Review Article

针对炎症介质:百里香醌作用的抗癌机制

卷 28, 期 1, 2021

发表于: 11 October, 2019

页: [80 - 92] 页: 13

弟呕挨: 10.2174/0929867326666191011143642

价格: $65

摘要

背景:百里香醌是一种很有前途的抗癌分子,其化学预防作用至少在体外和动物模型中是众所周知的。本文就百里香醌在肿瘤细胞中的抗炎作用作一综述。 方法:炎症、癌症和百里香醌的研究数据来自PubMed、Scopus、Web of Science和谷歌学术。我们回顾了自上世纪中叶以来发表的论文,以及近十年被引用次数最多的论文。 结果:研究表明,百里香醌除了具有化学预防作用外,还具有免疫调节活性。百里香醌可以靶向调节核因子κB (NF-κβ)、白细胞介素、肿瘤坏死因子-α(TNF-α)等炎症分子,以及某些生长因子。由于慢性炎症在肿瘤发生发展中起着重要作用,控制炎症通路是一种抗癌分子的重要机制,而调节炎症通路可能是百里香醌抗癌活性的关键机制之一。 结论:本文综述了炎症在肿瘤发生发展中的作用,以及百里醌对炎症分子的作用,并对其在体内外的研究进展进行了综述。研究百里醌在免疫治疗中的作用,并将其开发为未来的抗癌药物是十分必要的。

关键词: 癌症,百里香醌,免疫疗法,炎症调节剂,NF-κβ,不受控制的增殖。

« Previous
[1]
Ma, X.; Yu, H. Global burden of cancer. Yale J. Biol. Med., 2006, 79(3-4), 85-94.
[PMID: 17940618]
[2]
World Health Organization Cancer (Fact sheet) 2018, 12, Available at: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed date: August 19, 2019).
[3]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[4]
Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771.
[http://dx.doi.org/10.1038/nrc3611] [PMID: 24154716]
[5]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[6]
Hussain, S.P.; Harris, C.C. Inflammation and cancer: an ancient link with novel potentials. Int. J. Cancer, 2007, 121(11), 2373-2380.
[http://dx.doi.org/10.1002/ijc.23173] [PMID: 17893866]
[7]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[8]
Zhu, Z.; Zhong, S.; Shen, Z. Targeting the inflammatory pathways to enhance chemotherapy of cancer. Cancer Biol. Ther., 2011, 12(2), 95-105.
[http://dx.doi.org/10.4161/cbt.12.2.15952] [PMID: 21623164]
[9]
Qu, X.; Tang, Y.; Hua, S. Immunological approaches towards cancer and inflammation: a cross talk. Front. Immunol., 2018, 9, 563.
[http://dx.doi.org/10.3389/fimmu.2018.00563] [PMID: 29662489]
[10]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[11]
Asaduzzaman Khan, M.; Tania, M.; Fu, S.; Fu, J. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget, 2017, 8(31), 51907-51919.
[http://dx.doi.org/10.18632/oncotarget.17206] [PMID: 28881699]
[12]
Mahmoud, Y.K.; Abdelrazek, H.M.A. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother., 2019, 115108783
[http://dx.doi.org/10.1016/j.biopha.2019.108783] [PMID: 31060003]
[13]
Kundu, J.K.; Surh, Y. J. Inflammation: gearing the journey to cancer. Mutat. Res., 2008, 659(1-2), 15-30.
[http://dx.doi.org/10.1016/j.mrrev.2008.03.002] [PMID: 18485806]
[14]
Bartsch, H.; Nair, J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg., 2006, 391(5), 499-510.
[http://dx.doi.org/10.1007/s00423-006-0073-1] [PMID: 16909291]
[15]
Schetter, A.J.; Heegaard, N.H.; Harris, C.C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 2010, 31(1), 37-49.
[http://dx.doi.org/10.1093/carcin/bgp272] [PMID: 19955394]
[16]
Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431(7007), 461-466.
[http://dx.doi.org/10.1038/nature02924] [PMID: 15329734]
[17]
Shen, H.M.; Tergaonkar, V. NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis, 2009, 14(4), 348-363.
[http://dx.doi.org/10.1007/s10495-009-0315-0] [PMID: 19212815]
[18]
Djavaheri-Mergny, M.; Amelotti, M.; Mathieu, J.; Besançon, F.; Bauvy, C.; Souquère, S.; Pierron, G.; Codogno, P. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem., 2006, 281(41), 30373-30382.
[http://dx.doi.org/10.1074/jbc.M602097200] [PMID: 16857678]
[19]
Hernanz, R.; Briones, A.M.; Salaices, M.; Alonso, M.J. New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin. Sci. (Lond.), 2014, 126(2), 111-121.
[http://dx.doi.org/10.1042/CS20120651] [PMID: 24059588]
[20]
Helbig, G.; Christopherson, K.W. II.; Bhat-Nakshatri, P.; Kumar, S.; Kishimoto, H.; Miller, K.D.; Broxmeyer, H.E.; Nakshatri, H. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem., 2003, 278(24), 21631-21638.
[http://dx.doi.org/10.1074/jbc.M300609200] [PMID: 12690099]
[21]
Tergaonkar, V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol., 2006, 38(10), 1647-1653.
[http://dx.doi.org/10.1016/j.biocel.2006.03.023] [PMID: 16766221]
[22]
Ren, J.L.; Pan, J.S.; Lu, Y.P.; Sun, P.; Han, J. Inflammatory signaling and cellular senescence. Cell. Signal., 2009, 21(3), 378-383.
[http://dx.doi.org/10.1016/j.cellsig.2008.10.011] [PMID: 18992324]
[23]
Pan, J.S.; Hong, M.Z.; Ren, J.L. Reactive oxygen species: a double-edged sword in oncogenesis. World J. Gastroenterol., 2009, 15(14), 1702-1707.
[http://dx.doi.org/10.3748/wjg.15.1702] [PMID: 19360913]
[24]
Meira, L.B.; Bugni, J.M.; Green, S.L.; Lee, C.W.; Pang, B.; Borenshtein, D.; Rickman, B.H.; Rogers, A.B.; Moroski-Erkul, C.A.; McFaline, J.L.; Schauer, D.B.; Dedon, P.C.; Fox, J.G.; Samson, L.D. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest., 2008, 118(7), 2516-2525.
[http://dx.doi.org/10.1172/JCI35073] [PMID: 18521188]
[25]
Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 2008, 320(5876), 661-664.
[http://dx.doi.org/10.1126/science.1156906] [PMID: 18388260]
[26]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[27]
Pasparakis, M.; Alexopoulou, L.; Episkopou, V.; Kollias, G. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med., 1996, 184(4), 1397-1411.
[http://dx.doi.org/10.1084/jem.184.4.1397] [PMID: 8879212]
[28]
Ancrile, B.; Lim, K.H.; Counter, C.M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev., 2007, 21(14), 1714-1719.
[http://dx.doi.org/10.1101/gad.1549407] [PMID: 17639077]
[29]
Gyamfi, J.; Eom, M.; Koo, J.S.; Choi, J. Multifaceted roles of interleukin-6 in adipocyte-breast cancer cell interaction. Transl. Oncol., 2018, 11(2), 275-285.
[http://dx.doi.org/10.1016/j.tranon.2017.12.009] [PMID: 29413760]
[30]
Razidlo, G.L.; Burton, K.M.; McNiven, M.A. Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. J. Biol. Chem., 2018, 293(28), 11143-11153.
[http://dx.doi.org/10.1074/jbc.RA118.003276] [PMID: 29853638]
[31]
Schneider, M.R.; Hoeflich, A.; Fischer, J.R.; Wolf, E.; Sordat, B.; Lahm, H. Interleukin-6 stimulates clonogenic growth of primary and metastatic human colon carcinoma cells. Cancer Lett., 2000, 151(1), 31-38.
[http://dx.doi.org/10.1016/S0304-3835(99)00401-2] [PMID: 10766420]
[32]
Cozen, W.; Gill, P.S.; Ingles, S.A.; Masood, R.; Martínez-Maza, O.; Cockburn, M.G.; Gauderman, W.J.; Pike, M.C.; Bernstein, L.; Nathwani, B.N.; Salam, M.T.; Danley, K.L.; Wang, W.; Gage, J.; Gundell-Miller, S.; Mack, T.M. IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood, 2004, 103(8), 3216-3221.
[http://dx.doi.org/10.1182/blood-2003-08-2860] [PMID: 15070705]
[33]
Kai, H.; Kitadai, Y.; Kodama, M.; Cho, S.; Kuroda, T.; Ito, M.; Tanaka, S.; Ohmoto, Y.; Chayama, K. Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res., 2005, 25(2A), 709-713.
[PMID: 15868900]
[34]
Genrich, G.; Kruppa, M.; Lenk, L.; Helm, O.; Broich, A.; Freitag-Wolf, S.; Röcken, C.; Sipos, B.; Schäfer, H.; Sebens, S. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1. BMC Cancer, 2016, 16, 155.
[http://dx.doi.org/10.1186/s12885-016-2191-7] [PMID: 26915435]
[35]
Mosser, D.M.; Zhang, X. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev., 2008, 226, 205-218.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00706.x] [PMID: 19161426]
[36]
Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 2009, 11(5), 373-381.
[http://dx.doi.org/10.1111/j.1477-2574.2009.00059.x] [PMID: 19768141]
[37]
Todoric, J.; Antonucci, L.; Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. (Phila.), 2016, 9(12), 895-905.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0209] [PMID: 27913448]
[38]
Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol., 2003, 3(9), 745-756.
[http://dx.doi.org/10.1038/nri1184] [PMID: 12949498]
[39]
Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-[κ]B activity. Annu. Rev. Immunol., 2000, 18, 621-663.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.621] [PMID: 10837071]
[40]
Matsushima, A.; Kaisho, T.; Rennert, P.D.; Nakano, H.; Kurosawa, K.; Uchida, D.; Takeda, K.; Akira, S.; Matsumoto, M. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase α in NF-kappaB activation through lymphotoxin β receptor, but not through tumor necrosis factor receptor I. J. Exp. Med., 2001, 193(5), 631-636.
[http://dx.doi.org/10.1084/jem.193.5.631] [PMID: 11238593]
[41]
Mitchell, J.P.; Carmody, R.J. NF-κB and the Transcriptional control of inflammation. Int. Rev. Cell Mol. Biol., 2018, 335, 41-84.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.007] [PMID: 29305014]
[42]
Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 2011, 12(8), 715-723.
[http://dx.doi.org/10.1038/ni.2060] [PMID: 21772280]
[43]
Ahn, K.S.; Aggarwal, B.B. Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann. N. Y. Acad. Sci., 2005, 1056, 218-233.
[http://dx.doi.org/10.1196/annals.1352.026] [PMID: 16387690]
[44]
Akiba, J.; Yano, H.; Ogasawara, S.; Higaki, K.; Kojiro, M. Expression and function of interleukin-8 in human hepatocellular carcinoma. Int. J. Oncol., 2001, 18(2), 257-264.
[http://dx.doi.org/10.3892/ijo.18.2.257] [PMID: 11172590]
[45]
Ashour, A.E.; Abd-Allah, A.R.; Korashy, H.M.; Attia, S.M.; Alzahrani, A.Z.; Saquib, Q.; Bakheet, S.A.; Abdel-Hamied, H.E.; Jamal, S.; Rishi, A.K. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol. Cell. Biochem., 2014, 389(1-2), 85-98.
[http://dx.doi.org/10.1007/s11010-013-1930-1] [PMID: 24399465]
[46]
Xu, D.; Ma, Y.; Zhao, B.; Li, S.; Zhang, Y.; Pan, S.; Wu, Y.; Wang, J.; Wang, D.; Pan, H.; Liu, L.; Jiang, H. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol. Rep., 2014, 31(5), 2063-2070.
[http://dx.doi.org/10.3892/or.2014.3059] [PMID: 24603952]
[47]
Wu, Z.H.; Chen, Z.; Shen, Y.; Huang, L.L.; Jiang, P. [Antimetastasis effect of thymoquinone on human pancreatic cancer] Yao Xue Xue Bao, 2011, 46(8), 910-914.
[PMID: 22007514]
[48]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29, 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[49]
Sakalar, C.; Yuruk, M.; Kaya, T.; Aytekin, M.; Kuk, S.; Canatan, H. Pronounced transcriptional regulation of apoptotic and TNF-NF-kappa-B signaling genes during the course of thymoquinone mediated apoptosis in HeLa cells. Mol. Cell. Biochem., 2013, 383(1-2), 243-251.
[http://dx.doi.org/10.1007/s11010-013-1772-x] [PMID: 23943306]
[50]
Peng, L.; Liu, A.; Shen, Y.; Xu, H.Z.; Yang, S.Z.; Ying, X.Z.; Liao, W.; Liu, H.X.; Lin, Z.Q.; Chen, Q.Y.; Cheng, S.W.; Shen, W.D. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol. Rep., 2013, 29(2), 571-578.
[http://dx.doi.org/10.3892/or.2012.2165] [PMID: 23232982]
[51]
Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat., 2018, 171(3), 593-605.
[http://dx.doi.org/10.1007/s10549-018-4847-2] [PMID: 29971628]
[52]
Chen, M.C.; Lee, N.H.; Hsu, H.H.; Ho, T.J.; Tu, C.C.; Chen, R.J.; Lin, Y.M.; Viswanadha, V.P.; Kuo, W.W.; Huang, C.Y. Inhibition of NF-κB and metastasis in irinotecan (CPT-11)-resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ. Toxicol., 2017, 32(2), 669-678.
[http://dx.doi.org/10.1002/tox.22268] [PMID: 27060453]
[53]
Ashour, A.E.; Ahmed, A.F.; Kumar, A.; Zoheir, K.M.; Aboul-Soud, M.A.; Ahmad, S.F.; Attia, S.M.; Abd-Allah, A.R.; Cheryan, V.T.; Rishi, A.K. Thymoquinone inhibits growth of human medulloblastoma cells by inducing oxidative stress and caspase-dependent apoptosis while suppressing NF-κB signaling and IL-8 expression. Mol. Cell. Biochem., 2016, 416(1-2), 141-155.
[http://dx.doi.org/10.1007/s11010-016-2703-4] [PMID: 27084536]
[54]
Popa, C.; Netea, M.G.; van Riel, P.L.; van der Meer, J.W.; Stalenhoef, A.F. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res., 2007, 48(4), 751-762.
[http://dx.doi.org/10.1194/jlr.R600021-JLR200] [PMID: 17202130]
[55]
Sethi, G.; Sung, B.; Aggarwal, B.B. TNF: a master switch for inflammation to cancer. Front. Biosci., 2008, 13, 5094-5107.
[http://dx.doi.org/10.2741/3066] [PMID: 18508572]
[56]
Kabel, A.M.; El-Rashidy, M.A.; Omar, M.S. Ameliorative potential of tamoxifen/thymoquinone combination in patients with breast cancer: a biochemical and immunohistochemical study. J. Cancer Sci. Res., 2016, 1, 102.
[57]
Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol. Cancer Res., 2008, 6(6), 1059-1070.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2088] [PMID: 18567808]
[58]
Bickel, M. The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol., 1993, 64(5)(Suppl.), 456-460.
[PMID: 8315568]
[59]
Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol., 2005, 7(2), 122-133.
[http://dx.doi.org/10.1215/S1152851704001061] [PMID: 15831231]
[60]
Cheng, G.Z.; Park, S.; Shu, S.; He, L.; Kong, W.; Zhang, W.; Yuan, Z.; Wang, L.H.; Cheng, J.Q. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr. Cancer Drug Targets, 2008, 8(1), 2-6.
[http://dx.doi.org/10.2174/156800908783497159] [PMID: 18288938]
[61]
Nguyen, D.P.; Li, J.; Tewari, A.K. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int., 2014, 113(6), 986-992.
[http://dx.doi.org/10.1111/bju.12452] [PMID: 24053309]
[62]
Al-Trad, B.; Al-Zoubi, M.; Qar, J.; Al-Batayneh, K.; Hussien, E.; Muhaidat, R.; Aljabali, A.; Alkhateeb, H.; Al Omari, G. Inhibitory effect of thymoquinone on testosterone-induced benign prostatic hyperplasia in Wistar rats. Phytother. Res., 2017, 31(12), 1910-1915.
[http://dx.doi.org/10.1002/ptr.5936] [PMID: 28960541]
[63]
Miliani, M.; Nouar, M.; Paris, O.; Lefranc, G.; Mennechet, F.; Aribi, M. Thymoquinone potently enhances the activities of classically activated macrophages pulsed with necrotic jurkat cell lysates and the production of antitumor Th1-/M1-related cytokines. J. Interferon Cytokine Res., 2018, 38(12), 539-551.
[http://dx.doi.org/10.1089/jir.2018.0010] [PMID: 30422744]
[64]
Anderson, G.D.; Hauser, S.D.; McGarity, K.L.; Bremer, M.E.; Isakson, P.C.; Gregory, S.A. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J. Clin. Invest., 1996, 97(11), 2672-2679.
[http://dx.doi.org/10.1172/JCI118717] [PMID: 8647962]
[65]
Kim, Y.B.; Kim, G.E.; Cho, N.H.; Pyo, H.R.; Shim, S.J.; Chang, S.K.; Park, H.C.; Suh, C.O.; Park, T.K.; Kim, B.S. Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer, 2002, 95(3), 531-539.
[http://dx.doi.org/10.1002/cncr.10684] [PMID: 12209745]
[66]
Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med., 2002, 8(3), 289-293.
[http://dx.doi.org/10.1038/nm0302-289] [PMID: 11875501]
[67]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[68]
Hsu, H.H.; Chen, M.C.; Day, C.H.; Lin, Y.M.; Li, S.Y.; Tu, C.C.; Padma, V.V.; Shih, H.N.; Kuo, W.W.; Huang, C.Y. Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J. Gastroenterol., 2017, 23(7), 1171-1179.
[http://dx.doi.org/10.3748/wjg.v23.i7.1171] [PMID: 28275297]
[69]
Marsik, P.; Kokoska, L.; Landa, P.; Nepovim, A.; Soudek, P.; Vanek, T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med., 2005, 71(8), 739-742.
[http://dx.doi.org/10.1055/s-2005-871288] [PMID: 16142638]
[70]
Brierley, M.M.; Fish, E.N. Stats: multifaceted regulators of transcription. J. Interferon Cytokine Res., 2005, 25(12), 733-744.
[http://dx.doi.org/10.1089/jir.2005.25.733] [PMID: 16375601]
[71]
Bowman, T.; Garcia, R.; Turkson, J.; Jove, R. STATs in oncogenesis. Oncogene, 2000, 19(21), 2474-2488.
[http://dx.doi.org/10.1038/sj.onc.1203527] [PMID: 10851046]
[72]
Yu, H.; Jove, R. The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer, 2004, 4(2), 97-105.
[http://dx.doi.org/10.1038/nrc1275] [PMID: 14964307]
[73]
Yue, P.; Turkson, J. Targeting STAT3 in cancer: how successful are we? Expert Opin. Investig. Drugs, 2009, 18(1), 45-56.
[http://dx.doi.org/10.1517/13543780802565791] [PMID: 19053881]
[74]
Kaplan, M.H. STAT signaling in inflammation. JAK-STAT, 2013, 2(1)e24198
[http://dx.doi.org/10.4161/jkst.24198] [PMID: 24058801]
[75]
Zhu, W.Q.; Wang, J.; Guo, X.F.; Liu, Z.; Dong, W.G. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J. Gastroenterol., 2016, 22(16), 4149-4159.
[http://dx.doi.org/10.3748/wjg.v22.i16.4149] [PMID: 27122665]
[76]
Li, F.; Rajendran, P.; Sethi, G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol., 2010, 161(3), 541-554.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00874.x] [PMID: 20880395]
[77]
Ferrara, N.; Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun., 1989, 161(2), 851-858.
[http://dx.doi.org/10.1016/0006-291X(89)92678-8] [PMID: 2735925]
[78]
Pepper, M.S.; Ferrara, N.; Orci, L.; Montesano, R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun., 1992, 189(2), 824-831.
[http://dx.doi.org/10.1016/0006-291X(92)92277-5] [PMID: 1281999]
[79]
Waldner, M.J.; Wirtz, S.; Jefremow, A.; Warntjen, M.; Neufert, C.; Atreya, R.; Becker, C.; Weigmann, B.; Vieth, M.; Rose-John, S.; Neurath, M.F. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J. Exp. Med., 2010, 207(13), 2855-2868.
[http://dx.doi.org/10.1084/jem.20100438] [PMID: 21098094]
[80]
Asfour, W.; Almadi, S.; Haffar, L. Thymoquinone suppresses cellular proliferation, inhibits VEGF production and obstructs tumor progression and invasion in the rat Model of DMH-induced colon carcinogenesis. Pharmacol. Pharm., 2013, 4, 7-17.
[http://dx.doi.org/10.4236/pp.2013.41002]
[81]
Paramasivam, A.; Raghunandhakumar, S.; Sambantham, S.; Anandan, B.; Rajiv, R.; Priyadharsini, J.V.; Jayaraman, G. In vitro anticancer and anti-angiogenic effects of thymoquinone in mouse neuroblastoma cells (Neuro-2a). Biomed. Prevent. Nutri., 2012, 2, 283-286.
[http://dx.doi.org/10.1016/j.bionut.2012.04.004]
[82]
ElKhoely, A.; Hafez, H.F.; Ashmawy, A.M.; Badary, O.; Abdelaziz, A.; Mostafa, A.; Shouman, S.A. Chemopreventive and therapeutic potentials of thymoquinone in HepG2 cells: mechanistic perspectives. J. Nat. Med., 2015, 69(3), 313-323.
[http://dx.doi.org/10.1007/s11418-015-0895-7] [PMID: 25796541]
[83]
Salem, M.L.; Alenzi, F.Q.; Attia, W.Y. Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro. Br. J. Biomed. Sci., 2011, 68(3), 131-137.
[http://dx.doi.org/10.1080/09674845.2011.11730340] [PMID: 21950205]
[84]
Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol., 2004, 75(2), 163-189.
[http://dx.doi.org/10.1189/jlb.0603252] [PMID: 14525967]
[85]
Aziz, N.; Son, Y.J.; Cho, J.Y. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1. Int. J. Mol. Sci., 2018, 19(5)E1355
[http://dx.doi.org/10.3390/ijms19051355] [PMID: 29751576]
[86]
Ammar, S.M.; Gameil, N.M.; Shawky, N.M.; Nader, M.A. Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int. Immunopharmacol., 2011, 11(12), 2232-2236.
[http://dx.doi.org/10.1016/j.intimp.2011.10.013] [PMID: 22051975]
[87]
Gruber, B.L.; Marchese, M.J.; Kew, R.R. Transforming growth factor-beta 1 mediates mast cell chemotaxis. J. Immunol., 1994, 152(12), 5860-5867.
[PMID: 7515916]
[88]
Vaillancourt, F.; Silva, P.; Shi, Q.; Fahmi, H.; Fernandes, J.C.; Benderdour, M. Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J. Cell. Biochem., 2011, 112(1), 107-117.
[http://dx.doi.org/10.1002/jcb.22884] [PMID: 20872780]
[89]
El-Mahmoudy, A.; Matsuyama, H.; Borgan, M.A.; Shimizu, Y.; El-Sayed, M.G.; Minamoto, N.; Takewaki, T. Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages. Int. Immunopharmacol., 2002, 2(11), 1603-1611.
[http://dx.doi.org/10.1016/S1567-5769(02)00139-X] [PMID: 12433061]
[90]
Cobourne-Duval, M.K.; Taka, E.; Mendonca, P.; Soliman, K.F.A. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J. Neuroimmunol., 2018, 320, 87-97.
[http://dx.doi.org/10.1016/j.jneuroim.2018.04.018] [PMID: 29759145]
[91]
Wraith, D.C. The Future of immunotherapy: a 20-year perspective. Front. Immunol., 2017, 8, 1668.
[http://dx.doi.org/10.3389/fimmu.2017.01668] [PMID: 29234325]
[92]
Zhang, H.; Chen, J. Current status and future directions of cancer immunotherapy. J. Cancer, 2018, 9(10), 1773-1781.
[http://dx.doi.org/10.7150/jca.24577] [PMID: 29805703]
[93]
Whiteside, T.L.; Demaria, S.; Rodriguez-Ruiz, M.E.; Zarour, H.M.; Melero, I. Emerging opportunities and challenges in cancer immunotherapy. Clin. Cancer Res., 2016, 22(8), 1845-1855.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0049] [PMID: 27084738]
[94]
Tang, H.; Qiao, J.; Fu, Y.X. Immunotherapy and tumor microenvironment. Cancer Lett., 2016, 370(1), 85-90.
[http://dx.doi.org/10.1016/j.canlet.2015.10.009] [PMID: 26477683]
[95]
Cancer Research Institute. Cancer Clinical Trials. 2019. Available at: https://www.cancerresearch.org/patients/clinical-trials (Accessed date: August 19, 2019).
[96]
Fischer, K. FDA approves first immunotherapy drug for triple negative breast cancer. Health News., 2019. Available from:, https://www.healthline.com/health-news/fda-approves-first-immunotherapy-drug-for-triple-negative-breast-cancer
[97]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R. Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[98]
Yu, Y.; Cui, J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol. Lett.,, 2018, 16(4), 4105-4113.
[http://dx.doi.org/10.3892/ol.2018.9219] [PMID: 30214551]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy