Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances

Author(s): Cauê B. Scarim* and Chung M. Chin

Volume 22, Issue 8, 2019

Page: [509 - 520] Pages: 12

DOI: 10.2174/1386207322666191010144111

Price: $65

Abstract

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays.

Objective: Current approaches to drug discovery for Chagas disease.

Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases.

Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease.

Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.

Keywords: Drug development, new drugs, Chagas disease, Trypanosoma cruzi, bioluminescence imaging, methodological advances.

[1]
Chagas disease in Latin America. An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec., 2015, 90(6), 33-43.
[PMID: 25671846]
[2]
Malafaia, G.; Rodrigues, A.S.D.L. Centenário do descobrimento da doença de Chagas: desafios e perspectivas. Rev. Soc. Bras. Med. Trop., 2010, 43(5), 483-485.
[http://dx.doi.org/10.1590/S0037-86822010000500001] [PMID: 21085853]
[3]
Chagas, C. Nova Tripanozomiase Humana. Estudos Sobre a Morfolojia e o Ciclo Evolutivo Do Schizotrypanum Cruzi n. Gen. n. Sp., Agente Etiolójico de Uma Nova Entidade Mórbida Do Homem. Mem. Inst. Oswaldo Cruz, 1909, 1(2), 159-218.
[http://dx.doi.org/10.1590/S0074-02761909000200008]
[4]
Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop., 2010, 115(1-2), 14-21.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.003] [PMID: 19932071]
[5]
Liu, Q.; Zhou, X.N. Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries. Infect. Dis. Poverty, 2015, 4(60), 60.
[http://dx.doi.org/10.1186/s40249-015-0092-7] [PMID: 26715535]
[6]
http://www.who.int/chagas/epidemiology/en/2017 [Accessed on 12th September 2019
[7]
Maya, J.D.; Orellana, M.; Ferreira, J.; Kemmerling, U.; López-Muñoz, R.; Morello, A. Chagas disease: Present status of pathogenic mechanisms and chemotherapy. Biol. Res., 2010, 43(3), 323-331.
[http://dx.doi.org/10.4067/S0716-97602010000300009] [PMID: 21249304]
[8]
Control of Chagas Disease. Second Report of the WHO Expert Committee World Health Organization (2000: Brasilia, Brazil). Geneva World Heal, 2002, 905(1), 109.
[9]
Pan, P.; Vermelho, A.B.; Capaci Rodrigues, G.; Scozzafava, A.; Tolvanen, M.E.; Parkkila, S.; Capasso, C.; Supuran, C.T. Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease. J. Med. Chem., 2013, 56(4), 1761-1771.
[http://dx.doi.org/10.1021/jm4000616] [PMID: 23391336]
[10]
de Andrade, A.L.S.S.; Zicker, F.; de Oliveira, R.M.; Almeida Silva, S.; Luquetti, A.; Travassos, L.R.; Almeida, I.C.; de Andrade, S.S.; de Andrade, J.G.; Martelli, C.M.T. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet, 1996, 348(9039), 1407-1413.
[http://dx.doi.org/10.1016/S0140-6736(96)04128-1] [PMID: 8937280]
[11]
Sosa Estani, S.; Segura, E.L.; Ruiz, A.M.; Velazquez, E.; Porcel, B.M.; Yampotis, C. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am. J. Trop. Med. Hyg., 1998, 59(4), 526-529.
[http://dx.doi.org/10.4269/ajtmh.1998.59.526] [PMID: 9790423]
[12]
Sperandio da Silva, G.M.; Mediano, M.F.F.; Alvarenga Americano do Brasil, P.E.; da Costa Chambela, M.; da Silva, J.A.; de Sousa, A.S.; Xavier, S.S.; Rodrigues da Costa, A.; Magalhães Saraiva, R.; Hasslocher-Moreno, A.M. A clinical adverse drug reaction prediction model for patients with chagas disease treated with benznidazole. Antimicrob. Agents Chemother., 2014, 58(11), 6371-6377.
[http://dx.doi.org/10.1128/AAC.02842-14] [PMID: 25114135]
[13]
Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; Guhl, F.; Velazquez, E.; Bonilla, L.; Meeks, B.; Rao-Melacini, P.; Pogue, J.; Mattos, A.; Lazdins, J.; Rassi, A.; Connolly, S.J.; Yusuf, S. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N. Engl. J. Med., 2015, 373(14), 1295-1306.
[http://dx.doi.org/10.1056/NEJMoa1507574] [PMID: 26323937]
[14]
Soy, D.; Aldasoro, E.; Guerrero, L.; Posada, E.; Serret, N.; Mejía, T.; Urbina, J.A.; Gascón, J. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob. Agents Chemother., 2015, 59(6), 3342-3349.
[http://dx.doi.org/10.1128/AAC.05018-14] [PMID: 25824212]
[15]
Fernández, M.L.; Marson, M.E.; Ramirez, J.C.; Mastrantonio, G.; Schijman, A.G.; Altcheh, J.; Riarte, A.R.; Bournissen, F.G. Pharmacokinetic and pharmacodynamic responses in adult patients with Chagas disease treated with a new formulation of benznidazole. Mem. Inst. Oswaldo Cruz, 2016, 111(3), 218-221.
[http://dx.doi.org/10.1590/0074-02760150401] [PMID: 26982179]
[16]
Hasslocher-Moreno, A.M.; do Brasil, P.E.A.A.; de Sousa, A.S.; Xavier, S.S.; Chambela, M.C.; Sperandio da Silva, G.M. Safety of benznidazole use in the treatment of chronic Chagas’ disease. J. Antimicrob. Chemother., 2012, 67(5), 1261-1266.
[http://dx.doi.org/10.1093/jac/dks027] [PMID: 22331592]
[17]
Fernandes, C.D.; Tiecher, F.M.; Balbinot, M.M.; Liarte, D.B.; Scholl, D.; Steindel, M.; Romanha, A. Efficacy of benznidazol treatment for asymptomatic chagasic patients from state of Rio Grande do Sul evaluated during a three years follow-up. Mem. Inst. Oswaldo Cruz, 2009, 104(1), 27-32.
[http://dx.doi.org/10.1590/S0074-02762009000100004] [PMID: 19274372]
[18]
Andrade, M.C. Oliveira, Mde.F.; Nagao-Dias, A.T.; Coêlho, I.C.; Cândido, Dda.S.; Freitas, E.C.; Coelho, H.L.; Bezerra, F.S. Clinical and serological evolution in chronic Chagas disease patients in a 4-year pharmacotherapy follow-up: A preliminary study. Rev. Soc. Bras. Med. Trop., 2013, 46(6), 776-778.
[http://dx.doi.org/10.1590/0037-8682-1646-2013] [PMID: 24474023]
[19]
Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol., 2006, 25(8), 471-479.
[http://dx.doi.org/10.1191/0960327106het653oa] [PMID: 16937919]
[20]
Campos, M.C.; Phelan, J.; Francisco, A.F.; Taylor, M.C.; Lewis, M.D.; Pain, A.; Clark, T.G.; Kelly, J.M. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the frontline drug benznidazole. Sci. Rep., 2017, 7(1), 1-8.
[http://dx.doi.org/10.1038/s41598-017-14986-6] [PMID: 28127051]
[21]
Bosquesi, P.L.; Scarim, C.B.; de Oliveira, J.R.S.; Vizioli, E. de O.; dos Santos, J.L.; Chung, M.C. Protective effect of taurine in the induction of genotoxicity by mutagenic drugs. J. Pharm. Pharmacol., 2018, 6(1), 1-9.
[PMID: 28872686]
[22]
Buschini, A.; Ferrarini, L.; Franzoni, S.; Galati, S.; Lazzaretti, M.; Mussi, F.; Northfleet de Albuquerque, C.; Maria Araújo Domingues Zucchi, T.; Poli, P. Genotoxicity revaluation of three commercial nitroheterocyclic drugs: nifurtimox, benznidazole, and metronidazole. J. Parasitol. Res., 2009, 2009(463575)463575
[http://dx.doi.org/10.1155/2009/463575] [PMID: 20981287]
[23]
Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J., 2016, 15(1), 98-103.
[PMID: 28066534]
[24]
Vanderelst, D.; Speybroeck, N. Quantifying the lack of scientific interest in neglected tropical diseases. PLoS Negl. Trop. Dis., 2010, 4(1)e576
[http://dx.doi.org/10.1371/journal.pntd.0000576] [PMID: 20126268]
[25]
Chatelain, E.; Ioset, J.R. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin. Drug Discov., 2018, 13(2), 141-153.
[http://dx.doi.org/10.1080/17460441.2018.1417380] [PMID: 29235363]
[26]
Li, Y.; Theuretzbacher, U.; Clancy, C.J.; Nguyen, M.H.; Derendorf, H. Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin. Pharmacokinet., 2010, 49(6), 379-396.
[http://dx.doi.org/10.2165/11319340-000000000-00000] [PMID: 20481649]
[27]
Pinazo, M.J.; Espinosa, G.; Gállego, M.; López-Chejade, P.L.; Urbina, J.A.; Gascón, J. Successful treatment with posaconazole of a patient with chronic Chagas disease and systemic lupus erythematosus. Am. J. Trop. Med. Hyg., 2010, 82(4), 583-587.
[http://dx.doi.org/10.4269/ajtmh.2010.09-0620] [PMID: 20348503]
[28]
Lepesheva, G.I.; Hargrove, T.Y.; Anderson, S.; Kleshchenko, Y.; Furtak, V.; Wawrzak, Z.; Villalta, F.; Waterman, M.R. Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. J. Biol. Chem., 2010, 285(33), 25582-25590.
[http://dx.doi.org/10.1074/jbc.M110.133215] [PMID: 20530488]
[29]
Urbina, J.A.; Payares, G.; Contreras, L.M.; Liendo, A.; Sanoja, C.; Molina, J.; Piras, M.; Piras, R.; Perez, N.; Wincker, P.; Loebenberg, D. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob. Agents Chemother., 1998, 42(7), 1771-1777.
[http://dx.doi.org/10.1128/AAC.42.7.1771] [PMID: 9661019]
[30]
Molina, J.; Martins-Filho, O.; Brener, Z.; Romanha, A.J.; Loebenberg, D.; Urbina, J.A. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob. Agents Chemother., 2000, 44(1), 150-155.
[http://dx.doi.org/10.1128/AAC.44.1.150-155.2000] [PMID: 10602737]
[31]
Diniz, Lde.F.; Urbina, J.A.; de Andrade, I.M.; Mazzeti, A.L.; Martins, T.A.F.; Caldas, I.S.; Talvani, A.; Ribeiro, I.; Bahia, M.T. Benznidazole and posaconazole in experimental Chagas disease: Positive interaction in concomitant and sequential treatments. PLoS Negl. Trop. Dis., 2013, 7(8) e2367
[http://dx.doi.org/10.1371/journal.pntd.0002367] [PMID: 23967360]
[32]
A study of the use of oral posaconazole (POS) in the treatment of asymptomatic chronic Chagas disease (P05267) (STOP CHAGAS), (n.d.).. http://clinicaltrials.gov/show/NCT0, 1377480. [Accessed on 12th September 2019]
[33]
Urbina, J.A.; Payares, G.; Sanoja, C.; Lira, R.; Romanha, A.J. in vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int. J. Antimicrob. Agents, 2003, 21(1), 27-38.
[http://dx.doi.org/10.1016/S0924-8579(02)00273-X] [PMID: 12507835]
[34]
Yamaguchi, H. Potential of ravuconazole and its prodrugs as the new oral therapeutics for onychomycosis. Med. Mycol. J., 2016, 57(4), E93-E110.
[http://dx.doi.org/10.3314/mmj.16-00006] [PMID: 27904057]
[35]
Diniz, Lde.F.; Caldas, I.S.; Guedes, P.M.D.M.; Crepalde, G.; de Lana, M.; Carneiro, C.M.; Talvani, A.; Urbina, J.A.; Bahia, M.T. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi. Antimicrob. Agents Chemother., 2010, 54(7), 2979-2986.
[http://dx.doi.org/10.1128/AAC.01742-09] [PMID: 20404124]
[36]
Pivotal study of fexinidazole for human African trypanosomiasis in stage 2. https://clinicaltrials.gov/ct2/show/NCT016858272012 [Accessed on 12th September 2019]
[37]
Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother., 1996, 40(11), 2592-2597.
[http://dx.doi.org/10.1128/AAC.40.11.2592] [PMID: 8913471]
[38]
Bettiol, E.; Samanovic, M.; Murkin, A.S.; Raper, J.; Buckner, F.; Rodriguez, A. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl. Trop. Dis., 2009, 3(2)e384
[http://dx.doi.org/10.1371/journal.pntd.0000384] [PMID: 19238193]
[39]
Canavaci, A.M.; Bustamante, J.M.; Padilla, A.M.; Perez Brandan, C.M.; Simpson, L.J.; Xu, D.; Boehlke, C.L.; Tarleton, R.L. in vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl. Trop. Dis., 2010, 4(7)e740
[http://dx.doi.org/10.1371/journal.pntd.0000740] [PMID: 20644616]
[40]
Rodriguez, A.; Tarleton, R.L. Transgenic parasites accelerate drug discovery. Trends Parasitol., 2012, 28(3), 90-92.
[http://dx.doi.org/10.1016/j.pt.2011.12.003] [PMID: 22277131]
[41]
Brodin, P.; Christophe, T. High-content screening in infectious diseases. Curr. Opin. Chem. Biol., 2011, 15(4), 534-539.
[http://dx.doi.org/10.1016/j.cbpa.2011.05.023] [PMID: 21684803]
[42]
Engel, J.C.; Ang, K.K.; Chen, S.; Arkin, M.R.; McKerrow, J.H.; Doyle, P.S. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob. Agents Chemother., 2010, 54(8), 3326-3334.
[http://dx.doi.org/10.1128/AAC.01777-09] [PMID: 20547819]
[43]
Moon, S.; Siqueira-Neto, J.L.; Moraes, C.B.; Yang, G.; Kang, M.; Freitas-Junior, L.H.; Hansen, M.A.E. An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi. PLoS One, 2014, 9(2) e87188
[http://dx.doi.org/10.1371/journal.pone.0087188] [PMID: 24503652]
[44]
Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov., 2011, 10(7), 507-519.
[http://dx.doi.org/10.1038/nrd3480] [PMID: 21701501]
[45]
Eder, J.; Sedrani, R.; Wiesmann, C. The discovery of first-in-class drugs: Origins and evolution. Nat. Rev. Drug Discov., 2014, 13(8), 577-587.
[http://dx.doi.org/10.1038/nrd4336] [PMID: 25033734]
[46]
Matheson, D.; Loring, B. Hitting the target and missing the point. Nurs. N. Z., 2011, 17(10), 18-19.
[PMID: 22216621]
[47]
Roti, G.; Stegmaier, K. Genetic and proteomic approaches to identify cancer drug targets. Br. J. Cancer, 2012, 106(2), 254-261.
[http://dx.doi.org/10.1038/bjc.2011.543] [PMID: 22166799]
[48]
Sams-Dodd, F. Target-based drug discovery: Is something wrong? Drug Discov. Today, 2005, 10(2), 139-147.
[http://dx.doi.org/10.1016/S1359-6446(04)03316-1] [PMID: 15718163]
[49]
Sams-Dodd, F. Drug discovery: Selecting the optimal approach. Drug Discov. Today, 2006, 11(9-10), 465-472.
[http://dx.doi.org/10.1016/j.drudis.2006.03.015] [PMID: 16635811]
[50]
Ecker, D.J.; Griffey, R.H. RNA as a small-molecule drug target: Doubling the value of genomics. Drug Discov. Today, 1999, 4(9), 420-429.
[http://dx.doi.org/10.1016/S1359-6446(99)01389-6] [PMID: 10461152]
[51]
Singh, S.; Malik, B.K.; Sharma, D.K. Molecular drug targets and structure based drug design: A holistic approach. Bioinformation, 2006, 1(8), 314-320.
[http://dx.doi.org/10.6026/97320630001314] [PMID: 17597912]
[52]
Baker, A.; Gill, J. Rethinking innovation in pharmaceutical R&D. J. Commer. Biotechnol., 2005, 12(1), 45-49.
[http://dx.doi.org/10.1057/palgrave.jcb.3040147]
[53]
Swinney, D.C. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther., 2013, 93(4), 299-301.
[http://dx.doi.org/10.1038/clpt.2012.236] [PMID: 23511784]
[54]
Sykes, M.L.; Avery, V.M. Approaches to protozoan drug discovery: Phenotypic screening. J. Med. Chem., 2013, 56(20), 7727-7740.
[http://dx.doi.org/10.1021/jm4004279] [PMID: 23927763]
[55]
Martis, E.A.; Radhakrishnan, R.; Badve, R.R. High-throughput screening: The hits and leads of drug discovery-an overview. J. Appl. Pharm. Sci., 2011, 1(1), 2-10.
[56]
Armstrong, J.W. A review of high-throughput screening approaches for drug discovery. Am. Biotechnol. Lab., 1999, 17(1), 26-28.
[57]
Fernandes, T.G.; Diogo, M.M.; Clark, D.S.; Dordick, J.S.; Cabral, J.M. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol., 2009, 27(6), 342-349.
[http://dx.doi.org/10.1016/j.tibtech.2009.02.009] [PMID: 19398140]
[58]
Fara, D.C.; Oprea, T.; Prossnitz, E.R.; Bologa, C.G.; Edwards, B.S.; Sklar, L.A. Integration of virtual and physical screening. Drug Discov. Today, 2006, 3, 337-385.
[59]
Hann, M.M.; Oprea, T.I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol., 2004, 8(3), 255-263.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.003] [PMID: 15183323]
[60]
Clark, R.L.; Johnston, B.F.; Mackay, S.P.; Breslin, C.J.; Robertson, M.N.; Harvey, A.L. The drug discovery portal: A resource to enhance drug discovery from academia. Drug Discov. Today, 2010, 15(15-16), 679-683.
[http://dx.doi.org/10.1016/j.drudis.2010.06.003] [PMID: 20547242]
[61]
Alonso-Padilla, J.; Rodríguez, A. High throughput screening for anti-Trypanosoma cruzi drug discovery. PLoS Negl. Trop. Dis., 2014, 8(12)e3259
[http://dx.doi.org/10.1371/journal.pntd.0003259] [PMID: 25474364]
[62]
Mackey, T.K.; Liang, B.A.; Cuomo, R.; Hafen, R.; Brouwer, K.C.; Lee, D.E. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin. Microbiol. Rev., 2014, 27(4), 949-979.
[http://dx.doi.org/10.1128/CMR.00045-14] [PMID: 25278579]
[63]
Musgrove, P.; Hotez, P.J. Turning neglected tropical diseases into forgotten maladies. Health Aff. (Millwood), 2009, 28(6), 1691-1706.
[http://dx.doi.org/10.1377/hlthaff.28.6.1691] [PMID: 19887410]
[64]
Feasey, N.; Wansbrough-Jones, M.; Mabey, D.C.W.; Solomon, A.W. Neglected tropical diseases. Br. Med. Bull., 2010, 93(1), 179-200.
[http://dx.doi.org/10.1093/bmb/ldp046] [PMID: 20007668]
[65]
Zanella, F.; Lorens, J.B.; Link, W. High content screening: Seeing is believing. Trends Biotechnol., 2010, 28(5), 237-245.
[http://dx.doi.org/10.1016/j.tibtech.2010.02.005] [PMID: 20346526]
[66]
Siqueira-Neto, J.L.; Moon, S.; Jang, J.; Yang, G.; Lee, C.; Moon, H.K.; Chatelain, E.; Genovesio, A.; Cechetto, J.; Freitas-Junior, L.H. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl. Trop. Dis., 2012, 6(6) e1671
[http://dx.doi.org/10.1371/journal.pntd.0001671] [PMID: 22720099]
[67]
Aulner, N.; Danckaert, A.; Rouault-Hardoin, E.; Desrivot, J.; Helynck, O.; Commere, P.H.; Munier-Lehmann, H.; Späth, G.F.; Shorte, S.L.; Milon, G.; Prina, E. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl. Trop. Dis., 2013, 7(4)e2154
[http://dx.doi.org/10.1371/journal.pntd.0002154] [PMID: 23593521]
[68]
De Rycker, M.; Hallyburton, I.; Thomas, J.; Campbell, L.; Wyllie, S.; Joshi, D.; Cameron, S.; Gilbert, I.H.; Wyatt, P.G.; Frearson, J.A.; Fairlamb, A.H.; Gray, D.W. Comparison of a high-throughput high-content intracellular Leishmania donovani assay with an axenic amastigote assay. Antimicrob. Agents Chemother., 2013, 57(7), 2913-2922.
[http://dx.doi.org/10.1128/AAC.02398-12] [PMID: 23571538]
[69]
Nohara, L.L.; Lema, C.; Bader, J.O.; Aguilera, R.J.; Almeida, I.C. High-content imaging for automated determination of host-cell infection rate by the intracellular parasite Trypanosoma cruzi. Parasitol. Int., 2010, 59(4), 565-570.
[http://dx.doi.org/10.1016/j.parint.2010.07.007] [PMID: 20688189]
[70]
Nwaka, S.; Ramirez, B.; Brun, R.; Maes, L.; Douglas, F.; Ridley, R. Advancing drug innovation for neglected diseases-criteria for lead progression. PLoS Negl. Trop. Dis., 2009, 3(8)e440
[http://dx.doi.org/10.1371/journal.pntd.0000440] [PMID: 19707561]
[71]
Bustamante, J.M.; Tarleton, R.L. Methodological advances in drug discovery for Chagas disease. Expert Opin. Drug Discov., 2011, 6(6), 653-661.
[http://dx.doi.org/10.1517/17460441.2011.573782] [PMID: 21712965]
[72]
Jelicks, L.A.; Tanowitz, H.B. Advances in imaging of animal models of Chagas disease. Adv. Parasitol., 2011, 75(1), 193-208.
[http://dx.doi.org/10.1016/B978-0-12-385863-4.00009-5] [PMID: 21820557]
[73]
Romanha, A.J.; Castro, S.L. Soeiro, Mde.N.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; Spadafora, C.; Chiari, E.; Chatelain, E.; Chaves, G.; Calzada, J.E.; Bustamante, J.M.; Freitas-Junior, L.H.; Romero, L.I.; Bahia, M.T.; Lotrowska, M.; Soares, M.; Andrade, S.G.; Armstrong, T.; Degrave, W.; Andrade Zde, A. in vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Inst. Oswaldo Cruz, 2010, 105(2), 233-238.
[http://dx.doi.org/10.1590/S0074-02762010000200022] [PMID: 20428688]
[74]
Goyard, S.; Dutra, P.L.; Deolindo, P.; Autheman, D.; D’Archivio, S.; Minoprio, P. in vivo imaging of trypanosomes for a better assessment of host-parasite relationships and drug efficacy. Parasitol. Int., 2014, 63(1), 260-268.
[http://dx.doi.org/10.1016/j.parint.2013.07.011] [PMID: 23892180]
[75]
Lewis, M.D.; Fortes Francisco, A.; Taylor, M.C.; Burrell-Saward, H.; McLatchie, A.P.; Miles, M.A.; Kelly, J.M. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell. Microbiol., 2014, 16(9), 1285-1300.
[http://dx.doi.org/10.1111/cmi.12297] [PMID: 24712539]
[76]
Francisco, A.F.; Lewis, M.D.; Jayawardhana, S.; Taylor, M.C.; Chatelain, E.; Kelly, J.M. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob. Agents Chemother., 2015, 59(8), 4653-4661.
[http://dx.doi.org/10.1128/AAC.00520-15] [PMID: 26014936]
[77]
Francisco, A.F.; Jayawardhana, S.; Lewis, M.D.; White, K.L.; Shackleford, D.M.; Chen, G.; Saunders, J.; Osuna-Cabello, M.; Read, K.D.; Charman, S.A.; Chatelain, E.; Kelly, J.M. Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Sci. Rep., 2016, 6(1), 35351.
[http://dx.doi.org/10.1038/srep35351] [PMID: 27748443]
[78]
Ekins, S.; de Siqueira-Neto, J.L.; McCall, L.I.; Sarker, M.; Yadav, M.; Ponder, E.L.; Kallel, E.A.; Kellar, D.; Chen, S.; Arkin, M.; Bunin, B.A.; McKerrow, J.H.; Talcott, C. Machine learning models and pathway genome data base for Trypanosoma cruzi drug discovery. PLoS Negl. Trop. Dis., 2015, 9(6) e0003878
[http://dx.doi.org/10.1371/journal.pntd.0003878] [PMID: 26114876]
[79]
Ekins, S.; Casey, A.C.; Roberts, D.; Parish, T.; Bunin, B.A. Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2014, 94(2), 162-169.
[http://dx.doi.org/10.1016/j.tube.2013.12.001] [PMID: 24440548]
[80]
Ekins, S.; Reynolds, R.C.; Kim, H.; Koo, M.S.; Ekonomidis, M.; Talaue, M.; Paget, S.D.; Woolhiser, L.K.; Lenaerts, A.J.; Bunin, B.A.; Connell, N.; Freundlich, J.S. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem. Biol., 2013, 20(3), 370-378.
[http://dx.doi.org/10.1016/j.chembiol.2013.01.011] [PMID: 23521795]
[81]
Ekins, S.; Reynolds, R.C.; Franzblau, S.G.; Wan, B.; Freundlich, J.S.; Bunin, B.A. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. PLoS One, 2013, 8(5) e63240
[http://dx.doi.org/10.1371/journal.pone.0063240] [PMID: 23667592]
[82]
Vieira, D.F.; Choi, J.Y.; Calvet, C.M.; Siqueira-Neto, J.L.; Johnston, J.B.; Kellar, D.; Gut, J.; Cameron, M.D.; McKerrow, J.H.; Roush, W.R.; Podust, L.M. Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51. J. Med. Chem., 2014, 57(23), 10162-10175.
[http://dx.doi.org/10.1021/jm501568b] [PMID: 25393646]
[83]
Calvet, C.M.; Vieira, D.F.; Choi, J.Y.; Kellar, D.; Cameron, M.D.; Siqueira-Neto, J.L.; Gut, J.; Johnston, J.B.; Lin, L.; Khan, S.; McKerrow, J.H.; Roush, W.R.; Podust, L.M. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency. J. Med. Chem., 2014, 57(16), 6989-7005.
[http://dx.doi.org/10.1021/jm500448u] [PMID: 25101801]
[84]
Calvet, C.M.; Choi, J.Y.; Thomas, D.; Suzuki, B.; Hirata, K.; Lostracco-Johnson, S.; de Mesquita, L.B.; Nogueira, A.; Meuser-Batista, M.; Silva, T.A.; Siqueira-Neto, J.L.; Roush, W.R.; de Souza Pereira, M.C.; McKerrow, J.H.; Podust, L.M. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection. PLoS Negl. Trop. Dis., 2017, 11(12) e0006132
[http://dx.doi.org/10.1371/journal.pntd.0006132] [PMID: 29281643]
[85]
Francisco, A.F.; Jayawardhana, S.; Taylor, M.C.; Lewis, M.D.; Kelly, J.M. Assessing the effectiveness of curative benznidazole treatment in preventing chronic cardiac pathology in experimental models of Chagas disease. Antimicrob. Agents Chemother., 2018, 62(10), e00832-e18.
[http://dx.doi.org/10.1128/AAC.00832-18] [PMID: 30082291]
[86]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[87]
Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today, 2007, 12(5-6), 225-233.
[http://dx.doi.org/10.1016/j.drudis.2007.01.011] [PMID: 17331887]
[88]
Klebe, G. Virtual ligand screening: Strategies, perspectives and limitations. Drug Discov. Today, 2006, 11(13-14), 580-594.
[http://dx.doi.org/10.1016/j.drudis.2006.05.012] [PMID: 16793526]
[89]
Brand, S.; Ko, E.J.; Viayna, E.; Thompson, S.; Spinks, D.; Thomas, M.; Sandberg, L.; Francisco, A.F.; Jayawardhana, S.; Smith, V.C.; Jansen, C.; De Rycker, M.; Thomas, J.; MacLean, L.; Osuna-Cabello, M.; Riley, J.; Scullion, P.; Stojanovski, L.; Simeons, F.R.C.; Epemolu, O.; Shishikura, Y.; Crouch, S.D.; Bakshi, T.S.; Nixon, C.J.; Reid, I.H.; Hill, A.P.; Underwood, T.Z.; Hindley, S.J.; Robinson, S.A.; Kelly, J.M.; Fiandor, J.M.; Wyatt, P.G.; Marco, M.; Miles, T.J.; Read, K.D.; Gilbert, I.H. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi. J. Med. Chem., 2017, 60(17), 7284-7299.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00463] [PMID: 28844141]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy