Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

CRISPR/Cas9 System and its Research Progress in Gene Therapy

Author(s): Wenlou Liu, Chunsheng Yang, Yanqun Liu and Guan Jiang*

Volume 19, Issue 16, 2019

Page: [1912 - 1919] Pages: 8

DOI: 10.2174/1871520619666191014103711

Price: $65

Abstract

Genome editing refers to changing the genome sequence of an organism by knockout, insertion, and site mutation, resulting in changes in the genetic information of the organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein-9 nuclease (Cas9) system is a genome editing technique developed by the acquired immune system in the microbes, such as bacteria and archaebacteria, which targets and edits genome sequences according to the principle of complementary base pairing. This technique can be used to edit endogenous genomic DNA sequences in organisms accurately and has been widely used in fields, such as biotechnology, cancer gene therapy, and dermatology. In this review, we summarize the history, structure, mechanism, and application of CRISPR/Cas9 in gene therapy and dermatological diseases.

Keywords: Genome editing, CRISPR/Cas9, gene therapy, dermatology, site mutation, microbes.

Graphical Abstract

[1]
Sakuma, T.; Woltjen, K. Nuclease-mediated genome editing: At the front-line of functional genomics technology. Dev. Growth Differ., 2014, 56(1), 2-13.
[http://dx.doi.org/10.1111/dgd.12111] [PMID: 24387662]
[2]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[3]
Mali, P.; Aach, J.; Stranges, P.B.; Esvelt, K.M.; Moosburner, M.; Kosuri, S.; Yang, L.; Church, G.M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 2013, 31(9), 833-838.
[http://dx.doi.org/10.1038/nbt.2675] [PMID: 23907171]
[4]
Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Tsai, S.Q.; Sander, J.D.; Peterson, R.T.; Yeh, J.R.; Joung, J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(3), 227-229.
[http://dx.doi.org/10.1038/nbt.2501] [PMID: 23360964]
[5]
Li, W.; Teng, F.; Li, T.; Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol., 2013, 31(8), 684-686.
[http://dx.doi.org/10.1038/nbt.2652] [PMID: 23929337]
[6]
Yang, H.; Wang, H.; Shivalila, C.S.; Cheng, A.W.; Shi, L.; Jaenisch, R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6), 1370-1379.
[http://dx.doi.org/10.1016/j.cell.2013.08.022] [PMID: 23992847]
[7]
Niu, Y.; Shen, B.; Cui, Y.; Chen, Y.; Wang, J.; Wang, L.; Kang, Y.; Zhao, X.; Si, W.; Li, W.; Xiang, A.P.; Zhou, J.; Guo, X.; Bi, Y.; Si, C.; Hu, B.; Dong, G.; Wang, H.; Zhou, Z.; Li, T.; Tan, T.; Pu, X.; Wang, F.; Ji, S.; Zhou, Q.; Huang, X.; Ji, W.; Sha, J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4), 836-843.
[http://dx.doi.org/10.1016/j.cell.2014.01.027] [PMID: 24486104]
[8]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/jb.169.12.5429-5433.1987] [PMID: 3316184]
[9]
Mojica, F.J.; Díez-Villaseñor, C.; Soria, E.; Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol., 2000, 36(1), 244-246.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x] [PMID: 10760181]
[10]
Coffey, A.; Ross, R.P. Bacteriophage-resistance systems in dairy starter strains: Molecular analysis to application. Antonie van Leeuwenhoek, 2002, 82(1-4), 303-321.
[http://dx.doi.org/10.1023/A:1020639717181] [PMID: 12369198]
[11]
Mojica, F.J.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 2005, 60(2), 174-182.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[12]
Marraffini, L.A.; Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909), 1843-1845.
[http://dx.doi.org/10.1126/science.1165771] [PMID: 19095942]
[13]
Garneau, J.E.; Dupuis, M.E.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320), 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[14]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[15]
Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; Gao, C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(8), 686-688.
[http://dx.doi.org/10.1038/nbt.2650] [PMID: 23929338]
[16]
Bhaya, D.; Davison, M.; Barrangou, R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet., 2011, 45, 273-297.
[http://dx.doi.org/10.1146/annurev-genet-110410-132430] [PMID: 22060043]
[17]
Wiedenheft, B.; Lander, G.C.; Zhou, K.; Jore, M.M.; Brouns, S.J.J.; van der Oost, J.; Doudna, J.A.; Nogales, E. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 2011, 477(7365), 486-489.
[http://dx.doi.org/10.1038/nature10402] [PMID: 21938068]
[18]
Bassett, A.R.; Liu, J.L. CRISPR/Cas9 and genome editing in Drosophila. J. Genet. Genomics, 2014, 41(1), 7-19.
[http://dx.doi.org/10.1016/j.jgg.2013.12.004] [PMID: 24480743]
[19]
Anders, C.; Niewoehner, O.; Duerst, A.; Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513(7519), 569-573.
[http://dx.doi.org/10.1038/nature13579] [PMID: 25079318]
[20]
Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8(11), 2281-2308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[21]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[22]
Xue, H.Y.; Zhang, X.; Wang, Y.; Xiaojie, L.; Dai, W.J.; Xu, Y. In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther., 2016, 23(7), 557-559.
[http://dx.doi.org/10.1038/gt.2016.25] [PMID: 27029608]
[23]
Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[24]
Horii, T.; Tamura, D.; Morita, S.; Kimura, M.; Hatada, I. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int. J. Mol. Sci., 2013, 14(10), 19774-19781.
[http://dx.doi.org/10.3390/ijms141019774] [PMID: 24084724]
[25]
Koenig, M.; Hoffman, E.P.; Bertelson, C.J.; Monaco, A.P.; Feener, C.; Kunkel, L.M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell, 1987, 50(3), 509-517.
[http://dx.doi.org/10.1016/0092-8674(87)90504-6] [PMID: 3607877]
[26]
Tabebordbar, M.; Zhu, K.; Cheng, J.K.W.; Chew, W.L.; Widrick, J.J.; Yan, W.X.; Maesner, C.; Wu, E.Y.; Xiao, R.; Ran, F.A.; Cong, L.; Zhang, F.; Vandenberghe, L.H.; Church, G.M.; Wagers, A.J. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351(6271), 407-411.
[http://dx.doi.org/10.1126/science.aad5177] [PMID: 26721686]
[27]
Nelson, C.E.; Hakim, C.H.; Ousterout, D.G.; Thakore, P.I.; Moreb, E.A.; Castellanos Rivera, R.M.; Madhavan, S.; Pan, X.; Ran, F.A.; Yan, W.X.; Asokan, A.; Zhang, F.; Duan, D.; Gersbach, C.A. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351(6271), 403-407.
[http://dx.doi.org/10.1126/science.aad5143] [PMID: 26721684]
[28]
Long, C.; Amoasii, L.; Mireault, A.A.; McAnally, J.R.; Li, H.; Sanchez-Ortiz, E.; Bhattacharyya, S.; Shelton, J.M.; Bassel-Duby, R.; Olson, E.N. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016, 351(6271), 400-403.
[http://dx.doi.org/10.1126/science.aad5725] [PMID: 26721683]
[29]
Ribeil, J.A.; Arlet, J.B.; Dussiot, M.; Moura, I.C.; Courtois, G.; Hermine, O. Ineffective erythropoiesis in β -thalassemia. Sci. World J., 2013, 2013394295
[http://dx.doi.org/10.1155/2013/394295] [PMID: 23606813]
[30]
Finotti, A.; Breda, L.; Lederer, C.W.; Bianchi, N.; Zuccato, C.; Kleanthous, M.; Rivella, S.; Gambari, R. Recent trends in the gene therapy of β-thalassemia. J. Blood Med., 2015, 6, 69-85.
[PMID: 25737641]
[31]
Zhang, H.; McCarty, N. CRISPR-Cas9 technology and its application in haematological disorders. Br. J. Haematol., 2016, 175(2), 208-225.
[http://dx.doi.org/10.1111/bjh.14297] [PMID: 27619566]
[32]
Chen, C.; Liu, Y.; Rappaport, A.R.; Kitzing, T.; Schultz, N.; Zhao, Z.; Shroff, A.S.; Dickins, R.A.; Vakoc, C.R.; Bradner, J.E.; Stock, W.; LeBeau, M.M.; Shannon, K.M.; Kogan, S.; Zuber, J.; Lowe, S.W. MLL3 is a haploin sufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell, 2014, 25(5), 652-665.
[http://dx.doi.org/10.1016/j.ccr.2014.03.016] [PMID: 24794707]
[33]
Zhen, S.; Hua, L.; Takahashi, Y.; Narita, S.; Liu, Y.H.; Li, Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun., 2014, 450(4), 1422-1426.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.014] [PMID: 25044113]
[34]
Liu, X.; Zhang, Y.; Cheng, C.; Cheng, A.W.; Zhang, X.; Li, N.; Xia, C.; Wei, X.; Liu, X.; Wang, H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res., 2017, 27(1), 154-157.
[http://dx.doi.org/10.1038/cr.2016.142] [PMID: 27910851]
[35]
Xie, F.; Ye, L.; Chang, J.C.; Beyer, A.I.; Wang, J.; Muench, M.O.; Kan, Y.W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res., 2014, 24(9), 1526-1533.
[http://dx.doi.org/10.1101/gr.173427.114] [PMID: 25096406]
[36]
Howden, S.E.; Maufort, J.P.; Duffin, B.M.; Elefanty, A.G.
Stanley, E.G.; Thomson, J.A. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Reports, 2015, 5(6), 1109-1118.
[http://dx.doi.org/10.1016/j.stemcr.2015.10.009] [PMID: 26584543]
[37]
Xu, C.L.; Park, K.S.; Tsang, S.H. CRISPR/Cas9 genome surgery for retinal diseases. Drug Discov. Today. Technol., 2018, 28, 23-32.
[http://dx.doi.org/10.1016/j.ddtec.2018.05.001] [PMID: 30205877]
[38]
DiCarlo, J.E.; Mahajan, V.B.; Tsang, S.H. Gene therapy and genome surgery in the retina. J. Clin. Invest., 2018, 128(6), 2177-2188.
[http://dx.doi.org/10.1172/JCI120429] [PMID: 29856367]
[39]
Patsali, P.; Kleanthous, M.; Lederer, C.W. Disruptive technology: CRISPR/cas-based tools and approaches. Mol. Diagn. Ther., 2019, 23(2), 187-200.
[40]
Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665.
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[41]
Simeonov, D.R.; Gowen, B.G.; Boontanrart, M.; Roth, T.L.; Gagnon, J.D.; Mumbach, M.R.; Satpathy, A.T.; Lee, Y.; Bray, N.L.; Chan, A.Y.; Lituiev, D.S.; Nguyen, M.L.; Gate, R.E.; Subramaniam, M.; Li, Z.; Woo, J.M.; Mitros, T.; Ray, G.J.; Curie, G.L.; Naddaf, N.; Chu, J.S.; Ma, H.; Boyer, E.; Van Gool, F.; Huang, H.; Liu, R.; Tobin, V.R.; Schumann, K.; Daly, M.J.; Farh, K.K.; Ansel, K.M.; Ye, C.J.; Greenleaf, W.J.; Anderson, M.S.; Bluestone, J.A.; Chang, H.Y.; Corn, J.E.; Marson, A. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549(7670), 111-115.
[http://dx.doi.org/10.1038/nature23875] [PMID: 28854172]
[42]
Zhu, S.; Li, W.; Liu, J.; Chen, C.H.; Liao, Q.; Xu, P.; Xu, H.; Xiao, T.; Cao, Z.; Peng, J.; Yuan, P.; Brown, M.; Liu, X.S.; Wei, W. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol., 2016, 34(12), 1279-1286.
[http://dx.doi.org/10.1038/nbt.3715] [PMID: 27798563]
[43]
Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; Weiss, S.A.; Lo, J.; Fisher, D.E.; Miao, D.; Van Allen, E.; Root, D.E.; Sharpe, A.H.; Doench, J.G.; Haining, W.N. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 2017, 547(7664), 413-418.
[http://dx.doi.org/10.1038/nature23270] [PMID: 28723893]
[44]
Wang, P.; Zhang, L.; Zheng, W.; Cong, L.; Guo, Z.; Xie, Y.; Wang, L.; Tang, R.; Feng, Q.; Hamada, Y.; Gonda, K.; Hu, Z.; Wu, X.; Jiang, X. Thermo-triggered release of CRISPR-Cas9 system by lipidencapsulated gold nanoparticles for tumor therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(6), 1491-1496.
[http://dx.doi.org/10.1002/anie.201708689] [PMID: 29282854]
[45]
Wang, P.; Zhang, L.; Xie, Y.; Wang, N.; Tang, R.; Zheng, W.; Jiang, X. Genome editing for cancer therapy: Delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Adv. Sci. (Weinh.), 2017, 4(11)1700175
[http://dx.doi.org/10.1002/advs.201700175] [PMID: 29201613]
[46]
Najem, A.; Krayem, M.; Salès, F.; Hussein, N.; Badran, B.; Robert, C.; Awada, A.; Journe, F.; Ghanem, G.E. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition. Eur. J. Cancer, 2017, 83, 154-165.
[http://dx.doi.org/10.1016/j.ejca.2017.06.033] [PMID: 28738256]
[47]
Schmitt, M.; Sinnberg, T.; Nalpas, N.C.; Maass, A.; Schittek, B.; Macek, B. Quantitative proteomics links the intermediate filament nestin to resistance to targeted BRAF inhibition in melanoma cells. Mol. Cell. Proteomics, 2019, 18(6), 1096-1109.
[http://dx.doi.org/10.1074/mcp.RA119.001302] [PMID: 30890564]
[48]
Del Castillo, V-H.M.; van der Weyden, L.; Nsengimana, J.; Speak, A.O.; Sjöberg, M.K.; Bishop, D.T.; Jönsson, G. Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol. Oncol., 2018, 12, 239-255.
[http://dx.doi.org/10.1002/1878-0261.12161]
[49]
Lee, B.H.; Neela, P.H.; Kent, M.S.; Zehnder, A.M. IQGAP1 is an oncogenic target in canine melanoma. PLoS One, 2017, 12(4)e0176370
[http://dx.doi.org/10.1371/journal.pone.0176370] [PMID: 28445541]
[50]
Benamar, M.; Guessous, F.; Du, K.; Corbett, P.; Obeid, J.; Gioeli, D.; Slingluff, C.L., Jr; Abbas, T. Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma. EBioMed., 2016, 10, 85-100.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.023] [PMID: 27333051]
[51]
Tian, W.; Pang, W.; Ge, Y.; He, X.; Wang, D.; Li, X.; Hou, H.; Zhou, D.; Feng, S.; Chen, Z.; Yang, Y. Hepatocyte-generated 27-hydroxycholesterol promotes the growth of melanoma by activation of estrogen receptor alpha. J. Cell. Biochem., 2018, 119(3), 2929-2938.
[http://dx.doi.org/10.1002/jcb.26498] [PMID: 29130512]
[52]
Li, Y.; Fan, Y.; Xu, J.; Zhang, P.; Jiang, T.; Dai, M.; Li, L. Genome-wide RNA-Seq identifies Fas/FasL-mediated tumoricidal activity of embryonic stem cells. Int. J. Cancer, 2018, 142(9), 1829-1841.
[http://dx.doi.org/10.1002/ijc.31201] [PMID: 29218706]
[53]
Das, K.; Eisel, D.; Lenkl, C.; Goyal, A.; Diederichs, S.; Dickes, E.; Osen, W.; Eichmüller, S.B. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system. PLoS One, 2017, 12(3)e0174077
[http://dx.doi.org/10.1371/journal.pone.0174077] [PMID: 28301575]
[54]
Wang, J.; Song, X.; Guo, C.; Wang, Y.; Yin, Y. Establishment of MAGEC2-knockout cells and functional investigation of MAGEC2 in tumor cells. Cancer Sci., 2016, 107(12), 1888-1897.
[http://dx.doi.org/10.1111/cas.13082] [PMID: 27636589]
[55]
Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep., 2013, 3, 2510.
[http://dx.doi.org/10.1038/srep02510] [PMID: 23974631]
[56]
Hu, W.; Kaminski, R.; Yang, F.; Zhang, Y.; Cosentino, L.; Li, F.; Luo, B.; Alvarez-Carbonell, D.; Garcia-Mesa, Y.; Karn, J.; Mo, X.; Khalili, K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA, 2014, 111(31), 11461-11466.
[http://dx.doi.org/10.1073/pnas.1405186111] [PMID: 25049410]
[57]
Kaminski, R.; Bella, R.; Yin, C.; Otte, J.; Ferrante, P.; Gendelman, H.E.; Li, H.; Booze, R.; Gordon, J.; Hu, W.; Khalili, K. Excision of HIV-1 DNA by gene editing: A proof-of-concept in vivo study. Gene Ther., 2016, 23(8-9), 696.
[http://dx.doi.org/10.1038/gt.2016.45] [PMID: 27488023]
[58]
Xu, L.; Yang, H.; Gao, Y.; Chen, Z.; Xie, L.; Liu, Y.; Liu, Y.; Wang, X.; Li, H.; Lai, W.; He, Y.; Yao, A.; Ma, L.; Shao, Y.; Zhang, B.; Wang, C.; Chen, H.; Deng, H. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol. Ther., 2017, 25(8), 1782-1789.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.027] [PMID: 28527722]
[59]
Yin, C.; Zhang, T.; Qu, X.; Zhang, Y.; Putatunda, R.; Xiao, X.; Li, F.; Xiao, W.; Zhao, H.; Dai, S.; Qin, X.; Mo, X.; Young, W.B.; Khalili, K.; Hu, W. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol. Ther., 2017, 25(5), 1168-1186.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.012] [PMID: 28366764]
[60]
Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J. RNA-programmed genome editing in human cells. eLife, 2013, 2e00471
[http://dx.doi.org/10.7554/eLife.00471] [PMID: 23386978]
[61]
Chen, B.; Gilbert, L.A.; Cimini, B.A.; Schnitzbauer, J.; Zhang, W.; Li, G.W.; Park, J.; Blackburn, E.H.; Weissman, J.S.; Qi, L.S.; Huang, B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 2013, 155(7), 1479-1491.
[http://dx.doi.org/10.1016/j.cell.2013.12.001] [PMID: 24360272]
[62]
Kim, J.M.; Kim, D.; Kim, S.; Kim, J.S. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun., 2014, 5, 3157.
[http://dx.doi.org/10.1038/ncomms4157] [PMID: 24445736]
[63]
Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; Koonin, E.V.; Zhang, F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3), 759-771.
[http://dx.doi.org/10.1016/j.cell.2015.09.038] [PMID: 26422227]
[64]
Ran, F.A.; Cong, L.; Yan, W.X.; Scott, D.A.; Gootenberg, J.S.; Kriz, A.J.; Zetsche, B.; Shalem, O.; Wu, X.; Makarova, K.S.; Koonin, E.V.; Sharp, P.A.; Zhang, F. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520(7546), 186-191.
[http://dx.doi.org/10.1038/nature14299] [PMID: 25830891]
[65]
Mandegar, M.A.; Huebsch, N.; Frolov, E.B.; Shin, E.; Truong, A.; Olvera, M.P.; Chan, A.H.; Miyaoka, Y.; Holmes, K.; Spencer, C.I.; Judge, L.M.; Gordon, D.E.; Eskildsen, T.V.; Villalta, J.E.; Horlbeck, M.A.; Gilbert, L.A.; Krogan, N.J.; Sheikh, S.P.; Weissman, J.S.; Qi, L.S.; So, P.L.; Conklin, B.R. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell, 2016, 18(4), 541-553.
[http://dx.doi.org/10.1016/j.stem.2016.01.022] [PMID: 26971820]
[66]
Kim, E.; Koo, T.; Park, S.W.; Kim, D.; Kim, K.; Cho, H.Y.; Song, D.W.; Lee, K.J.; Jung, M.H.; Kim, S.; Kim, J.H.; Kim, J.H.; Kim, J.S. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun., 2017, 8, 14500.
[http://dx.doi.org/10.1038/ncomms14500] [PMID: 28220790]
[67]
Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891), 960-964.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[68]
Schaefer, K.A.; Wu, W.H.; Colgan, D.F.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat. Methods, 2017, 14(6), 547-548.
[http://dx.doi.org/10.1038/nmeth.4293] [PMID: 28557981]
[69]
Fu, Y.; Foden, J.A.; Khayter, C.; Maeder, M.L.; Reyon, D.; Joung, J.K.; Sander, J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 2013, 31(9), 822-826.
[http://dx.doi.org/10.1038/nbt.2623] [PMID: 23792628]
[70]
Cho, S.W.; Kim, S.; Kim, Y.; Kweon, J.; Kim, H.S.; Bae, S.; Kim, J.S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 2014, 24(1), 132-141.
[http://dx.doi.org/10.1101/gr.162339.113] [PMID: 24253446]
[71]
Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; Virgin, H.W.; Listgarten, J.; Root, D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol., 2016, 34(2), 184-191.
[http://dx.doi.org/10.1038/nbt.3437] [PMID: 26780180]
[72]
Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6), 1380-1389.
[http://dx.doi.org/10.1016/j.cell.2013.08.021] [PMID: 23992846]
[73]
Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587), 490-495.
[http://dx.doi.org/10.1038/nature16526] [PMID: 26735016]
[74]
Slaymaker, I.M.; Gao, L.; Zetsche, B.; Scott, D.A.; Yan, W.X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268), 84-88.
[http://dx.doi.org/10.1126/science.aad5227] [PMID: 26628643]
[75]
Chen, J.S.; Dagdas, Y.S.; Kleinstiver, B.P.; Welch, M.M.; Sousa, A.A.; Harrington, L.B.; Sternberg, S.H.; Joung, J.K.; Yildiz, A.; Doudna, J.A. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 2017, 550(7676), 407-410.
[http://dx.doi.org/10.1038/nature24268] [PMID: 28931002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy