; Hou, Z.; Deng, Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev., 2007, 26(1), 111-128.
[http://dx.doi.org/10.1007/s10555-007-9046-2] [PMID: 17334909]
[18]
Zhao, R.; Goldman, I.D. The proton-coupled folate transporter: physiological and pharmacological roles. Curr. Opin. Pharmacol., 2013, 13(6), 875-880.
[http://dx.doi.org/10.1016/j.coph.2013.09.011] [PMID: 24383099]
[19]
Zhao, R.; Chattopadhyay, S.; Hanscom, M.; Goldman, I.D. Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clin. Cancer Res., 2004, 10(24), 8735-8742.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0932] [PMID: 15623659]
[20]
Flintoff, W.F.; Sadlish, H.; Gorlick, R.; Yang, R.; Williams, F.M. Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim. Biophys. Acta, 2004, 1690(2), 110-117.
[http://dx.doi.org/10.1016/j.bbadis.2004.05.008] [PMID: 15469899]
[21]
Liani, E.; Rothem, L.; Bunni, M.A.; Smith, C.A.; Jansen, G.; Assaraf, Y.G. Loss of folylpoly-gamma-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int. J. Cancer, 2003, 103(5), 587-599.
[http://dx.doi.org/10.1002/ijc.10829] [PMID: 12494465]
[22]
Mullarkey, M.F.; Blumenstein, B.A.; Andrade, W.P.; Bailey, G.A.; Olason, I.; Wetzel, C.E. Methotrexate in the treatment of corticosteroid-dependent asthma. A double-blind crossover study. N. Engl. J. Med., 1988, 318(10), 603-607.
[http://dx.doi.org/10.1056/NEJM198803103181004] [PMID: 3278232]
[23]
Elslager, E.F.; Johnson, J.L.; Werbel, L.M. Synthesis, antitumor, and antimalarial properties of trimetrexate and related 6-[(phenyl-amino)methyl]2,4-quinazolin-diamines. J. Med. Chem., 1983, 26, 1753-1760.
[http://dx.doi.org/10.1021/jm00366a018] [PMID: 6227747]
[24]
Grivsky, E.M.; Lee, S.; Sigel, C.W. Synthesis and antitumor activity of 2,4-diamino-6(2,5-dimethyloxybenzyl)-5methylpyrido[2,3-d]pyrimidine. J. Med. Chem., 1980, 23, 327-329.
[http://dx.doi.org/10.1021/jm00177a025] [PMID: 6928967]
[25]
Bavetsias, V.; Jackman, A.L.; Marriott, J.H.; Kimbell, R.; Gibson, W.; Boyle, F.T.; Bisset, G.M. Folate-based inhibitors of thymidylate synthase: synthesis and antitumor activity of gamma-linked sterically hindered dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583). J. Med. Chem., 1997, 40(10), 1495-1510.
[http://dx.doi.org/10.1021/jm960878u] [PMID: 9154971]
[26]
Bavetsias, V.; Marriott, J.H.; Melin, C.; Kimbell, R.; Matusiak, Z.S.; Boyle, F.T.; Jackman, A.L. Design and synthesis of Cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents. J. Med. Chem., 2000, 43(10), 1910-1926.
[http://dx.doi.org/10.1021/jm991119p] [PMID: 10821704]
[27]
Werbel, L.M.; Degnan, M.J. Synthesis and antimalarial and antitumor effects of 2-amino-4-(hydrazino and hydroxyamino)-6-[(aryl)thio]quinazolines. J. Med. Chem., 1987, 30(11), 2151-2154.
[http://dx.doi.org/10.1021/jm00394a038] [PMID: 3669022]
[28]
Raimondi, M.V.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules, 2019, 24(6), 1140.
[http://dx.doi.org/10.3390/molecules24061140] [PMID: 30909399]
[29]
Carron, P.M.; Crowley, A.; O’Shea, D.; McCann, M.; Howe, O.; Hunt, M.; Devereux, M. Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry. Curr. Med. Chem., 2018, 25(23), 2675-2708.
[http://dx.doi.org/10.2174/0929867325666180209143715] [PMID: 29424300]
[30]
Srinivasan, B.; Tonddast-Navaei, S.; Roy, A.; Zhou, H.; Skolnick, J. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: new approaches for discovering novel drugs for old bugs. Med. Res. Rev., 2019, 39(2), 684-705.
[http://dx.doi.org/10.1002/med.21538] [PMID: 30192413]
[31]
Wang, M.; Yang, J.; Yuan, M.; Xue, L.; Li, H.; Tian, C.; Wang, X.; Liu, J.; Zhang, Z. Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2-d]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase. Eur. J. Med. Chem., 2017, 128, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.033] [PMID: 28152430]
[32]
Sikora, E.; Jackman, A.L.; Newell, D.R.; Calvert, A.H. Formation and retention and biological activity of N10-propargyl-5,8-dideazafolic acid (CB3717) polyglutamates in L1210 cells in vitro. Biochem. Pharmacol., 1988, 37(21), 4047-4054.
[http://dx.doi.org/10.1016/0006-2952(88)90094-9] [PMID: 2461200]
[33]
Taylor, E.C.; Kuhnt, D.; Shih, C.; Rinzel, S.M.; Grindey, G.B.; Barredo, J.; Jannatipour, M.; Moran, R.G. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem., 1992, 35(23), 4450-4454.
[http://dx.doi.org/10.1021/jm00101a023] [PMID: 1447744]
[34]
Jackman, A.L.; Newell, D.R.; Gibson, W.; Jodrell, D.I.; Taylor, G.A.; Bishop, J.A.; Hughes, L.R.; Calvert, A.H. The biochemical pharmacology of the thymidylate synthase inhibitor, 2-desamino-2-methyl-N10-propargyl-5,8-didea-zafolic acid (ICI 198583). Biochem. Pharmacol., 1991, 42(10), 1885-1895.
[http://dx.doi.org/10.1016/0006-2952(91)90586-T] [PMID: 1741766]
[35]
Nair, M.G.; Abraham, A.; McGuire, J.J. Polyglutamylation as a determinant of cytotoxicity of classical folate analogue inhibitors of thymidylate synthase and glycinamide ribonucleotide formyltransferase. Cell. Pharmacol., 1994, 1, 245-249.
[36]
Scagliotti, G.V.; Selvaggi, G. New data integrating multitargeted antifolates into treatment of first-line and relapsed non-small-cell lung cancer. Clin. Lung Cancer, 2008, 9(Suppl. 3), S122-S128.
[http://dx.doi.org/10.3816/CLC.2008.s.018] [PMID: 19419926]
[37]
Taylor, E.C.; Harrington, P.J.; Fletcher, S.R.; Beardsley, G.P.; Moran, R.G. Synthesis of the antileukemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J. Med. Chem., 1985, 28(7), 914-921.
[http://dx.doi.org/10.1021/jm00145a012] [PMID: 4009615]
[38]
Bartyik, K.; Turi, S.; Orosz, F.; Karg, E. Methotrexate inhibits the glyoxalase system in vivo in children with acute lymphoid leukaemia. Eur. J. Cancer, 2004, 40(15), 2287-2292.
[http://dx.doi.org/10.1016/j.ejca.2004.06.024] [PMID: 15454255]
[39]
Huang, C-C.; Hsu, P-C.; Hung, Y-C.; Liao, Y-F.; Liu, C-C.; Hour, C-T.; Kao, M-C.; Tsay, G.J.; Hung, H-C.; Liu, G.Y. Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis, 2005, 10(4), 895-907.
[http://dx.doi.org/10.1007/s10495-005-2947-z] [PMID: 16133879]
[40]
Fotoohi, A.K.; Albertioni, F. Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells. Leuk. Lymphoma, 2008, 49(3), 410-426.
[http://dx.doi.org/10.1080/10428190701824569] [PMID: 18297517]
[41]
Neradil, J.; Pavlasova, G.; Veselska, R. New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin. Onkol, 2012, 25(Suppl 2), 2S87, 2S92.
[PMID: 23581023]
[42]
Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr., 2009, 139(12), 2402-2405.
[http://dx.doi.org/10.3945/jn.109.113670] [PMID: 19812215]
[43]
Yang, P.M.; Lin, J.H.; Huang, W.Y.; Lin, Y.C.; Yeh, S.H.; Chen, C.C. Inhibition of histone deacetylase activity is a novel function of the antifolate drug methotrexate. Biochem. Biophys. Res. Commun., 2010, 391(3), 1396-1399.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.072] [PMID: 20026300]
[44]
Thornalley, P.J.; Rabbani, N. Glyoxalase in tumourigenesis and multidrug resistance. Semin. Cell Dev. Biol., 2011, 22(3), 318-325.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.006] [PMID: 21315826]
[45]
Uzar, E.; Koyuncuoglu, H.R.; Uz, E.; Yilmaz, H.R.; Kutluhan, S.; Kilbas, S.; Gultekin, F. The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Mol. Cell. Biochem., 2006, 291(1-2), 63-68.
[http://dx.doi.org/10.1007/s11010-006-9196-5] [PMID: 16718360]
[46]
Miketova, P.; Kaemingk, K.; Hockenberry, M.; Pasvogel, A.; Hutter, J.; Krull, K.; Moore, I.M. Oxidative changes in cerebral spinal fluid phosphatidylcholine during treatment for acute lymphoblastic leukemia. Biol. Res. Nurs., 2005, 6(3), 187-195.
[http://dx.doi.org/10.1177/1099800404271916] [PMID: 15583359]
[47]
Jahovic, N.; Cevik, H.; Sehirli, A.O.; Yeğen, B.C.; Sener, G. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J. Pineal Res., 2003, 34(4), 282-287.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00043.x] [PMID: 12662351]
[48]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[49]
Wang, Y.; Suzek, T.; Zhang, J.; Wang, J.; He, S.; Cheng, T.; Shoemaker, B.A.; Gindulyte, A.; Bryant, S.H. PubChem BioAssay: 2014 update. Nucleic Acids Res., 2014, 42(Database issue), D1075-D1082.
[http://dx.doi.org/10.1093/nar/gkt978] [PMID: 24198245]
[50]
Rana, R.M.; Rampogu, S.; Zeb, A.; Son, M.; Park, C.; Lee, G.; Yoon, S.; Baek, A.; Parameswaran, S.; Park, S.J.; Lee, K.W. In silico study probes potential inhibitors of human dihydrofolate reductase for cancer therapeutics. J. Clin. Med., 2019, 8(2), 233.
[http://dx.doi.org/10.3390/jcm8020233] [PMID: 30754680]
[51]
Zhang, Z.; Wu, J.; Ran, F.; Guo, Y.; Tian, R.; Zhou, S.; Wang, X.; Liu, Z.; Zhang, L.; Cui, J.; Liu, J. Novel 8-deaza-5,6,7,8-tetrahydroaminopterin derivatives as dihydrofolate inhibitor: design, synthesis and antifolate activity. Eur. J. Med. Chem., 2009, 44(2), 764-771.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.017] [PMID: 18555562]
[52]
Zhang, Z.; Tian, C.; Zhou, S.; Wang, W.; Guo, Y.; Xia, J.; Liu, Z.; Wang, B.; Wang, X.; Golding, B.T.; Griff, R.J.; Du, Y.; Liu, J. Mechanism-based design, synthesis and biological studies of N5-substituted tetrahydrofolate analogs as inhibitors of cobalamin-dependent methionine synthase and potential anticancer agents. Eur. J. Med. Chem., 2012, 58, 228-236.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.027] [PMID: 23124219]
[53]
Piper, J.R.; Ramamurthy, B.; Johnson, C.A.; Otter, G.M.; Sirotnak, F.M. Analogues of 10-deazaaminopterin and 5-alkyl-5,10-dideazaaminopterin with the 4-substituted 1-naphthoyl group in the place of 4-substituted benzoyl. J. Med. Chem., 1996, 39(2), 614-618.
[http://dx.doi.org/10.1021/jm9506940] [PMID: 8558535]
[54]
Piper, J.R.; Johnson, C.A.; Maddry, J.A.; Malik, N.D.; McGuire, J.J.; Otter, G.M.; Sirotnak, F.M. Studies on analogues of classical antifolates bearing the naphthoyl group in place of benzoyl in the side chain. J. Med. Chem., 1993, 36(26), 4161-4171.
[http://dx.doi.org/10.1021/jm00078a004] [PMID: 8277497]
[55]
Kisliuk, R.L. Deaza analogs of folic acid as antitumor agents. Curr. Pharm. Des., 2003, 9(31), 2615-2625.
[http://dx.doi.org/10.2174/1381612033453695] [PMID: 14529545]
[56]
Sirotnak, F.M.; DeGraw, J.I.; Moccio, D.M.; Samuels, L.L.; Goutas, L.J. New folate analogs of the 10-deaza-aminopterin series. Basis for structural design and biochemical and pharmacologic properties. Cancer Chemother. Pharmacol., 1984, 12(1), 18-25.
[http://dx.doi.org/10.1007/BF00255903] [PMID: 6690069]
[57]
Sirotnak, F.M.; DeGraw, J.I.; Schmid, F.A.; Goutas, L.J.; Moccio, D.M. New folate analogs of the 10-deaza-aminopterin series. Further evidence for markedly increased antitumor efficacy compared with methotrexate in ascitic and solid murine tumor models. Cancer Chemother. Pharmacol., 1984, 12(1), 26-30.
[PMID: 6690070]
[58]
Tian, C.; Zhang, Z.; Zhou, S.; Yuan, M.; Wang, X.; Liu, J. Synthesis, antifolate and anticancer activities of N5-substituted 8,10dideazatetrahydrofolate analogues. Chem. Biol. Drug Des., 2016, 87(3), 444-454.
[http://dx.doi.org/10.1111/cbdd.12681] [PMID: 26518975]
[59]
Miwa, T.; Hitaka, T.; Akimoto, H.; Nomura, H. Novel pyrrolo[2,3-d]pyrimidine antifolates: synthesis and antitumor activities. J. Med. Chem., 1991, 34(2), 555-560.
[http://dx.doi.org/10.1021/jm00106a012]
[60]
Li, H.; Fang, F.; Liu, Y.; Xue, L.; Wang, M.; Guo, Y.; Wang, X.; Tian, C.; Liu, J.; Zhang, Z. Inhibitors of dihydrofolate reductase as antitumor agents: design, synthesis and biological evaluation of a series of novel nonclassical 6-substituted pyrido[3,2-d]pyrimidines with a three- to five-carbon bridge. Bioorg. Med. Chem., 2018, 26(9), 2674-2685.
[http://dx.doi.org/10.1016/j.bmc.2018.04.035] [PMID: 29691154]
[61]
Chu, E.; Callender, M.A.; Farrell, M.P.; Schmitz, J.C. Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother. Pharmacol., 2003, 52(Suppl. 1), S80-S89.
[http://dx.doi.org/10.1007/s00280-003-0625-9] [PMID: 12819937]
[62]
Jackman, A.L.; Taylor, G.A.; Gibson, W. A Quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumour cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res., 1991, 51, 5579-5586.
[PMID: 1913676]
[63]
Kamen, B.A.; Cole, P.D.; Bertino, J.R. Folate antagonists. In: Holland-Frei Cancer Medicine; Kufe, D.W.; Pollock, R.E.; Weichselbaum, R.R.; Bast, R.C. Jr.; Gansler, T.S.; Holland, J.F.; Frei, E, 3rd Ed.; Williams and Wilkins: Baltimore, 1997; Vol. 1, pp. 907-921.
[64]
Zhang, X.; Zhou, X.; Kisliuk, R.L.; Piraino, J.; Cody, V.; Gangjee, A. Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2011, 19(11), 3585-3594.
[http://dx.doi.org/10.1016/j.bmc.2011.03.067] [PMID: 21550809]
[65]
Gangjee, A.; Qiu, Y.; Li, W.; Kisliuk, R.L. Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. J. Med. Chem., 2008, 51(18), 5789-5797.
[http://dx.doi.org/10.1021/jm8006933] [PMID: 18800768]
[66]
Gangjee, A.; Li, W.; Kisliuk, R.L.; Cody, V.; Pace, J.; Piraino, J.; Makin, J. Design, synthesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymi-dylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents. J. Med. Chem., 2009, 52(15), 4892-4902.
[http://dx.doi.org/10.1021/jm900490a] [PMID: 19719239]
[67]
Gahtori, P.; Ghosh, S.K.; Parida, P.; Prakash, A.; Gogoi, K.; Bhat, H.R.; Singh, U.P. Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: a novel and potential antifolate lead for Pf-DHFR-TS inhibition. Exp. Parasitol., 2012, 130(3), 292-299.
[http://dx.doi.org/10.1016/j.exppara.2011.12.014] [PMID: 22233734]
[68]
Misra, R.N.; Xiao, H-Y.; Kim, K.S.; Lu, S.; Han, W-C.; Barbosa, S.A.; Hunt, J.T.; Rawlins, D.B.; Shan, W.; Ahmed, S.Z.; Qian, L.; Chen, B-C.; Zhao, R.; Bednarz, M.S.; Kellar, K.A.; Mulheron, J.G.; Batorsky, R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive, S.A.; Sack, J.S.; Tokarski, J.S.; Pavletich, N.P.; Lee, F.Y.; Webster, K.R.; Kimball, S.D.N -(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-pi-peridinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J. Med. Chem., 2004, 47(7), 1719-1728.
[http://dx.doi.org/10.1021/jm0305568] [PMID: 15027863]
[69]
Gahtori, P.; Singh, A.; Ghosh, S.K.; Das, A.; Archana, U. Synthesis of some substituted phenylthiazolyl 1, 3, 5- triazine derivatives. Asian J. Chem., 2011, 23(3), 1189-1192.http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=23_3_55
[70]
Milne, G.W.A. Ashgate Handbook of Antineoplastic Agents, 1st ed; Wiley: Chicago, 2000.
[71]
Wolter, F.E.; Molinari, L.; Socher, E.R.; Schneider, K.; Nicholson, G.; Beil, W.; Seitz, O.; Süssmuth, R.D. Synthesis and evaluation of a netropsin-proximicin-hybrid library for DNA binding and cytotoxicity. Bioorg. Med. Chem. Lett., 2009, 19(14), 3811-3815.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.042] [PMID: 19427785]
[72]
Nelson, S.M.; Ferguson, L.R.; Denny, W.A. Non-covalent ligand/DNA interactions: minor groove binding agents. Mutat. Res., 2007, 623(1-2), 24-40.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.012] [PMID: 17507044]
[73]
Plouvier, B.; Houssin, R.; Helbecque, N.; Colson, P.; Houssier, C.; Hénichart, J.P.; Bailly, C. Influence of the methyl substituents of a thiazole-containing lexitropsin on the mode of binding to DNA. Anticancer Drug Des., 1995, 10(2), 155-166.
[PMID: 7710636]
[74]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2017, 74, 228-237.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.010] [PMID: 28865294]
[75]
El-Subbagh, H.I.; El-Sherbeny, M.A.; Nasr, M.N.; Goda, F.E.; Badria, F.A. Novel diarylsulphide derivatives as potential cytotoxic agents. Boll. Chim. Farm., 1995, 134(2), 80-84.
[PMID: 7598837]
[76]
El-Subbagh, H.I.; Al-Obaid, A.M. 2, 4-Disubstituted thiazoles II. A novel class of antitumor agents, synthesis and biological evaluation. Eur. J. Med. Chem., 1996, 31(12), 1017-1021.
[http://dx.doi.org/10.1016/S0223-5234(97)86181-8]
[77]
El-Subbagh, H.I.; Abadi, A.H.; Lehmann, J. 2,4-Disubstituted thiazoles, Part III. synthesis and antitumor activity of ethyl 2-substituted-aminothiazole-4-carboxylate analogs. Arch. Pharm. (Weinheim), 1999, 322(4), 137-142.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19994)332:4137::AID-ARDP137>3.0.CO;2-0] [PMID: 10327887]
[78]
El-Gazzar, Y.I.; Georgey, H.H.; El-Messery, S.M.; Ewida, H.A.; Hassan, G.S.; Raafat, M.M.; Ewida, M.A.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3H)-one as DHFR inhibitors. Bioorg. Chem., 2017, 72, 282-292.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.019] [PMID: 28499189]
[79]
Al-Rashood, S.T.; Aboldahab, I.A.; Nagi, M.N.; Abouzeid, L.A.; Abdel-Aziz, A.A.; Abdel-Hamide, S.G.; Youssef, K.M.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem., 2006, 14(24), 8608-8621.
[http://dx.doi.org/10.1016/j.bmc.2006.08.030] [PMID: 16971132]
[80]
Miller, R.F.; Mitchell, D.M. AIDS and the lung: update 1995. 1. Pneumocystis carinii pneumonia. Thorax, 1995, 50(2), 191-200.
[http://dx.doi.org/10.1136/thx.50.2.191] [PMID: 7701463]
[81]
Manfredi, R.; Chiodo, F. Features of AIDS and AIDS defining diseases during the highly active antiretroviral therapy (HAART) era, compared with the pre-HAART period: a case control study. Sex. Transm. Infect., 2000, 76(2), 145-146.
[http://dx.doi.org/10.1136/sti.76.2.145-b] [PMID: 10858726]
[82]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Imidazo[2′,1′:2,3] thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2018, 80, 11-23.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.025] [PMID: 29864684]
[83]
Al-Rashood, S.T.; Hassan, G.S.; El-Messery, S.M.; Nagi, M.N.; Habib, E.E.; Al-Omary, F.A.M.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of 2-(1,3,4-thiadiazolyl-thio and 4-methyl-thiazolyl-thio)-quinazolin-4-ones as a new class of DHFR inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(18), 4557-4567.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.070] [PMID: 25139568]
[84]
Al-Omary, F.A.M.; Abou-Zeid, L.A.; Nagi, M.N.; Habib, S.E.; Abdel-Aziz, A.A.; El-Azab, A.S.; Abdel-Hamide, S.G.; Al-Omar, M.A.; Al-Obaid, A.M.; El-Subbagh, H.I. Non-classical antifolates. Part 2: synthesis, biological evaluation, and molecular modeling study of some new 2,6-substituted-quinazolin-4-ones. Bioorg. Med. Chem., 2010, 18(8), 2849-2863.
[http://dx.doi.org/10.1016/j.bmc.2010.03.019] [PMID: 20350811]
[85]
Al-Omary, F.A.M.; Hassan, G.S.; El-Messery, S.M.; Nagi, M.N.; Habib, S.E.; El-Subbagh, H.I. Nonclassical antifolates, part 3: synthesis, biological evaluation and molecular modeling study of some new 2-heteroarylthio-quinazolin-4-ones. Eur. J. Med. Chem., 2013, 63, 33-45.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.061] [PMID: 23454532]
[86]
El-Subbagh, H.I.; Hassan, G.S.; El-Messery, S.M.; Al-Rashood, S.T.; Al-Omary, F.A.; Abulfadl, Y.S.; Shabayek, M.I. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: synthesis, antitumor testing and molecular modeling study. Eur. J. Med. Chem., 2014, 74, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.004] [PMID: 24469112]
[87]
El-Subbagh, H.I.; Abadi, A.H.; Al-Khamees, H.A. Synthesis and antitumor activity of 9-anilino, phenylhydrazino, and sulphonamido analogs of 2- or 4-methoxy-6-nitroacridines. Arch. Pharm. (Weinheim), 1997, 330(9-10), 277-284.
[http://dx.doi.org/10.1002/ardp.19973300903] [PMID: 9396385]
[88]
El-Obaid, A.M.; El-Shafie, F.S.; Al-Mutairi, M.S. Synthesis and antitumor activity of certain new substituted 1Hisoindoldione derivatives. Sci. Pharm., 1999, 67(2), 129-147.
[89]
Al-Obaid, A.M.; el-Subbagh, H.I.; Khodair, A.I.; Elmazar, M.M. 5-substituted-2-thiohydantoin analogs as a novel class of antitumor agents. Anticancer Drugs, 1996, 7(8), 873-880.
[http://dx.doi.org/10.1097/00001813-199611000-00009] [PMID: 8991192]
[90]
El-Subbagh, H.I.; Abu-Zaid, S.M.; Mahran, M.A.; Badria, F.A.; Al-Obaid, A.M. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem., 2000, 43(15), 2915-2921.
[http://dx.doi.org/10.1021/jm000038m] [PMID: 10956199]
[91]
Al-Madi, S.H.; Al-Obaid, A.M.; El-Subbagh, H.I. The in vitro antitumor assay of 5-(Z)-arylidene-4-imidazoli-dinones in screens of AIDS-related leukemia and lymphomas. Anticancer Drugs, 2001, 12(10), 835-839.
[http://dx.doi.org/10.1097/00001813-200111000-00007] [PMID: 11707651]
[92]
Hamid, S.A.; El-Obaid, H.A.; Al-Rashood, K.A. Substituted quinazolines. 1. Synthesis and antitumor activity of certain substituted 2-mercapto-4 (3H)-quinazolinone analogs. Sci. Pharm., 2001, 69, 351-366.
[http://dx.doi.org/10.3797/scipharm.aut-01-205]
[93]
Khalil, A.A.; Abdel-Hamide, S.G.; Al-Obaid, A.M.; El-Subbagh, H.I. Substituted quinazolines, part 2. Synthesis and in-vitro anticancer evaluation of new 2-substituted mercapto-3H-quinazoline analogs. Arch. Pharm. (Weinheim), 2003, 336(2), 95-103.
[http://dx.doi.org/10.1002/ardp.200390011] [PMID: 12761762]
[94]
Abdel Hamid, S.G.; El-Obaid, H.A.; Al-Majed, A.A. Synthesis and anticonvulsant activity of some new 4-oxo-3Hquinazoline analogs. Med. Chem. Res., 2001, 10, 378-389.
[95]
Al-Omar, M.A.; Abdel Hamide, S.G.; Al-Khamees, H.A.; El-Subbagh, H. Synthesis and biological screening of some new substituted3H-quinazolin-4-one analogs as antimicrobial agents. Saudi Pharm. J., 2004, 12, 63-71.
[96]
Kuramoto, M.; Sakata, Y.; Terai, K.; Kawasaki, I.; Kunitomo, J.; Ohishi, T.; Yokomizo, T.; Takeda, S.; Tanaka, S.; Ohishi, Y. Preparation of leukotriene B(4) inhibitory active 2- and 3-(2-aminothiazol-4-yl)benzo[b]furan derivatives and their growth inhibitory activity on human pancreatic cancer cells. Org. Biomol. Chem., 2008, 6(15), 2772-2781.
[http://dx.doi.org/10.1039/b803313g] [PMID: 18633535]
[97]
El-Messery, S.M.; Hassan, G.S.; Nagi, M.N.; Habib, E.E.; Al-Rashood, S.T.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg. Med. Chem. Lett., 2016, 26(19), 4815-4823.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.022] [PMID: 27554444]
[98]
Turan-Zitouni, G.; Kaplancikli, Z.A.; Yildiz, M.T.; Chevallet, P.; Kaya, D. Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl) acetamido]thio-4H-1,2,4-triazole derivatives. Eur. J. Med. Chem., 2005, 40(6), 607-613.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.007] [PMID: 15922844]
[99]
Walczak, K.; Gondela, A.; Suwiński, J. Synthesis and anti-tuberculosis activity of N-aryl-C-nitroazoles. Eur. J. Med. Chem., 2004, 39(10), 849-853.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.014] [PMID: 15464618]
[100]
Holla, B.S.; Poojary, K.N.; Rao, B.S.; Shivananda, M.K. New bis-aminomercaptotriazoles and bis-triazolothia-diazoles as possible anticancer agents. Eur. J. Med. Chem., 2002, 37(6), 511-517.
[http://dx.doi.org/10.1016/S0223-5234(02)01358-2] [PMID: 12204477]
[101]
Shivarama Holla, B.; Veerendra, B.; Shivananda, M.K.; Poojary, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2003, 38(7-8), 759-767.
[http://dx.doi.org/10.1016/S0223-5234(03)00128-4] [PMID: 12932907]
[102]
Hassan, G.S.; El-Messery, S.M.; Al-Omary, F.A.M.; Al-Rashood, S.T.; Shabayek, M.I.; Abulfadl, Y.S.; Habib, S.E.; El-Hallouty, S.M.; Fayad, W.; Mohamed, K.M.; El-Menshawi, B.S.; El-Subbagh, H.I. Nonclassical antifolates, part 4. 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR inhibitors: synthesis, biological evaluation and molecular modeling study. Eur. J. Med. Chem., 2013, 66, 135-145.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.039] [PMID: 23792351]
[103]
Parhi, A.K.; Zhang, Y.; Saionz, K.W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyri-dines. Bioorg. Med. Chem. Lett., 2013, 23(17), 4968-4974.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.048] [PMID: 23891185]
[104]
Juvale, K.; Gallus, J.; Wiese, M. Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg. Med. Chem., 2013, 21(24), 7858-7873.
[http://dx.doi.org/10.1016/j.bmc.2013.10.007] [PMID: 24184213]
[105]
Ugale, V.G.; Bari, S.B. Quinazolines: new horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.072] [PMID: 24813877]
[106]
Sharma, P.C.; Kaur, G.; Pahwa, R.; Sharma, A.; Rajak, H. Quinazolinone analogs as potential therapeutic agents. Curr. Med. Chem., 2011, 18(31), 4786-4812.
[http://dx.doi.org/10.2174/092986711797535326] [PMID: 21919847]
[107]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[108]
Wang, X.; Li, P.; Li, Z.; Yin, J.; He, M.; Xue, W.; Chen, Z.; Song, B. Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-[(p-trifluoro-methoxy)anilino]-4(3H)-quinazolinone moiety. J. Agric. Food Chem., 2013, 61(40), 9575-9582.
[http://dx.doi.org/10.1021/jf403193q] [PMID: 24028303]
[109]
Wang, X.; Yin, J.; Shi, L.; Zhang, G.; Song, B. Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)-one. Eur. J. Med. Chem., 2014, 77, 65-74.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.053] [PMID: 24607590]
[110]
Takeuchi, Y.; Koike, M.; Azuma, K.; Nishioka, H.; Abe, H.; Kim, H.S.; Wataya, Y.; Harayama, T. Synthesis and antimalarial activity of febrifugine derivatives. Chem. Pharm. Bull. (Tokyo), 2001, 49(6), 721-725.
[http://dx.doi.org/10.1248/cpb.49.721] [PMID: 11411524]
[111]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel quinazolinones. Eur. J. Med. Chem., 2012, 53, 275-282.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.010] [PMID: 22546200]
[112]
Leivers, A.L.; Tallant, M.; Shotwell, J.B.; Dickerson, S.; Leivers, M.R.; McDonald, O.B.; Gobel, J.; Creech, K.L.; Strum, S.L.; Mathis, A.; Rogers, S.; Moore, C.B.; Botyanszki, J. Discovery of selective small molecule type III phosphatidylinositol 4-kinase alpha (PI4KIIIα) inhibitors as anti hepatitis C (HCV) agents. J. Med. Chem., 2014, 57(5), 2091-2106.
[http://dx.doi.org/10.1021/jm400781h] [PMID: 23944386]
[113]
Patel, M.B.; Harikrishnan, U.; Valand, N.N.; Modi, N.R.; Menon, S.K. Novel cationic quinazolin-4(3H)-one conjugated fullerene nanoparticles as antimycobacterial and antimicrobial agents. Arch. Pharm. (Weinheim), 2013, 346(3), 210-220.
[http://dx.doi.org/10.1002/ardp.201200371] [PMID: 23359525]
[114]
Alafeefy, A.M.; Kadi, A.A.; El-Azab, A.S.; Abdel-Hamide, S.G.; Daba, M.H. Synthesis, analgesic and anti-inflammatory evaluation of some new 3H-quinazolin-4-one derivatives. Arch. Pharm. (Weinheim), 2008, 341(6), 377-385.
[http://dx.doi.org/10.1002/ardp.200700271] [PMID: 18535995]
[115]
Al-Amiery, A.A.; Kadhum, A.A.H.; Shamel, M. Antioxidant and antimicrobial activities of novel quinazolinones. Med. Chem. Res., 2014, 23, 236-242.
[http://dx.doi.org/10.1007/s00044-013-0625-1]
[116]
Li, H.Z.; He, H.Y.; Han, Y.Y.; Gu, X.; He, L.; Qi, Q.R.; Zhao, Y.L.; Yang, L. A general synthetic procedure for 2-chloromethyl-4(3H)-quinazolinone derivatives and their utilization in the preparation of novel anticancer agents with 4-anilinoquinazoline scaffolds. Molecules, 2010, 15(12), 9473-9485.
[http://dx.doi.org/10.3390/molecules15129473] [PMID: 21178902]
[117]
Singla, P.; Luxami, V.; Paul, K. Benzimidazole - biologically attractive scaffold for protein kinase inhibitors. RSC Adv., 2014, 4, 12422-12440.
[http://dx.doi.org/10.1039/c3ra46304d]
[118]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: a medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21, 269-283.
[http://dx.doi.org/10.1007/s00044-010-9533-9]
[119]
Singla, P.; Luxami, V.; Paul, K. Quinazolinone-benzimidazole conjugates: Synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. J. Photochem. Photobiol. B, 2017, 168, 156-164.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.009] [PMID: 28222362]
[120]
El-Shaieb, K.M.; Hassan, A.A.; Abdel-Aal, A.S. Synthesis of dibenzo[b,e][1,4]diazepine derivatives. J. Chem. Res., 2011, 35, 592-594.
[http://dx.doi.org/10.3184/174751911X13177143698806]
[121]
Dimmock, J.R.; Kumar, P.; Nazarali, A.J.; Motaganahalli, N.L.; Kowalchuk, T.P.; Beazely, M.A.; Wilson Quail, J.; Oloo, E.O.; Allen, T.M.; Szydlowski, J.; DeClercq, E.; Balzarini, J. Cytotoxic 2,6-bis(arylidene)cyclohexanones and related compounds. Eur. J. Med. Chem., 2000, 35(11), 967-977.
[http://dx.doi.org/10.1016/S0223-5234(00)01173-9] [PMID: 11137225]
[122]
Dimmock, J.R.; Padmanilayam, M.P.; Zello, G.A.; Nienaber, K.H.; Allen, T.M.; Santos, C.L.; De Clercq, E.; Balzarini, J.; Manavathu, E.K.; Stables, J.P. Cytotoxic analogues of 2,6-bis(arylidene)cyclohexanones. Eur. J. Med. Chem., 2003, 38(2), 169-177.
[http://dx.doi.org/10.1016/S0223-5234(02)01444-7] [PMID: 12620661]
[123]
Adams, B.K.; Ferstl, E.M.; Davis, M.C.; Herold, M.; Kurtkaya, S.; Camalier, R.F.; Hollingshead, M.G.; Kaur, G.; Sausville, E.A.; Rickles, F.R.; Snyder, J.P.; Liotta, D.C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 2004, 12(14), 3871-3883.
[http://dx.doi.org/10.1016/j.bmc.2004.05.006] [PMID: 15210154]
[124]
Rostom, S.A.F.; Hassan, G.S.; El-Subbagh, H.I. Synthesis and biological evaluation of some polymethoxylated fused pyridine ring systems as antitumor agents. Arch. Pharm. (Weinheim), 2009, 342(10), 584-590.
[http://dx.doi.org/10.1002/ardp.200900062] [PMID: 19714673]
[125]
Al-Omary, F.A.; Hassan, G.S.; El-Messery, S.M.; El-Subbagh, H.I. Substituted thiazoles V. synthesis and antitumor activity of novel thiazolo[2,3-b]quinazoline and pyrido[4,3-d]thiazolo[3,2-a]pyrimidine analogues. Eur. J. Med. Chem., 2012, 47(1), 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.023] [PMID: 22056277]
[126]
Zhao, H.; Liu, Y.; Cui, Z.; Beattie, D.; Gu, Y.; Wang, Q. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem., 2011, 59(21), 11711-11717.
[http://dx.doi.org/10.1021/jf203383s] [PMID: 21970768]
[127]
Kosary, I.; Kosztreiner, E.; Rabloczky, G. Synthesis and cardiotonic activity of 2,4-diamino-1,3,5-triazines. Eur. J. Med. Chem., 1989, 24, 97-105.
[http://dx.doi.org/10.1016/0223-5234(89)90171-2]
[128]
Kreutzberger, A.; Schläfer, I. Central depressive substances. 7. Nuclear substituted (diallyl amino)-1,3,5-triazines. Arch. Pharm. (Weinheim), 1988, 32(11), 827-830.
[http://dx.doi.org/10.1002/ardp.19883211114] [PMID: 3219052]
[129]
Hu, Z.; Ma, T.; Chen, Z.; Ye, Z.; Zhang, G.; Lou, Y.; Yu, Y. Solid-phase synthesis and antitumor evaluation of 2,4-diamino-6-aryl-1,3,5-triazines. J. Comb. Chem., 2009, 11(2), 267-273.
[http://dx.doi.org/10.1021/cc800157k] [PMID: 19125569]
[130]
Baindur, N.; Chadha, N.; Brandt, B.M.; Asgari, D.; Patch, R.J.; Schalk-Hihi, C.; Carver, T.E.; Petrounia, I.P.; Baumann, C.A.; Ott, H.; Manthey, C.; Springer, B.A.; Player, M.R. 2-Hydroxy-4,6-diamino-[1,3,5]triazines: a novel class of VEGF-R2 (KDR) tyrosine kinase inhibitors. J. Med. Chem., 2005, 48(6), 1717-1720.
[http://dx.doi.org/10.1021/jm049372z] [PMID: 15771417]
[131]
Kuo, G.H.; Deangelis, A.; Emanuel, S.; Wang, A.; Zhang, Y.; Connolly, P.J.; Chen, X.; Gruninger, R.H.; Rugg, C.; Fuentes-Pesquera, A.; Middleton, S.A.; Jolliffe, L.; Murray, W.V. Synthesis and identification of [1,3,5] triazine-pyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors. J. Med. Chem., 2005, 48(14), 4535-4546.
[http://dx.doi.org/10.1021/jm040214h] [PMID: 15999992]
[132]
Liu, B. Sun. T.; Zhou, Z.; Du, L. A systematic review on antitumor agents with 1, 3, 5-triazines. Med. Chem., 2015, 5, 131-148.
[http://dx.doi.org/10.4172/2161-0444.1000255 ]
[133]
Sączewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(2), 219-225.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.013] [PMID: 16377034]
[134]
Sączewski, F.; Bułakowska, A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(5), 611-615.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.012] [PMID: 16540207]
[135]
Zhou, X.; Lin, K.; Ma, X.; Chui, W.-K.; Zhou, W. Design, synthesis, docking studies and biological evaluation of novel dihydro-1,3,5-triazines as human DHFR inhibitors. Eur. J. Med. Chem., 2017, 125, 1279-1288.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.010] [PMID: 27886545]
[136]
Ma, X.; Woon, R.S.; Ho, P.C.; Chui, W.-K. Antiproliferative activity against MCF-7 breast cancer cells by diamino-triazaspirodiene antifolates. Chem. Biol. Drug Des., 2009, 74(3), 322-326.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00860.x] [PMID: 19703036]
[137]
Ma, X.; Chui, W.K. Antifolate and antiproliferative activity of 6,8,10-triazaspiro[4.5]deca-6,8-dienes and 1,3,5-triazaspiro[5.5]undeca-1,3-dienes. Bioorg. Med. Chem., 2010, 18(2), 737-743.
[http://dx.doi.org/10.1016/j.bmc.2009.11.065] [PMID: 20036565]
[138]
Kompis, I.M.; Islam, K.; Then, R.L. DNA and RNA synthesis: antifolates. Chem. Rev., 2005, 105(2), 593-620.
[http://dx.doi.org/10.1021/cr0301144] [PMID: 15700958]
[139]
Visentin, M.; Zhao, R.; Goldman, I.D. The antifolates. Hematol. Oncol. Clin. North Am., 2012, 26(3), 629-648. ix.
[http://dx.doi.org/10.1016/j.hoc.2012.02.002] [PMID: 22520983]
[140]
Kumar, S.; Kushwaha, P.P.; Gupta, S. Emerging targets in cancer drug resistance. Cancer Drug Resist., 2019, 2, 161-177.
[http://dx.doi.org/10.20517/cdr.2018.27 ]
[141]
Modest, E.J.; Foley, G.H.; Perchet, M.M. A series of new, biologically significant dihydrotriazines. J. Am. Chem. Soc., 1952, 74, 855-856.
[http://dx.doi.org/10.1021/ja01123a532]
[142]
Ng, H.L.; Chen, S.; Chew, E.H.; Chui, W.K. Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity. Eur. J. Med. Chem., 2016, 115, 63-74.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.002] [PMID: 26994844]
[143]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[144]
Singla, P.; Luxami, V.; Paul, K. Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1691-1700.
[http://dx.doi.org/10.1016/j.bmc.2015.03.012] [PMID: 25792141]
[145]
Krátký, M.; Vinšová, J.; Volková, M.; Buchta, V.; Trejtnar, F.; Stolaříková, J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem., 2012, 50, 433-440.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.060] [PMID: 22365879]
[146]
Drews, J. Drug discovery: a historical perspective. Science, 2000, 287(5460), 1960-1964.
[http://dx.doi.org/10.1126/science.287.5460.1960] [PMID: 10720314]
[147]
Anjaneyulu, R.; Anjaneyulu, K.; Couturier, E.; Malaisse, W.J. Opposite effects of hypoglycemic and hyperglycemic sulfonamides upon ionophore-mediated calcium transport. Biochem. Pharmacol., 1980, 29(13), 1879-1882.
[http://dx.doi.org/10.1016/0006-2952(80)90097-0] [PMID: 6772193]
[148]
Thornber, C.W. Isosterism and molecular modification in drug design. Chem. Soc. Rev., 1979, 8, 563-580.
[http://dx.doi.org/10.1039/cs9790800563]
[149]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat., 2000, 10, 575-600.
[http://dx.doi.org/10.1517/13543776.10.5.575] [PMID: 30217119]
[150]
Jaiswal, M.; Khadikar, P.V.; Supuran, C.T. Topological modeling of lipophilicity, diuretic activity, and carbonic inhibition activity of benzene sulfonamides: a molecular connectivity approach. Bioorg. Med. Chem. Lett., 2004, 14(22), 5661-5666.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.051] [PMID: 15482943]
[151]
Erickson, J.W. HIV-1 protease as a target for AIDS therapy. In: Protease inhibitors in AIDS therapy; Ogden, R.C.; Flexner, C.W., Eds.; Marcel Dekker, Inc: New York, N Y, 2001; pp. 1-25.
[152]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Noaman, E.; Ghorab, M.M. Novel quinolines and pyrimido[4,5-b]quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(2), 738-744.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.021] [PMID: 19944497]
[153]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Ghorab, M.M.; Noaman, E. Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(5), 1849-1853.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.022] [PMID: 20149941]
[154]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Hazek, R.M. Anticancer and radio-sensitizing evaluation of some new thiazolopyrane and thiazolopyranopyrimidine derivatives bearing a sulfonamide moiety. Eur. J. Med. Chem., 2011, 46(10), 5120-5126.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.026] [PMID: 21890248]
[155]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Agha, H.M.; Nissan, Y.M. Novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl)-benzenesulfonamides as cytotoxic and radiosensitizing agents. Arch. Pharm. Res., 2012, 35(1), 59-68.
[http://dx.doi.org/10.1007/s12272-012-0106-y] [PMID: 22297743]
[156]
Supuran, C.T.; Briganti, F.; Tilli, S.; Chegwidden, W.R.; Scozzafava, A. Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg. Med. Chem., 2001, 9(3), 703-714.
[http://dx.doi.org/10.1016/S0968-0896(00)00288-1] [PMID: 11310605]
[157]
Huang, S.; Connolly, P.J.; Lin, R.; Emanuel, S.; Middleton, S.A. Synthesis and evaluation of N-acyl sulfonamides as potential prodrugs of cyclin-dependent kinase inhibitor JNJ-7706621. Bioorg. Med. Chem. Lett., 2006, 16(14), 3639-3641.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.071] [PMID: 16682186]
[158]
Casini, A.; Scozzafava, A.; Supuran, C.T. Sulfonamide derivatives with protease inhibitory action as anticancer, anti-inflammatory and antiviral agents. Expert Opin. Ther. Pat., 2002, 12, 1307-1327.
[http://dx.doi.org/10.1517/13543776.12.9.1307]
[159]
Fukuoka, K.; Usuda, J.; Iwamoto, Y.; Fukumoto, H.; Nakamura, T.; Yoneda, T.; Narita, N.; Saijo, N.; Nishio, K. Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Invest. New Drugs, 2001, 19(3), 219-227.
[http://dx.doi.org/10.1023/A:1010608317361] [PMID: 11561678]
[160]
Autore, G.; Caruso, A.; Marzocco, S.; Nicolaus, B.; Palladino, C.; Pinto, A.; Popolo, A.; Sinicropi, M.S.; Tommonaro, G.; Saturnino, C. Acetamide derivatives with antioxidant activity and potential anti-inflammatory activity. Molecules, 2010, 15(3), 2028-2038.
[http://dx.doi.org/10.3390/molecules15032028] [PMID: 20336030]
[161]
Ley, J.P.; Bertram, H.J. Synthesis of polyhydroxylated aromatic mandelic acid amides and their antioxidative potential. Tetrahedron, 2001, 57, 1277-1282.
[http://dx.doi.org/10.1016/S0040-4020(00)01136-4]
[162]
Zhu, X.; Zhou, J.; Zhu, Y.; Hu, X.; Bian, Y.; Hu, X.; Tao, Z.; Gao, C.; Huang, W. Synthesis and biological activities of sulfinyl acetamide derivatives for narcolepsy treatment. Lett. Drug Des. Discov., 2013, 10(3), 266-270.
[http://dx.doi.org/10.2174/1570180811310030010]
[163]
Dogruer, D.S.; Kupeli, E. Yesilada. E. Synthesis of new 2[1(2H)phthalazinon-2-yl]acetamide and 3-[1(2H) phthalazinon-2-yl]propanamide derivatives as antinociceptive and anti-inflammatory agents. Arch. Pharm. (Weinheim), 2004, 337, 303-310.
[http://dx.doi.org/10.1002/ardp.200200719] [PMID: 15188219]
[164]
Raghavendra, N.M.; Jyothsna, A.; Venkateswara Rao, A.; Subrahmanyam, C.V. Synthesis, pharmacological evaluation and docking studies of N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide analogs as COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(2), 820-823.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.062] [PMID: 22222039]
[165]
Xiang, Y.; Wang, X.H.; Yang, Q. Rational design, synthesis, and biological activity of N-(1,4-Benzoxazinone) acetamide derivatives as potent platelet aggregation inhibitors. Bull. Korean Chem. Soc., 2018, 39, 146-155.
[http://dx.doi.org/10.1002/bkcs.11359]
[166]
Gull, Y.; Rasool, N.; Noreen, M.; Altaf, A.A.; Musharraf, S.G.; Zubair, M.; Nasim, F.U.; Yaqoob, A.; DeFeo, V.; Zia-Ul-Haq, M. Synthesis of N-(6arylbenzo[d] thiazole-2-acetamide derivatives and their biological activities: an experimental and computational approach. Molecules, 2016, 21(3), 266-282.
[http://dx.doi.org/10.3390/molecules21030266] [PMID: 26927044]
[167]
McCarthy, O.; Musso-Buendia, A.; Kaiser, M.; Brun, R.; Ruiz-Perez, L.M.; Johansson, N.G.; Pacanowska, D.G.; Gilbert, I.H. Design, synthesis and evaluation of novel uracil acetamide derivatives as potential inhibitors of Plasmodium falciparum dUTP nucleotidohydrolase. Eur. J. Med. Chem., 2009, 44(2), 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.018] [PMID: 18619713]
[168]
Liu, Z.; Zhou, Z.; Tian, W.; Fan, X.; Xue, D.; Yu, L.; Yu, Q.; Long, Y.Q. Discovery of novel 2-N-aryl-substituted benzenesulfonamidoacetamides: orally bioavailable tubulin polymerization inhibitors with marked antitumor activities. ChemMedChem, 2012, 7(4), 680-693.
[http://dx.doi.org/10.1002/cmdc.201100529] [PMID: 22311585]
[169]
Hussein, E.M.; Abdel-Monem, M.I. Regioselective synthesis and anti-inflammatory activity of novel dis-piro [pyrazolidine-4,3′-pyrrolidine-2′,3″indoline]-2″,3,5triones. ARKIVOC, 2011, 10, 85-98.
[http://dx.doi.org/10.3998/ark.5550190.0012.a07]
[170]
Abdel-Mohsen, S.A.; Hussein, E.M. A green synthetic approach to the synthesis of Schiff bases from 4-amino-2thioxo-1,3-diazaspiro[5.5]undec4-ene-5-carbonitrile as potential anti-inflammatory agents. Russ. J. Bioorganic Chem., 2014, 40(3), 343-349.
[http://dx.doi.org/10.1134/S1068162014030029 ] [PMID: 25898745]
[171]
Hussein, E.M.; Masaret, G.S.; Khairou, K.S. Efficient synthesis and antimicrobial evaluation of some Mannich bases from 2-arylidine-1-thia-4-azaspiro[4.5]decan-3-ones. Chem. Cent. J., 2015, 9, 25.
[http://dx.doi.org/10.1186/s13065-015-0101-8] [PMID: 25995769]
[172]
Hussein, E.M.; Al-Shareef, H.F.; Aboellil, A.H. Synthesis of some novel 6′-(4-chlorophenyl)-3,4′-bipyridine-3′carbonitriles: assessment of their antimicrobial and cytotoxic activity. Z Naturforsch, 2015, 70b, 783-795.
[http://dx.doi.org/10.1515/znb-2015-0065]
[173]
Al-Shareef, H.F.; Elhady, H.A.; Aboellil, A.H.; Hussein, E.M. Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4′-pyran]-3′-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities. Springer Plus, 2016, 5(1), 887.
[http://dx.doi.org/10.1186/s40064-016-2458-0] [PMID: 27386335]
[174]
Hussein, E.M. Ammonium chloride-catalyzed fourcomponent sono chemical synthesis of novel hexahydroquinolines bearing a sulfonamide moiety. Russ. J. Org. Chem., 2015, 51, 54-64.
[http://dx.doi.org/10.1134/S1070428015010091]
[175]
Hussein, E.M.; Ahmed, S.A. An efficient and green synthesis of polyfunctionalized spirothiazolidin-4-ones using sulfonated mesoporous silica as a reusable catalyst. Chem. Heterocycl. Compd., 2017, 53, 1148-1155.
[http://dx.doi.org/10.1007/s10593-017-2185-7]
[176]
Hussein, E.M.; Al-Rooqi, M.M.; Abd El-Galil, S.M.; Ahmed, S.A. Design, synthesis, and biological evaluation of novel N4 -substituted sulfonamides: acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chem., 2019, 13(1), 91.
[http://dx.doi.org/10.1186/s13065-019-0603-x] [PMID: 31384838]
[177]
Marques, S.M.; Enyedy, E.A.; Supuran, C.T.; Krupenko, N.I.; Krupenko, S.A.; Santos, M.A. Pteridine-sulfonamide conjugates as dual inhibitors of carbonic anhydrases and dihydrofolate reductase with potential antitumor activity. Bioorg. Med. Chem., 2010, 18(14), 5081-5089.
[http://dx.doi.org/10.1016/j.bmc.2010.05.072] [PMID: 20580561]
[178]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[179]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[180]
Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem. Soc. Rev., 2012, 41(4), 1585-1605.
[http://dx.doi.org/10.1039/c2cs15286j] [PMID: 22234546]
[181]
Kaur, N.; Lu, X.; Gershengorn, M.C.; Jain, R. Tyrotropinreleasing hormone (TRH) analogues that exhibit selectivity to TRH receptor subtype 2. J. Med. Chem., 2005, 48(19), 6162-6165.
[http://dx.doi.org/10.1021/jm0505462] [PMID: 16162016]
[182]
Moreau, J.P.; Delavault, P.; Blumberg, J. Luteinizing hormone-releasing hormone agonists in the treatment of prostate cancer: a review of their discovery, development, and place in therapy. Clin. Ther., 2006, 28(10), 1485-1508.
[http://dx.doi.org/10.1016/j.clinthera.2006.10.018] [PMID: 17157109]
[183]
Eliassen, L.T.; Berge, G.; Sveinbjørnsson, B.; Svendsen, J.S.; Vorland, L.H.; Rekdal, Ø. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res., 2002, 22(5), 2703-2710.
[PMID: 12529985]
[184]
Baggio, L.L.; Huang, Q.; Brown, T.J.; Drucker, D.J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes, 2004, 53, 24922500.
[http://dx.doi.org/10.2337/diabetes.53.9.2492 ] [PMID: 15331566]
[185]
Xiao, Q.; Giguere, J.; Parisien, M.; Jeng, W.; St-Pierre, S.A.; Brubaker, P.L.; Wheeler, M.B. Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry, 2001, 40(9), 2860-2869.
[http://dx.doi.org/10.1021/bi0014498] [PMID: 11258897]
[186]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[187]
Thundimadathil, J. Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids, 2012, 2012967347
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[188]
Pearce, T.R.; Shroff, K.; Kokkoli, E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv. Mater., 2012, 24(28), 3803-3822, 3710.
[http://dx.doi.org/10.1002/adma.201200832] [PMID: 22674563]
[189]
Ramakers, B.E.I.; van Hest, J.C.M.; Löwik, D.W. Molecular tools for the construction of peptide-based materials. Chem. Soc. Rev., 2014, 43(8), 2743-2756.
[http://dx.doi.org/10.1039/c3cs60362h] [PMID: 24448606]
[190]
Singh, A.; Deshpande, N.; Pramanik, N.; Jhunjhunwala, S.; Rangarajan, A.; Atreya, H.S. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer. Sci. Rep., 2018, 8(1), 3190.
[http://dx.doi.org/10.1038/s41598-018-21435-5] [PMID: 29453377]
[191]
Nammalwar, B.; Bourne, C.R.; Wakeham, N.; Bourne, P.C.; Barrow, E.W.; Muddala, N.P.; Bunce, R.A.; Berlin, K.D.; Barrow, W.W. Modified 2,4-diaminopyrimidine-based dihydrofolate reductase inhibitors as potential drug scaffolds against Bacillus anthracis. Bioorg. Med. Chem., 2015, 23(1), 203-211.
[http://dx.doi.org/10.1016/j.bmc.2014.11.009] [PMID: 25435253]
[192]
Nelson, R.G.; Rosowsky, A. Dicyclic and tricyclic diaminopyrimidine derivatives as potent inhibitors of Cryptosporidium parvum dihydrofolate reductase: structure-activity and structure-selectivity correlations. Antimicrob. Agents Chemother., 2001, 45(12), 3293-3303.
[http://dx.doi.org/10.1128/AAC.45.12.3293-3303.2001] [PMID: 11709300]
[193]
Srinivasan, B.; Skolnick, J. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: detailed mechanistic characterization of pyrrolo [3,2-f] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. FEBS J., 2015, 282(10), 1922-1938.
[http://dx.doi.org/10.1111/febs.13244] [PMID: 25703118]
[194]
Jackson, H.C.; Biggadike, K.; McKilligin, E.; Kinsman, O.S.; Queener, S.F.; Lane, A.; Smith, J.E. 6,7-disubstituted 2,4-diaminopteridines: novel inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Antimicrob. Agents Chemother., 1996, 40(6), 1371-1375.
[http://dx.doi.org/10.1128/AAC.40.6.1371] [PMID: 8726003]
[195]
Srinivasan, B.; Tonddast-Navaei, S.; Skolnick, J. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase. Eur. J. Med. Chem., 2015, 103, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.021] [PMID: 26414808]
[196]
Sköld, O. Resistance to trimethoprim and sulfonamides. Vet. Res., 2001, 32(3-4), 261-273.
[http://dx.doi.org/10.1051/vetres:2001123] [PMID: 11432417]
[197]
Roth, B.; Falco, E.A.; Hitchings, G.H.; Bushby, S.R. 5-benzyl-2,4diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activity in vitro. J. Med. Pharm. Chem., 1962, 91, 1103-1123.
[http://dx.doi.org/10.1021/jm01241a004] [PMID: 14056446]
[198]
Askari, B.S.; Krajinovic, M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr. Genomics, 2010, 11(8), 578-583.
[http://dx.doi.org/10.2174/138920210793360925] [PMID: 21629435]
[199]
Scocchera, E.; Reeve, S.M.; Keshipeddy, S.; Lombardo, M.N.; Hajian, B.; Sochia, A.E.; Alverson, J.B.; Priestley, N.D.; Anderson, A.C.; Wright, D.L. Charged nonclassical antifolates with activity against Gram-positive and Gram-negative pathogens. ACS Med. Chem. Lett., 2016, 7(7), 692-696.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00120] [PMID: 27437079]
[200]
Ponce, C.A.; Chabé, M.; George, C.; Cárdenas, A.; Durán, L.; Guerrero, J.; Bustamante, R.; Matos, O.; Huang, L.; Miller, R.F.; Vargas, S.L. High prevalence of Pneumocystis jirovecii dihydropteroate synthase gene mutations in patients with a first episode of Pneumocystis pneumonia in Santiago, Chile, and clinical response to trimethoprim sulfamethoxazole therapy. Antimicrob. Agents Chemother., 2017, 61(2), 1290-16.
[http://dx.doi.org/10.1128/AAC.01290-16] [PMID: 27855071]
[201]
Rosowsky, A.; Forsch, R.A.; Queener, S.F. Inhibition of Pneumocystis carinii, Toxoplasma gondii and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy)benzyl]pyrimidines: marked improvement in potency relative to trimethoprim and species selectivity relative to piritrexim. J. Med. Chem., 2002, 45(1), 233-241.
[http://dx.doi.org/10.1021/jm010407u] [PMID: 11754594]
[202]
Rosowsky, A.; Chen, H.; Fu, H.; Queener, S.F. Synthesis of new 2,4-Diaminopyrido[2,3-d]pyrimidine and 2,4-Diaminopyrrolo[2,3-d]pyrimidine inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase. Bioorg. Med. Chem., 2003, 11(1), 59-67.
[http://dx.doi.org/10.1016/S0968-0896(02)00325-5] [PMID: 12467708]
[203]
Singh, P.; Kaur, M.; Sachdeva, S. Mechanism inspired development of rationally designed dihydrofolate reductase inhibitors as anticancer agents. J. Med. Chem., 2012, 55(14), 6381-6390.
[http://dx.doi.org/10.1021/jm300644g] [PMID: 22734697]
[204]
Algul, O.; Paulsen, J.L.; Anderson, A.C. 2,4-Diamino-5-(2-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition. J. Mol. Graph. Model., 2011, 29(5), 608-613.
[http://dx.doi.org/10.1016/j.jmgm.2010.11.004] [PMID: 21146434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy