Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Quercetin-Amino Acid Conjugates are Promising Anti-Cancer Agents in Drug Discovery Projects

Author(s): Alexey V. Dobrydnev*, Tetiana M. Tkachuk, Viktor P. Atamaniuk and Maria V. Popova

Volume 20, Issue 2, 2020

Page: [107 - 122] Pages: 16

DOI: 10.2174/1389557519666191009152007

Price: $65

Abstract

Quercetin is a plant flavonoid with great potential for the prevention and treatment of disease. Despite the curative application of quercetin is hampered by low bioavailability, its core serves as a scaffold for generating more potent compounds with amplified therapeutic window. This review aims to describe recent advances in the improvement of the pharmacokinetic profile of quercetin via the amino acid prodrug approach which offers wide structural diversity, physicochemical and biological properties improvement. According to the findings, conjugation of quercetin with amino acids results in increased solubility, stability, cellular permeability as well as biological activity. In particular quercetin- amino acid conjugates exhibited potent anticancer, MDR-reversal and antibiotic resistance reversal activities. The synthetic pathways and examples of quercetin-amino acid conjugates are considered. Practical considerations and challenges associated with the development of these prodrugs are also discussed. This mini-review covers the literature on quercetin-amino acid conjugates since 2001 when the first thematic work was published.

Keywords: Quercetin, amino acids, conjugates, prodrugs, bioavailability, drug delivery, anti-cancer agents, multidrug resistance modulators.

Next »
Graphical Abstract

[1]
Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582.
[http://dx.doi.org/10.2174/09298673113209990120] [PMID: 23514412]
[2]
Kühnau, J. The flavonoids. A class of semi-essential food components: Their role in human nutrition. World Rev. Nutr. Diet., 1976, 24, 117-191.
[http://dx.doi.org/10.1159/000399407] [PMID: 790781]
[3]
Formica, J.V.; Regelson, W. Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[4]
Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of U.S. fruits, vegetables, and nuts. J. Agric. Food Chem., 2006, 54(26), 9966-9977.
[http://dx.doi.org/10.1021/jf061478a] [PMID: 17177529]
[5]
Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem., 2007, 55(25), 10067-10080.
[http://dx.doi.org/10.1021/jf0712503] [PMID: 17997520]
[6]
Hertog, M.G.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr. Cancer, 1993, 20(1), 21-29.
[http://dx.doi.org/10.1080/01635589309514267] [PMID: 8415127]
[7]
Mitchell, A.E.; Hong, Y.J.; Koh, E.; Barrett, D.M.; Bryant, D.E.; Denison, R.F.; Kaffka, S. Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J. Agric. Food Chem., 2007, 55(15), 6154-6159.
[http://dx.doi.org/10.1021/jf070344+] [PMID: 17590007]
[8]
Hertog, M.G.L.; Hollman, P.C.H.; van de Putte, B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. Food Chem., 1993, 41(8), 1242-1246.
[http://dx.doi.org/10.1021/jf00032a015]
[9]
Sampson, L.; Rimm, E.; Hollman, P.C.; de Vries, J.H.; Katan, M.B. Flavonol and flavone intakes in US health professionals. J. Am. Diet. Assoc., 2002, 102(10), 1414-1420.
[http://dx.doi.org/10.1016/S0002-8223(02)90314-7] [PMID: 12396158]
[10]
Petrus, K.; Schwartz, H.; Sontag, G. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Anal. Bioanal. Chem., 2011, 400(8), 2555-2563.
[http://dx.doi.org/10.1007/s00216-010-4614-7] [PMID: 21229237]
[11]
Brown, J.P. A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat. Res., 1980, 75(3), 243-277.
[http://dx.doi.org/10.1016/0165-1110(80)90029-9] [PMID: 6770263]
[12]
El Khadem, H.; Mohammed, Y.S. 675. Constituents of the leaves of Psidium guaijava, L. Part II. Quercetin, avicularin, and guaijaverin. J. Chem. Soc., 1958, 0, 3320-3323.
[http://dx.doi.org/10.1039/jr9580003320]
[13]
Prabu, G.R.; Gnanamani, A.; Sadulla, S. Guaijaverin -- a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J. Appl. Microbiol., 2006, 101(2), 487-495.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02912.x] [PMID: 16882158]
[14]
Li, S.; Zhang, Z.; Cain, A.; Wang, B.; Long, M.; Taylor, J. Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J. Agric. Food Chem., 2005, 53(1), 32-37.
[http://dx.doi.org/10.1021/jf0484780] [PMID: 15631505]
[15]
van der Watt, E.; Pretorius, J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L. J. Ethnopharmacol., 2001, 76(1), 87-91.
[http://dx.doi.org/10.1016/S0378-8741(01)00197-0] [PMID: 11378287]
[16]
Singh, U.P.; Singh, D.P.; Singh, M.; Maurya, S.; Srivastava, J.S.; Singh, R.B.; Singh, S.P. Characterization of phenolic compounds in some Indian mango cultivars. Int. J. Food Sci. Nutr., 2004, 55(2), 163-169.
[http://dx.doi.org/10.1080/09637480410001666441] [PMID: 14985189]
[17]
Panda, S.; Kar, A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors, 2007, 31(3-4), 201-210.
[http://dx.doi.org/10.1002/biof.5520310307] [PMID: 18997283]
[18]
Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 2003, 51(3), 571-581.
[http://dx.doi.org/10.1021/jf020926l] [PMID: 12537425]
[19]
Pennesi, C.M.; Neely, J.; Marks, A.G., Jr; Basak, S.A. Use of isoquercetin in the treatment of Prurigo nodularis. J. Drugs Dermatol., 2017, 16(11), 1156-1158.
[PMID: 29141065]
[20]
Ghiselli, A.; Nardini, M.; Baldi, A.; Scaccini, C. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agric. Food Chem., 1998, 46(2), 361-367.
[http://dx.doi.org/10.1021/jf970486b] [PMID: 10554247]
[21]
Wei, Y.; Xie, Q.; Dong, W.; Ito, Y. Separation of epigallocatechin and flavonoids from Hypericum perforatum L. by high-speed counter-current chromatography and preparative high-performance liquid chromatography. J. Chromatogr. A, 2009, 1216(19), 4313-4318.
[http://dx.doi.org/10.1016/j.chroma.2008.12.056] [PMID: 19150073]
[22]
Moon, J.H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3-O-β-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Biol. Med., 2001, 30(11), 1274-1285.
[http://dx.doi.org/10.1016/S0891-5849(01)00522-6] [PMID: 11368925]
[23]
Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem., 2003, 51(22), 6452-6455.
[http://dx.doi.org/10.1021/jf034543e] [PMID: 14558761]
[24]
Malagutti, A.R.; Zuin, V.G.; Cavalheiro, É.T.G.; Mazo, L.H. Determination of rutin in green tea infusions using square‐wave voltammetry with a rigid carbon‐polyurethane composite electrode. Electroanalysis, 2006, 18(10), 1028-1034.
[http://dx.doi.org/10.1002/elan.200603496]
[25]
Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem., 1999, 47(11), 4649-4652.
[http://dx.doi.org/10.1021/jf990186p] [PMID: 10552865]
[26]
Williamson, G.; Plumb, G.W.; Uda, Y.; Price, K.R.; Rhodes, M.J.C. Dietary quercetin glycosides: Antioxidant activity and induction of the anticarcinogenic phase II marker enzyme quinone reductase in Hepalclc7 cells. Carcinogenesis, 1996, 17(11), 2385-2387.
[http://dx.doi.org/10.1093/carcin/17.11.2385] [PMID: 8968052]
[27]
Olsson, M.E.; Gustavsson, K-E.; Vågen, I.M. Quercetin and isorhamnetin in sweet and red cultivars of onion (Allium cepa L.) at harvest, after field curing, heat treatment, and storage. J. Agric. Food Chem., 2010, 58(4), 2323-2330.
[http://dx.doi.org/10.1021/jf9027014] [PMID: 20099844]
[28]
Zhang, Z.F.; Fan, S.H.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin improves hepatic lipid homeostasis by restoring NAD(+)-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem. Pharmacol., 2014, 91(1), 74-86.
[http://dx.doi.org/10.1016/j.bcp.2014.07.002] [PMID: 25026599]
[29]
Riccioni, C.; Sarcinella, R.; Izzo, A.; Palermo, G.; Liguori, M. Effectiveness of Troxerutin in association with Pycnogenol in the pharmacological treatment of venous insufficiency. Minerva Cardioangiol., 2004, 52(1), 43-48.
[PMID: 14765037]
[30]
Lu, J.; Wu, D-M.; Zheng, Z-H.; Zheng, Y-L.; Hu, B.; Zhang, Z-F. Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain, 2011, 134(Pt 3), 783-797.
[http://dx.doi.org/10.1093/brain/awq376] [PMID: 21252113]
[31]
Wagner, J. Quercetin-3,4′-diglukosid, ein Flavonolglykosid des Roßkastaniensamens. Naturwissenschaften, 1961, 48(2), 54-54.
[http://dx.doi.org/10.1007/BF00603428]
[32]
Zhang, L.M.; Zhang, Y.Z.; Liu, Y.Q.; Gong, Z.H.; Zhao, Y.M.; Li, Y.F. CTN-986, a compound extracted from cottonseeds, increases cell proliferation in hippocampus in vivo and in cultured neural progenitor cells in vitro. Eur. J. Pharmacol., 2009, 607(1-3), 110-113.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.052] [PMID: 19326568]
[33]
Spencer, J.P.; Abd-el-Mohsen, M.M.; Rice-Evans, C. Cellular uptake and metabolism of flavonoids and their metabolites: Implications for their bioactivity. Arch. Biochem. Biophys., 2004, 423(1), 148-161.
[http://dx.doi.org/10.1016/j.abb.2003.11.010] [PMID: 14989269]
[34]
Terao, J.; Murota, K.; Kawai, Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivo. Food Funct., 2011, 2(1), 11-17.
[http://dx.doi.org/10.1039/C0FO00106F] [PMID: 21773581]
[35]
Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem., 2009, 57(15), 6485-6501.
[http://dx.doi.org/10.1021/jf902107d] [PMID: 19580283]
[36]
Rossi, M.; Amaretti, A.; Leonardi, A.; Raimondi, S.; Simone, M.; Quartieri, A. Potential impact of probiotic consumption on the bioactivity of dietary phytochemicals. J. Agric. Food Chem., 2013, 61(40), 9551-9558.
[http://dx.doi.org/10.1021/jf402722m] [PMID: 24007212]
[37]
Shin, N.R.; Moon, J.S.; Shin, S-Y.; Li, L.; Lee, Y.B.; Kim, T-J.; Han, N.S. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett. Appl. Microbiol., 2016, 62(1), 68-74.
[http://dx.doi.org/10.1111/lam.12512] [PMID: 26505733]
[38]
Lu, Z.; Zhang, Y.; Shi, N. Biotransformation of rutin to quercetin by microorganisms. IOSRJEN, 2012, 2(1), 70-76.
[http://dx.doi.org/10.9790/3021-0217076]
[39]
Pamukcu, A.M.; Yalçiner, S.; Hatcher, J.F.; Bryan, G.T. Quercetin, a rat intestinal and bladder carcinogen present in bracken fern (Pteridium aquilinum). Cancer Res., 1980, 40(10), 3468-3472.
[PMID: 7438034]
[40]
NTP technical report on the toxicology and carcinogenesis studies of quercetin (CAS No., 117-39-5) in F344/N rats (Feed study). September 1992, NTP TR 409, NIH Publication No. 92-3140. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, North Carolina . https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr409.pdf
[41]
Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., 2007, 45(11), 2179-2205.
[http://dx.doi.org/10.1016/j.fct.2007.05.015] [PMID: 17698276]
[42]
Okamoto, T. Safety of quercetin for clinical application.(Review). Int. J. Mol. Med., 2005, 16(2), 275-278.
[http://dx.doi.org/10.3892/ijmm.16.2.275] [PMID: 16012761]
[43]
Bischoff, S.C. Quercetin: Potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[44]
Romero, M.; Jiménez, R.; Sánchez, M.; López-Sepúlveda, R.; Zarzuelo, M.J.; O’Valle, F.; Zarzuelo, A.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis, 2009, 202(1), 58-67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.007] [PMID: 18436224]
[45]
Loke, W.M.; Proudfoot, J.M.; McKinley, A.J.; Needs, P.W.; Kroon, P.A.; Hodgson, J.M.; Croft, K.D. Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J. Agric. Food Chem., 2008, 56(10), 3609-3615.
[http://dx.doi.org/10.1021/jf8003042] [PMID: 18454540]
[46]
Ahn, J.; Lee, H.; Kim, S.; Park, J.; Ha, T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun., 2008, 373(4), 545-549.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.077] [PMID: 18586010]
[47]
Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008, 16(9), 2081-2087.
[http://dx.doi.org/10.1038/oby.2008.315] [PMID: 18551111]
[48]
Pearce, F.L.; Befus, A.D.; Bienenstock, J. Mucosal mast cells. III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J. Allergy Clin. Immunol., 1984, 73(6), 819-823.
[http://dx.doi.org/10.1016/0091-6749(84)90453-6] [PMID: 6202731]
[49]
Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy, 2000, 30(4), 501-508.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00768.x] [PMID: 10718847]
[50]
Shaik, Y.B.; Castellani, M.L.; Perrella, A.; Conti, F.; Salini, V.; Tete, S.; Madhappan, B.; Vecchiet, J.; De Lutiis, M.A.; Caraffa, A.; Cerulli, G. Role of quercetin (a natural herbal compound) in allergy and inflammation. J. Biol. Regul. Homeost. Agents, 2006, 20(3-4), 47-52.
[PMID: 18187018]
[51]
Sheu, J.R.; Hsiao, G.; Chou, P.H.; Shen, M.Y.; Chou, D.S. Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. J. Agric. Food Chem., 2004, 52(14), 4414-4418.
[http://dx.doi.org/10.1021/jf040059f] [PMID: 15237945]
[52]
Dell’Agli, M.; Maschi, O.; Galli, G.V.; Fagnani, R.; Dal Cero, E.; Caruso, D.; Bosisio, E. Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br. J. Nutr., 2008, 99(5), 945-951.
[http://dx.doi.org/10.1017/S0007114507837470] [PMID: 17927845]
[53]
Gryglewski, R.J.; Korbut, R.; Robak, J.; Swies, J. On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol., 1987, 36(3), 317-322.
[http://dx.doi.org/10.1016/0006-2952(87)90288-7] [PMID: 3101704]
[54]
Hubbard, G.P.; Wolffram, S.; Lovegrove, J.A.; Gibbins, J.M. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost., 2004, 2(12), 2138-2145.
[http://dx.doi.org/10.1111/j.1538-7836.2004.01067.x] [PMID: 15613018]
[55]
Bureau, G.; Longpré, F.; Martinoli, M.G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J. Neurosci. Res., 2008, 86(2), 403-410.
[http://dx.doi.org/10.1002/jnr.21503] [PMID: 17929310]
[56]
Kumazawa, Y.; Kawaguchi, K.; Takimoto, H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Curr. Pharm. Des., 2006, 12(32), 4271-4279.
[http://dx.doi.org/10.2174/138161206778743565] [PMID: 17100629]
[57]
Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[58]
Shutenko, Z.; Henry, Y.; Pinard, E.; Seylaz, J.; Potier, P.; Berthet, F.; Girard, P.; Sercombe, R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem. Pharmacol., 1999, 57(2), 199-208.
[http://dx.doi.org/10.1016/S0006-2952(98)00296-2] [PMID: 9890569]
[59]
Gatto, M.T.; Falcocchio, S.; Grippa, E.; Mazzanti, G.; Battinelli, L.; Nicolosi, G.; Lambusta, D.; Saso, L. Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters. Bioorg. Med. Chem., 2002, 10(2), 269-272.
[http://dx.doi.org/10.1016/S0968-0896(01)00275-9] [PMID: 11741775]
[60]
González-Segovia, R.; Quintanar, J.L.; Salinas, E.; Ceballos-Salazar, R.; Aviles-Jiménez, F.; Torres-López, J. Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig. J. Gastroenterol., 2008, 43(6), 441-447.
[http://dx.doi.org/10.1007/s00535-008-2184-7] [PMID: 18600388]
[61]
Spedding, G.; Ratty, A.; Middleton, E., Jr Inhibition of reverse transcriptases by flavonoids. Antiviral Res., 1989, 12(2), 99-110.
[http://dx.doi.org/10.1016/0166-3542(89)90073-9] [PMID: 2480745]
[62]
Davis, J.M.; Murphy, E.A.; McClellan, J.L.; Carmichael, M.D.; Gangemi, J.D. Quercetin reduces susceptibility to influenza infection following stressful exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(2), R505-R509.
[http://dx.doi.org/10.1152/ajpregu.90319.2008] [PMID: 18579649]
[63]
Varma, S.D.; Mikuni, I.; Kinoshita, J.H. Flavonoids as inhibitors of lens aldose reductase. Science, 1975, 188(4194), 1215-1216.
[http://dx.doi.org/10.1126/science.1145193] [PMID: 1145193]
[64]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 788-795.
[http://dx.doi.org/10.1248/cpb.50.788] [PMID: 12045333]
[65]
van der Woude, H.; Ter Veld, M.G.; Jacobs, N.; van der Saag, P.T.; Murk, A.J.; Rietjens, I.M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol. Nutr. Food Res., 2005, 49(8), 763-771.
[http://dx.doi.org/10.1002/mnfr.200500036] [PMID: 15937998]
[66]
Schlachterman, A.; Valle, F.; Wall, K.M.; Azios, N.G.; Castillo, L.; Morell, L.; Washington, A.V.; Cubano, L.A.; Dharmawardhane, S.F. Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl. Oncol., 2008, 1(1), 19-27.
[http://dx.doi.org/10.1593/tlo.07100] [PMID: 18607509]
[67]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[68]
Psahoulia, F.H.; Drosopoulos, K.G.; Doubravska, L.; Andera, L.; Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther., 2007, 6(9), 2591-2599.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0001] [PMID: 17876056]
[69]
Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem., 2005, 280(7), 5636-5645.
[http://dx.doi.org/10.1074/jbc.M408177200] [PMID: 15533929]
[70]
Nieman, D.C. Immunonutrition support for athletes. Nutr. Rev., 2008, 66(6), 310-320.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00038.x] [PMID: 18522619]
[71]
MacRae, H.S.; Mefferd, K.M. Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int. J. Sport Nutr. Exerc. Metab., 2006, 16(4), 405-419.
[http://dx.doi.org/10.1123/ijsnem.16.4.405] [PMID: 17136942]
[72]
Teixeira, S. Bioflavonoids: proanthocyanidins and quercetin and their potential roles in treating musculoskeletal conditions. J. Orthop. Sports Phys. Ther., 2002, 32(7), 357-363.
[http://dx.doi.org/10.2519/jospt.2002.32.7.357] [PMID: 12113470]
[73]
Abraham, M.H.; Acree, W.E. On the solubility of quercetin. J. Mol. Liq., 2014, 197, 157-159.
[http://dx.doi.org/10.1016/j.molliq.2014.05.006]
[74]
Razmara, R.S.; Daneshfar, A.; Sahraei, R. Solubility of quercetin in water + methanol and water + ethanol from (292.8 to 333.8) K. J. Chem. Eng. Data, 2010, 55(9), 3934-3936.
[http://dx.doi.org/10.1021/je9010757]
[75]
Carbonaro, M.; Grant, G. Absorption of quercetin and rutin in rat small intestine. Ann. Nutr. Metab., 2005, 49(3), 178-182.
[http://dx.doi.org/10.1159/000086882] [PMID: 16006787]
[76]
Crespy, V.; Morand, C.; Besson, C.; Manach, C.; Démigné, C.; Rémésy, C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr., 2001, 131(8), 2109-2114.
[http://dx.doi.org/10.1093/jn/131.8.2109] [PMID: 11481403]
[77]
Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 2003, 417(1), 12-17.
[http://dx.doi.org/10.1016/S0003-9861(03)00284-4] [PMID: 12921774]
[78]
Boulton, D.W.; Walle, U.K.; Walle, T. Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism. J. Pharm. Pharmacol., 1999, 51(3), 353-359.
[http://dx.doi.org/10.1211/0022357991772367] [PMID: 10344638]
[79]
van der Woude, H.; Gliszczyńska-Swigło, A.; Struijs, K.; Smeets, A.; Alink, G.M.; Rietjens, I.M.C.M. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Lett., 2003, 200(1), 41-47.
[http://dx.doi.org/10.1016/S0304-3835(03)00412-9] [PMID: 14550951]
[80]
de Boer, V.C.J.; de Goffau, M.C.; Arts, I.C.W.; Hollman, P.C.H.; Keijer, J. SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech. Ageing Dev., 2006, 127(7), 618-627.
[http://dx.doi.org/10.1016/j.mad.2006.02.007] [PMID: 16603228]
[81]
Chen, X.; Yin, O.Q.; Zuo, Z.; Chow, M.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res., 2005, 22(6), 892-901.
[http://dx.doi.org/10.1007/s11095-005-4584-1] [PMID: 15948033]
[82]
Manach, C.; Donovan, J.L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res., 2004, 38(8), 771-785.
[http://dx.doi.org/10.1080/10715760410001727858] [PMID: 15493450]
[83]
Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med., 2004, 36(7), 829-837.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.002] [PMID: 15019968]
[84]
Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radic. Res., 2001, 35(6), 941-952.
[http://dx.doi.org/10.1080/10715760100301441] [PMID: 11811545]
[85]
Wittig, J.; Herderich, M.; Graefe, E.U.; Veit, M. Identification of quercetin glucuronides in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2001, 753(2), 237-243.
[http://dx.doi.org/10.1016/S0378-4347(00)00549-1] [PMID: 11334336]
[86]
Mullen, W.; Graf, B.A.; Caldwell, S.T.; Hartley, R.C.; Duthie, G.G.; Edwards, C.A.; Lean, M.E.; Crozier, A. Determination of flavonol metabolites in plasma and tissues of rats by HPLC-radiocounting and tandem mass spectrometry following oral ingestion of [2-(14)C]quercetin-4′-glucoside. J. Agric. Food Chem., 2002, 50(23), 6902-6909.
[http://dx.doi.org/10.1021/jf020598p] [PMID: 12405795]
[87]
Mullen, W.; Hartley, R.C.; Crozier, A. Detection and identification of 14C-labelled flavonol metabolites by high-performance liquid chromatography-radiocounting and tandem mass spectrometry. J. Chromatogr. A, 2003, 1007(1-2), 21-29.
[http://dx.doi.org/10.1016/S0021-9673(03)00882-3] [PMID: 12924547]
[88]
Mullen, W.; Boitier, A.; Stewart, A.J.; Crozier, A. Flavonoid metabolites in human plasma and urine after the consumption of red onions: analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. J. Chromatogr. A, 2004, 1058(1-2), 163-168.
[http://dx.doi.org/10.1016/S0021-9673(04)01476-1] [PMID: 15595664]
[89]
van der Woude, H.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M. Identification of 14 quercetin phase II mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem. Res. Toxicol., 2004, 17(11), 1520-1530.
[http://dx.doi.org/10.1021/tx049826v] [PMID: 15540950]
[90]
Murota, K.; Terao, J. Quercetin appears in the lymph of unanesthetized rats as its phase II metabolites after administered into the stomach. FEBS Lett., 2005, 579(24), 5343-5346.
[http://dx.doi.org/10.1016/j.febslet.2005.08.060] [PMID: 16194534]
[91]
Ueno, I.; Nakano, N.; Hirono, I. Metabolic fate of [14C] quercetin in the ACI rat. Jpn. J. Exp. Med., 1983, 53(1), 41-50.
[PMID: 6876476]
[92]
Gugler, R.; Leschik, M.; Dengler, H.J. Disposition of quercetin in man after single oral and intravenous doses. Eur. J. Clin. Pharmacol., 1975, 9(2-3), 229-234.
[http://dx.doi.org/10.1007/BF00614022] [PMID: 1233267]
[93]
Graefe, E.U.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int. J. Clin. Pharmacol. Ther., 1999, 37(5), 219-233.
[PMID: 10363620]
[94]
Boulton, D.W.; Walle, U.K.; Walle, T. Fate of the flavonoid quercetin in human cell lines: Chemical instability and metabolism. J. Pharm. Pharmacol., 1999, 51(3), 353-359.
[http://dx.doi.org/10.1211/0022357991772367] [PMID: 10344638]
[95]
Knab, A.M.; Shanely, R.A.; Jin, F.; Austin, M.D.; Sha, W.; Nieman, D.C. Quercetin with vitamin C and niacin does not affect body mass or composition. Appl. Physiol. Nutr. Metab., 2011, 36(3), 331-338.
[http://dx.doi.org/10.1139/h11-015] [PMID: 21574787]
[96]
Heinz, S.A.; Henson, D.A.; Nieman, D.C.; Austin, M.D.; Jin, F. A 12-week supplementation with quercetin does not affect natural killer cell activity, granulocyte oxidative burst activity or granulocyte phagocytosis in female human subjects. Br. J. Nutr., 2010, 104(6), 849-857.
[http://dx.doi.org/10.1017/S000711451000156X] [PMID: 20500927]
[97]
Kim, H.; Kong, H.; Choi, B.; Yang, Y.; Kim, Y.; Lim, M.J.; Neckers, L.; Jung, Y. Metabolic and pharmacological properties of rutin, a dietary quercetin glycoside, for treatment of inflammatory bowel disease. Pharm. Res., 2005, 22(9), 1499-1509.
[http://dx.doi.org/10.1007/s11095-005-6250-z] [PMID: 16132362]
[98]
Rautio, J. (Ed.), Prodrugs and targeted delivery — towards better ADME properties; Wiley-VCH Verlag & Co. KGaA: Weinheim, 2011.
[99]
Abet, V.; Filace, F.; Recio, J.; Alvarez-Builla, J.; Burgos, C. Prodrug approach: An overview of recent cases. Eur. J. Med. Chem., 2017, 127, 810-827.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.061] [PMID: 27823878]
[100]
Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov., 2018, 17(8), 559-587.
[http://dx.doi.org/10.1038/nrd.2018.46] [PMID: 29700501]
[101]
Stella, V.; Borchardt, R.; Hageman, M.; Oliyai, R.; Maag, H.; Tilley, J. Prodrugs: Challenges and rewards; Springer: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-49785-3]
[102]
Stella, V.J. Prodrugs: Some thoughts and current issues. J. Pharm. Sci., 2010, 99(12), 4755-4765.
[http://dx.doi.org/10.1002/jps.22205] [PMID: 20821387]
[103]
Huttunen, K.M.; Raunio, H.; Rautio, J. Prodrugs--from serendipity to rational design. Pharmacol. Rev., 2011, 63(3), 750-771.
[http://dx.doi.org/10.1124/pr.110.003459] [PMID: 21737530]
[104]
Biasutto, L.; Zoratti, M. Prodrugs of quercetin and resveratrol: a strategy under development. Curr. Drug Metab., 2014, 15(1), 77-95.
[http://dx.doi.org/10.2174/1389200214666131211160005] [PMID: 24329110]
[105]
Vig, B.S.; Huttunen, K.M.; Laine, K.; Rautio, J. Amino acids as promoieties in prodrug design and development. Adv. Drug Deliv. Rev., 2013, 65(10), 1370-1385.
[http://dx.doi.org/10.1016/j.addr.2012.10.001] [PMID: 23099277]
[106]
Bier, D.M.; Young, V.R. A kinetic approach to assessment of amino acid and protein replacement needs of individual sick patients. JPEN J. Parenter. Enteral Nutr., 1987, 11(5)(Suppl. 1), 95S-97S.
[http://dx.doi.org/10.1177/014860718701100514] [PMID: 3669267]
[107]
Gulati, D.K.; Chambers, C.L.; Rosenthal, G.L.; Sabharwal, P.S. Comparative toxicity of some naturally occurring and synthetic non-protein amino acids. Environ. Exp. Bot., 1981, 21(2), 225-230.
[http://dx.doi.org/10.1016/0098-8472(81)90029-0]
[108]
Soul-Lawton, J.; Seaber, E.; On, N.; Wootton, R.; Rolan, P.; Posner, J. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob. Agents Chemother., 1995, 39(12), 2759-2764.
[http://dx.doi.org/10.1128/AAC.39.12.2759] [PMID: 8593015]
[109]
Balfour, H.H., Jr; Hokanson, K.M.; Schacherer, R.M.; Fietzer, C.M.; Schmeling, D.O.; Holman, C.J.; Vezina, H.E.; Brundage, R.C. A virologic pilot study of valacyclovir in infectious mononucleosis. J. Clin. Virol., 2007, 39(1), 16-21.
[http://dx.doi.org/10.1016/j.jcv.2007.02.002] [PMID: 17369082]
[110]
Jung, D.; Dorr, A. Single-dose pharmacokinetics of valganciclovir in HIV- and CMV-seropositive subjects. J. Clin. Pharmacol., 1999, 39(8), 800-804.
[http://dx.doi.org/10.1177/00912709922008452] [PMID: 10434231]
[111]
Tsuda, M.; Terada, T.; Irie, M.; Katsura, T.; Niida, A.; Tomita, K.; Fujii, N.; Inui, K. Transport characteristics of a novel peptide transporter 1 substrate, antihypotensive drug midodrine, and its amino acid derivatives. J. Pharmacol. Exp. Ther., 2006, 318(1), 455-460.
[http://dx.doi.org/10.1124/jpet.106.102830] [PMID: 16597710]
[112]
Izcovich, A.; González Malla, C.; Manzotti, M.; Catalano, H.N.; Guyatt, G. Midodrine for orthostatic hypotension and recurrent reflex syncope: A systematic review. Neurology, 2014, 83(13), 1170-1177.
[http://dx.doi.org/10.1212/WNL.0000000000000815] [PMID: 25150287]
[113]
Elia, J.; Easley, C.; Kirkpatrick, P. Lisdexamfetamine dimesylate. Nat. Rev. Drug Discov., 2007, 6(5), 343-344.
[http://dx.doi.org/10.1038/nrd2315] [PMID: 17539056]
[114]
Goodman, D.W. Lisdexamfetamine dimesylate (vyvanse), a prodrug stimulant for attention-deficit/hyperactivity disorder. P&T, 2010, 35(5), 273-287.
[PMID: 20514273]
[115]
Grigoriadis, D.E.; Smith, E.; Hoare, S.R.J.; Madan, A.; Bozigian, H. Pharmacologic characterization of valbenazine (NBI-98854) and its metabolites. J. Pharmacol. Exp. Ther., 2017, 361(3), 454-461.
[http://dx.doi.org/10.1124/jpet.116.239160] [PMID: 28404690]
[116]
Hirayama, C.; Ono, H.; Tamura, Y.; Nakamura, M. C-prolinyl-quercetins from the yellow cocoon shell of the silkworm, Bombyx mori. Phytochemistry, 2006, 67(6), 579-583.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.030] [PMID: 16430932]
[117]
Mulholland, P.J.; Ferry, D.R.; Anderson, D.; Hussain, S.A.; Young, A.M.; Cook, J.E.; Hodgkin, E.; Seymour, L.W.; Kerr, D.J. Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin. Ann. Oncol., 2001, 12(2), 245-248.
[http://dx.doi.org/10.1023/A:1008372017097] [PMID: 11300332]
[118]
Wu, X.; Cheng, L.; Xiang, D.; Wei, Y. Syntheses of carbamate derivatives of quercetin by reaction with amino acid ester isocyanates. Lett. Org. Chem., 2005, 2(6), 535-538.
[http://dx.doi.org/10.2174/1570178054640796]
[119]
Kim, M.K.; Park, K.S.; Yeo, W.S.; Choo, H.; Chong, Y. In vitro solubility, stability and permeability of novel quercetin-amino acid conjugates. Bioorg. Med. Chem., 2009, 17(3), 1164-1171.
[http://dx.doi.org/10.1016/j.bmc.2008.12.043] [PMID: 19128975]
[120]
Bailey, P.D.; Boyd, C.A.R.; Bronk, J.R.; Collier, I.D.; Meredith, D.; Morgan, K.M.; Temple, C.S. How to make drugs orally active: A substrate template for peptide transporter PepT1. Angew. Chem. Int. Ed. Engl., 2000, 39(3), 505-508.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000204)39:3<505:AID-ANIE505>3.0.CO;2-B] [PMID: 10671239]
[121]
Friedrichsen, G.M.; Nielsen, C.U.; Steffansen, B.; Begtrup, M. Model prodrugs designed for the intestinal peptide transporter. A synthetic approach for coupling of hydroxy-containing compounds to dipeptides. Eur. J. Pharm. Sci., 2001, 14(1), 13-19.
[http://dx.doi.org/10.1016/S0928-0987(01)00137-3] [PMID: 11457645]
[122]
Nielsen, C.U.; Andersen, R.; Brodin, B.; Frokjaer, S.; Steffansen, B. Model prodrugs for the intestinal oligopeptide transporter: Model drug release in aqueous solution and in various biological media. J. Control. Release, 2001, 73(1), 21-30.
[http://dx.doi.org/10.1016/S0168-3659(01)00233-4] [PMID: 11337056]
[123]
Nielsen, C.U.; Andersen, R.; Brodin, B.; Frokjaer, S.; Taub, M.E.; Steffansen, B. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line. J. Control. Release, 2001, 76(1-2), 129-138.
[http://dx.doi.org/10.1016/S0168-3659(01)00427-8] [PMID: 11532319]
[124]
Chatziathanasiadou, M.V.; Geromichalou, E.G.; Sayyad, N.; Vrettos, E.I.; Katsikoudi, A.; Stylos, E.; Bellou, S.; Geromichalos, G.D.; Tzakos, A.G. Amplifying and broadening the cytotoxic profile of quercetin in cancer cell lines through bioconjugation. Amino Acids, 2018, 50(2), 279-291.
[http://dx.doi.org/10.1007/s00726-017-2514-2] [PMID: 29185031]
[125]
Kellici, T.F.; Chatziathanasiadou, M.V.; Lee, M-S.; Sayyad, N.; Geromichalou, E.G.; Vrettos, E.I.; Tsiailanis, A.D.; Chi, S-W.; Geromichalos, G.D.; Mavromoustakos, T.; Tzakos, A.G. Rational design and structure-activity relationship studies of quercetin-amino acid hybrids targeting the anti-apoptotic protein Bcl-xL. Org. Biomol. Chem., 2017, 15(37), 7956-7976.
[http://dx.doi.org/10.1039/C7OB02045G] [PMID: 28902204]
[126]
Tai, W.; Chen, Z.; Cheng, K. Expression profile and functional activity of peptide transporters in prostate cancer cells. Mol. Pharm., 2013, 10(2), 477-487.
[http://dx.doi.org/10.1021/mp300364k] [PMID: 22950754]
[127]
Shimizu, S.; Eguchi, Y.; Kosaka, H.; Kamiike, W.; Matsuda, H.; Tsujimoto, Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature, 1995, 374(6525), 811-813.
[http://dx.doi.org/10.1038/374811a0] [PMID: 7723826]
[128]
Muchmore, S.W.; Sattler, M.; Liang, H.; Meadows, R.P.; Harlan, J.E.; Yoon, H.S.; Nettesheim, D.; Chang, B.S.; Thompson, C.B.; Wong, S.L.; Ng, S.L.; Fesik, S.W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature, 1996, 381(6580), 335-341.
[http://dx.doi.org/10.1038/381335a0] [PMID: 8692274]
[129]
Westphal, D.; Kluck, R.M.; Dewson, G. Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ., 2014, 21(2), 196-205.
[http://dx.doi.org/10.1038/cdd.2013.139] [PMID: 24162660]
[130]
Biasutto, L.; Marotta, E.; De Marchi, U.; Zoratti, M.; Paradisi, C. Ester-based precursors to increase the bioavailability of quercetin. J. Med. Chem., 2007, 50(2), 241-253.
[http://dx.doi.org/10.1021/jm060912x] [PMID: 17228866]
[131]
Kern, M.; Tjaden, Z.; Ngiewih, Y.; Puppel, N.; Will, F.; Dietrich, H.; Pahlke, G.; Marko, D. Inhibitors of the epidermal growth factor receptor in apple juice extract. Mol. Nutr. Food Res., 2005, 49(4), 317-328.
[http://dx.doi.org/10.1002/mnfr.200400086] [PMID: 15759309]
[132]
Houseman, B.T.; Huh, J.H.; Kron, S.J.; Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol., 2002, 20(3), 270-274.
[http://dx.doi.org/10.1038/nbt0302-270] [PMID: 11875428]
[133]
Huang, H.; Jia, Q.; Ma, J.; Qin, G.; Chen, Y.; Xi, Y.; Lin, L.; Zhu, W.; Ding, J.; Jiang, H.; Liu, H. Discovering novel quercetin-3-O-amino acid-esters as a new class of Src tyrosine kinase inhibitors. Eur. J. Med. Chem., 2009, 44(5), 1982-1988.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.051] [PMID: 19041163]
[134]
Kim, M.K.; Choo, H.; Chong, Y. Water-soluble and cleavable quercetin-amino acid conjugates as safe modulators for P-glycoprotein-based multidrug resistance. J. Med. Chem., 2014, 57(17), 7216-7233.
[http://dx.doi.org/10.1021/jm500290c] [PMID: 25122155]
[135]
Scambia, G.; Ranelletti, F.O.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M.; Mancuso, S. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol., 1994, 34(6), 459-464.
[http://dx.doi.org/10.1007/BF00685655] [PMID: 7923555]
[136]
Wesolowska, O.; Paprocka, M.; Kozlak, J.; Motohashi, N.; Dus, D.; Michalak, K. Human sarcoma cell lines MES-SA and MES-SA/Dx5 as a model for multidrug resistance modulators screening. Anticancer Res., 2005, 25(1A), 383-389.
[PMID: 15816562]
[137]
Gottesman, M.M.; Pastan, I.; Ambudkar, S.V. P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dev., 1996, 6(5), 610-617.
[http://dx.doi.org/10.1016/S0959-437X(96)80091-8] [PMID: 8939727]
[138]
Bellamy, W.T. P-glycoproteins and multidrug resistance. Annu. Rev. Pharmacol. Toxicol., 1996, 36, 161-183.
[http://dx.doi.org/10.1146/annurev.pa.36.040196.001113] [PMID: 8725386]
[139]
Viveiros, M.; Jesus, A.; Brito, M.; Leandro, C.; Martins, M.; Ordway, D.; Molnar, A.M.; Molnar, J.; Amaral, L. Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob. Agents Chemother., 2005, 49(8), 3578-3582.
[http://dx.doi.org/10.1128/AAC.49.8.3578-3582.2005] [PMID: 16048990]
[140]
Siriwong, S.; Teethaisong, Y.; Thumanu, K.; Dunkhunthod, B.; Eumkeb, G. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol. Toxicol., 2016, 17(1), 39.
[http://dx.doi.org/10.1186/s40360-016-0083-8] [PMID: 27491399]
[141]
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003] [PMID: 14665678]
[142]
Singleton, P. Bacteria in Biology, Biotechnology and Medicine, 5th ed; Wiley & Sons: New York, 1999.
[143]
Zavascki, A.P.; Goldani, L.Z.; Li, J.; Nation, R.L. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. J. Antimicrob. Chemother., 2007, 60(6), 1206-1215.
[http://dx.doi.org/10.1093/jac/dkm357] [PMID: 17878146]
[144]
Renau, T.E.; Léger, R.; Flamme, E.M.; Sangalang, J.; She, M.W.; Yen, R.; Gannon, C.L.; Griffith, D.; Chamberland, S.; Lomovskaya, O.; Hecker, S.J.; Lee, V.J.; Ohta, T.; Nakayama, K. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem., 1999, 42(24), 4928-4931.
[http://dx.doi.org/10.1021/jm9904598] [PMID: 10585202]
[145]
Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One, 2013, 8(3)e60666
[http://dx.doi.org/10.1371/journal.pone.0060666] [PMID: 23544160]
[146]
Lomovskaya, O.; Bostian, K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Biochem. Pharmacol., 2006, 71(7), 910-918.
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[147]
Kim, M.K.; Park, K-S.; Jung, W.; Choo, H.; Chong, Y. Quercetin 7‐O‐glutamate sensitizes P. aeruginosa to β‐lactams and vancomycin. Bull. Korean Chem. Soc., 2016, 37(12), 2025-2028.
[http://dx.doi.org/10.1002/bkcs.11023]
[148]
Park, K-S.; Jung, W.; Chong, Y.; Kim, M.K. Quercetin 7-O-glutamate sensitizes Escherichia coli to vancomycin. Appl. Biol. Chem., 2016, 59(5), 755-758.
[http://dx.doi.org/10.1007/s13765-016-0222-3]
[149]
Matassa, V.G.; Maduskuie, T.P., Jr; Shapiro, H.S.; Hesp, B.; Snyder, D.W.; Aharony, D.; Krell, R.D.; Keith, R.A. Evolution of a series of peptidoleukotriene antagonists: Synthesis and structure/activity relationships of 1,3,5-substituted indoles and indazoles. J. Med. Chem., 1990, 33(6), 1781-1790.
[http://dx.doi.org/10.1021/jm00168a037] [PMID: 2342072]
[150]
Firestone, R.A.; Pisano, J.M.; Falck, J.R.; McPhaul, M.M.; Krieger, M. Selective delivery of cytotoxic compounds to cells by the LDL pathway. J. Med. Chem., 1984, 27(8), 1037-1043.
[http://dx.doi.org/10.1021/jm00374a017] [PMID: 6086924]
[151]
Tsume, Y.; Hilfinger, J.M.; Amidon, G.L. Potential of amino acid/dipeptide monoester prodrugs of floxuridine in facilitating enhanced delivery of active drug to interior sites of tumors: A two-tier monolayer in vitro study. Pharm. Res., 2011, 28(10), 2575-2588.
[http://dx.doi.org/10.1007/s11095-011-0485-7] [PMID: 21671137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy