Abstract
Background: Aging is an organized biological process that is regulated by highly interconnected pathways between different cells and tissues in the living organism. Identification of similar genes between tissues in different ages may also help to discover the general mechanism of aging or to discover more effective therapeutic decisions.
Objective: According to the wide application of model-based clustering techniques, the aim is to evaluate the performance of the Mixture of Multivariate Normal Distributions (MMNDs) as a valid method for clustering time series gene expression data with the Mixture of Matrix-Variate Normal Distributions (MMVNDs).
Methods: In this study, the expression of aging data from NCBI’s Gene Expression Omnibus was elaborated to utilize proper data. A set of common genes which were differentially expressed between different tissues were selected and then clustered together through two methods. Finally, the biological significance of clusters was evaluated, using their ability to find genes in the cell using Enricher.
Results: The MMVNDs is more efficient to find co-express genes. Six clusters of genes were observed using the MMVNDs. According to the functional analysis, most genes in clusters 1-6 are related to the B-cell receptors and IgG immunoglobulin complex, proliferating cell nuclear antigen complex, the metabolic pathways of iron, fat, and body mass control, the defense against bacteria, the cancer development incidence, and the chronic kidney failure, respectively.
Conclusion: Results showed that most biological changes of aging between tissues are related to the specific components of immune cells. Also, the application of MMVNDs can increase the ability to find similar genes.
Keywords: Clustering, MMNDs, aging, time series, gene expression, model-based clustering techniques.
Graphical Abstract
Current Aging Science
Title:Novel Study of Model-Based Clustering Time Series Gene Expression in Different Tissues: Applications to Aging Process
Volume: 13 Issue: 2
Author(s): Farzane Ahmadi, Ali-Reza Abadi, Zahra Bazi and Abolfazl Movafagh*
Affiliation:
- Department of Medical Genetics, School of Medicine, Cancer Research Center, Shohada Referral Hospital, Shahid Beheshti University of Medical Sciences, Tehran,Iran
Keywords: Clustering, MMNDs, aging, time series, gene expression, model-based clustering techniques.
Abstract: Background: Aging is an organized biological process that is regulated by highly interconnected pathways between different cells and tissues in the living organism. Identification of similar genes between tissues in different ages may also help to discover the general mechanism of aging or to discover more effective therapeutic decisions.
Objective: According to the wide application of model-based clustering techniques, the aim is to evaluate the performance of the Mixture of Multivariate Normal Distributions (MMNDs) as a valid method for clustering time series gene expression data with the Mixture of Matrix-Variate Normal Distributions (MMVNDs).
Methods: In this study, the expression of aging data from NCBI’s Gene Expression Omnibus was elaborated to utilize proper data. A set of common genes which were differentially expressed between different tissues were selected and then clustered together through two methods. Finally, the biological significance of clusters was evaluated, using their ability to find genes in the cell using Enricher.
Results: The MMVNDs is more efficient to find co-express genes. Six clusters of genes were observed using the MMVNDs. According to the functional analysis, most genes in clusters 1-6 are related to the B-cell receptors and IgG immunoglobulin complex, proliferating cell nuclear antigen complex, the metabolic pathways of iron, fat, and body mass control, the defense against bacteria, the cancer development incidence, and the chronic kidney failure, respectively.
Conclusion: Results showed that most biological changes of aging between tissues are related to the specific components of immune cells. Also, the application of MMVNDs can increase the ability to find similar genes.
Export Options
About this article
Cite this article as:
Ahmadi Farzane, Abadi Ali-Reza, Bazi Zahra and Movafagh Abolfazl*, Novel Study of Model-Based Clustering Time Series Gene Expression in Different Tissues: Applications to Aging Process, Current Aging Science 2020; 13 (2) . https://dx.doi.org/10.2174/1874609812666191015140449
DOI https://dx.doi.org/10.2174/1874609812666191015140449 |
Print ISSN 1874-6098 |
Publisher Name Bentham Science Publisher |
Online ISSN 1874-6128 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers