Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

萜和苯丙烷类化合物作为乙酰胆碱酯酶和丁酰胆碱酯酶的抑制剂:一项比较研究。

卷 16, 期 10, 2019

页: [963 - 973] 页: 11

弟呕挨: 10.2174/1567205016666191010105115

价格: $65

摘要

背景:胆碱酯酶抑制剂通常用于治疗阿尔茨海默氏病,寻找新的胆碱酯酶抑制剂是当务之急。 目标:比较了27种化合物,包括以前未测试过的化合物。试图精确描述醇在抑制活性中的作用。本文强调了“假阳性”空白样品在常规分析中的作用。 方法:采用Ellman的比色法对胆碱酯酶的抑制作用进行了测量,作者对此进行了一些修改(包括“假阳性”效应)。还仔细评估了乙醇和甲醇的抑制作用。比较了当前和过去的结果,并考虑了酶和酒精含量的来源。 结果:首次发现了新的抑制剂,即:茉莉酸甲酯,1R-(-)-nopol((抗乙酰基-(AChE)和丁酰胆碱酯酶(BChE)活性))和1,4-桉树脑,同种异体-芳登dr烯,奈洛尔多,β-紫罗兰酮和(R)-(+)-pulegone(抗BChE活性)。齐墩果酸和(+)-β-香茅烯(先前未研究)被证明是无效的抑制剂。对于许多众所周知的抑制剂(例如,神经醇,(-)-薄荷醇,(+)-薄荷醇,异冰片醇,(-)乙酸冰片酯,li烯,α-pine烯,β-pine烯,α-紫罗兰酮和丁香酚)在我们的发现和以前的研究结果之间发现了一些严重的差异。乙醇和甲醇分别显示出最高0.29%(v / v)和0.23%(v / v)的抗AChE活性。类似地,高达0.33%(v / v)的乙醇和高达0.29%(v / v)的甲醇也不会抑制BChE的活性。 结论:可以说,应准确确定酒精的影响,空白“假阳性”样品应与测试样品一起处理。此外,必须考虑酶来源对该测试结果的影响。

关键词: 阿尔茨海默氏病,乙酰胆碱酯酶,丁酰胆碱酯酶,抑制剂,萜烯,苯丙烷,胆碱酯酶抑制剂。

« Previous
[1]
Burčul F, Blažević I, Radan M, Politeo O. Terpenes, phenylpropanoids, sulfur and other essential oil constituents as inhibitors of cholinesterases. Curr Med Chem (2018).
[http://dx.doi.org/10.2174/0929867325666180330092607]
[2]
Perry NSL, Houghton PJ, Theobald A, Jenner P, Perry EK. In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol 52(7): 895-902. (2000).
[http://dx.doi.org/10.1211/0022357001774598] [PMID: 10933142]
[3]
Wong KK, Ngo JC, Liu S. Lin HQ, Hu C, Shaw PC, Wan DC, et al Interaction study of two diterpenes, cryptotanshinone and dihydrotanshinone, to human acetylcholinesterase and butyrylcholinesterase by molecular docking and kinetic analysis. Chem Biol Interact 187(1-3): 335-9. (2010).
[http://dx.doi.org/10.1016/j.cbi.2010.03.026] [PMID: 20350537]
[4]
Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem 53(5): 1765-8. (2005).
[http://dx.doi.org/10.1021/jf040019b] [PMID: 15740071]
[5]
Rhee IK, van Rijn RM, Verpoorte R. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem Anal 14(3): 127-31. (2003).
[http://dx.doi.org/10.1002/pca.675] [PMID: 12793457]
[6]
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. (1961).
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[7]
Szwajgier D, Borowiec K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J Inst Brew 118: 40-8. (2012).
[http://dx.doi.org/10.1002/jib.5]
[8]
Miyazawa M, Watanabe H, Umemoto K, Kameoka H. Inhibition of acetylcholinesterase activity by essential oils of Mentha species. J Agric Food Chem 46(9): 3431-4. (1998).
[http://dx.doi.org/10.1021/jf9707041]
[9]
Keane S, Ryan MF. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem Mol Biol 29(12): 1097-104. (1999).
[http://dx.doi.org/10.1016/S0965-1748(99)00088-0]
[10]
Savelev S, Okello E, Perry NS, Wilkins RM, Perry EK. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol Biochem Behav 75(3): 661-8. (2003).
[http://dx.doi.org/10.1016/S0091-3057(03)00125-4] [PMID: 12895684]
[11]
Mills C, Cleary BJ, Gilmer JF, Walsh JJ. Inhibition of acetylcholinesterase by Tea Tree oil. J Pharm Pharmacol 56(3): 375-9. (2004).
[http://dx.doi.org/10.1211/0022357022773] [PMID: 15025863]
[12]
Savelev SU, Okello EJ, Perry EK. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother Res 18(4): 315-24. (2004).
[http://dx.doi.org/10.1002/ptr.1451] [PMID: 15162368]
[13]
Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by tea tree oil and constituent terpenoids. Flavour Fragrance J 21: 198-201. (2006).
[http://dx.doi.org/10.1002/ffj.1580]
[14]
Orhan I, Kartal M, Kan Y, Sener B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z Natforsch C J Biosci 63(7-8): 547-53. (2008).
[http://dx.doi.org/10.1515/znc-2008-7-813] [PMID: 18810999]
[15]
Picollo MI, Toloza AC, Mougabure Cueto G, Zygadlo J, Zerba E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79(4): 271-8. (2008).
[http://dx.doi.org/10.1016/j.fitote.2008.01.005] [PMID: 18321657]
[16]
Loizzo MR, Menichini F, Tundis R, Bonesi M, Conforti F, Nadjfi F, et al. In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer’s disease. J Oleo Sci 58(8): 443-6. (2009).
[http://dx.doi.org/10.5650/jos.58.443] [PMID: 19584571]
[17]
Menichini F, Tundis R, Loizzo MR, Bonesi M, Marrelli M, Statti GA, et al. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 80(5): 297-300. (2009).
[http://dx.doi.org/10.1016/j.fitote.2009.03.008] [PMID: 19351555]
[18]
Dohi S, Terasaki M, Makino M. Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J Agric Food Chem 57(10): 4313-8. (2009).
[http://dx.doi.org/10.1021/jf804013j] [PMID: 19358605]
[19]
Kivrak DME, Öztürk M, Mercan N, Harmandar M, Topçu G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem 116(2): 470-9. (2009).
[http://dx.doi.org/10.1016/j.foodchem.2009.02.069]
[20]
Bonesi M, Menichini F, Tundis R, Loizzo MR, Conforti F, Passalacqua NG, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J Enzyme Inhib Med Chem 25(5): 622-8. (2010).
[http://dx.doi.org/10.3109/14756360903389856] [PMID: 20429778]
[21]
López MD, Pascual-Villalobos MJ. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crops Prod 31(2): 284-8. (2010).
[http://dx.doi.org/10.1016/j.indcrop.2009.11.005]
[22]
Aazza S, Lyoussi B, Miguel MG. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16(9): 7672-90. (2011).
[http://dx.doi.org/10.3390/molecules16097672] [PMID: 21900869]
[23]
Costa P, Gonçalves S, Grosso C, Andrade PB, Valentão P, Bernardo-Gil MG, et al. Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation. Ind Crops Prod 36: 246-56. (2012).
[http://dx.doi.org/10.1016/j.indcrop.2011.09.014]
[24]
Kitphati W, Wattanakamolkul K, Lomarat P, Phanthong P, Anantachoke N, Nukoolkarn V. Anticholinesterase of essential oils and their constituents from Thai medicinal plants on purified and cellular enzymes. J Asian Assoc Schools Pharm 1: 58-67. (2012).
[25]
Costa P, Grosso C, Gonçalves S, Andrade PB, Valentão P, Bernardo-Gil MG. Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L’Hér. Food Chem 135: 112-21. (2012).
[http://dx.doi.org/10.1016/j.foodchem.2012.04.108]
[26]
Kang JS, Kim E, Lee SH, Park IK. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. Pestic Biochem Physiol 105(1): 50-6. (2013).
[http://dx.doi.org/10.1016/j.pestbp.2012.11.007] [PMID: 24238290]
[27]
Senol FS, Orhan IE, Kurkcuoglu M, Khan MTH, Altintas A, Sener B, et al. A mechanistic investigation on anticholinesterase and antioxidant effects of rose (Rosa damascena Mill.). Food Res Int 53: 502-9. (2013).
[http://dx.doi.org/10.1016/j.foodres.2013.05.031]
[28]
Jemia MB, Tundis R, Maggio A, Rosselli S, Senatore F, Menichini F, et al. NMR-based quantification of rosmarinic and carnosic acids, GC-MS profile and bioactivity relevant to neurodegenerative disorders of Rosmarinus officinalis L. extracts. J Funct Foods 5: 1873-82. (2013).
[http://dx.doi.org/10.1016/j.jff.2013.09.008]
[29]
López MD, Pascual-Villalobos MJ. Are monoterpenoids and phenylpropanoids efficient inhibitors of acetylcholinesterase from stored product insect strains? Flavour Fragrance J 30: 108-12. (2015).
[http://dx.doi.org/10.1002/ffj.3220]
[30]
Zarrad K, Hamouda AB, Chaieb I, Laarif A, Jemâa JMB. Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Ind Crops Prod 76: 121-7. (2015).
[http://dx.doi.org/10.1016/j.indcrop.2015.06.039]
[31]
López MD, Campoy FJ, Pascual-Villalobos MJ, Muñoz-Delgado E, Vidal CJ. Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration-dependent manner. Chem Biol Interact 229: 36-43. (2015).
[http://dx.doi.org/10.1016/j.cbi.2015.01.006] [PMID: 25636489]
[32]
Lomarat P, Sripha K, Phanthong P, Kitphati W, Thirapanmethee K, Bunyapraphatsara N. In vitro biological activities of black pepper essential oil and its major components relevant to the prevention of Alzheimer’s disease. Thaiphesatchasan 39(3): 94-101. (2015).
[33]
Jung HJ, Jung HA, Min B-S, Choi JS. Anticholinesterase and site amyloid precursor protein cleaving enzyme 1 inhibitory compounds from the heartwood of Juniperus chinensis. Chem Pharm Bull (Tokyo) 63(11): 955-60. (2015).
[http://dx.doi.org/10.1248/cpb.c15-00504] [PMID: 26521861]
[34]
Generalić Mekinić I, Blažević I, Mudnić I, Burčul F, Grga M, Skroza D. Sea fennel (Crithmum maritimum L.): phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J Food Sci Technol 53: 3104-12. (2016).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy