Mini-Review Article

天然醛糖还原酶抑制剂:一种非酒精性脂肪肝疾病的潜在治疗剂

卷 21, 期 6, 2020

页: [599 - 609] 页: 11

弟呕挨: 10.2174/1389450120666191007111712

价格: $65

摘要

据报道,醛糖还原酶(AR)参与非酒精性脂肪肝疾病(NAFLD)的发展。肝AR在高血糖条件下被诱导,并将过量的葡萄糖转化为脂肪果糖,这部分地促进了糖尿病啮齿动物肝细胞中脂肪的积累。另外,高血糖诱导的AR或营养诱导的AR引起过氧化物酶体增殖物激活受体(PPAR)α的转录活性的抑制和肝脏中脂解的减少,这也有助于NAFLD的发展。此外,非酒精性脂肪性肝炎(NASH)中的AR诱导可能加重肝脏的氧化应激和炎性细胞因子的表达。在这里,我们总结了有关植物来源的AR抑制剂的知识,并回顾了一些植物性AR抑制剂对啮齿类动物NAFLD / NASH的影响。天然的AR抑制剂可以至少部分地通过减轻氧化应激和炎性细胞因子表达来改善NAFLD。据报道,某些天然AR抑制剂可通过调节PPARα介导的脂肪酸氧化来减轻肝脂肪变性。在这篇综述中,我们提出天然AR抑制剂是NAFLD的潜在治疗剂。

关键词: 非酒精性脂肪肝疾病,醛糖还原酶抑制剂,过氧化物酶体增殖物激活受体α,氧化应激,炎性细胞因子。

图形摘要

[1]
Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016, 65(8), 1038-1048.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[2]
Kitade, H.; Chen, G.; Ni, Y.; Ota, T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients, 2017, 9(4), 9.
[http://dx.doi.org/10.3390/nu9040387] [PMID: 28420094]
[3]
Carter-Kent, C.; Zein, N.N.; Feldstein, A.E. Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis: implications for treatment. Am. J. Gastroenterol., 2008, 103(4), 1036-1042.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01709.x] [PMID: 18177455]
[4]
Ashraf, N.U.; Sheikh, T.A. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic. Res., 2015, 49(12), 1405-1418.
[http://dx.doi.org/10.3109/10715762.2015.1078461] [PMID: 26223319]
[5]
Zhang, X.; Ji, X.; Wang, Q.; Li, J.Z. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell, 2018, 9(2), 164-177.
[http://dx.doi.org/10.1007/s13238-017-0436-0] [PMID: 28643267]
[6]
Bashiardes, S.; Shapiro, H.; Rozin, S.; Shibolet, O.; Elinav, E. Non-alcoholic fatty liver and the gut microbiota. Mol. Metab., 2016, 5(9), 782-794.
[http://dx.doi.org/10.1016/j.molmet.2016.06.003] [PMID: 27617201]
[7]
Cheung, A.K.; Fung, M.K.; Lo, A.C. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes, 2005, 54(11), 3119-3125.
[http://dx.doi.org/10.2337/diabetes.54.11.3119] [PMID: 16249434]
[8]
Li, C.X.; Ng, K.T.; Shao, Y. The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response. Ann. Surg., 2014, 260(2), 317-328.
[http://dx.doi.org/10.1097/SLA.0000000000000429] [PMID: 24699020]
[9]
Thiagarajan, D.; Ananthakrishnan, R.; Zhang, J. Aldose reductase acts as a selective derepressor of PPARγ and the retinoic acid receptor. Cell Rep., 2016, 15(1), 181-196.
[http://dx.doi.org/10.1016/j.celrep.2016.02.086] [PMID: 27052179]
[10]
Chen, T.; Shi, D.; Chen, J. Inhibition of aldose reductase ameliorates diet-induced nonalcoholic steatohepatitis in mice via modulating the phosphorylation of hepatic peroxisome proliferator-activated receptor α. Mol. Med. Rep., 2015, 11(1), 303-308.
[http://dx.doi.org/10.3892/mmr.2014.2713] [PMID: 25333350]
[11]
Qiu, L.; Lin, J.; Xu, F. Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-α and ameliorates hepatosteatosis in diabetic db/db mice. Exp. Diabetes Res., 2012, •••2012789730
[http://dx.doi.org/10.1155/2012/789730] [PMID: 22110479]
[12]
Qiu, L.; Lin, J.; Ying, M. Aldose reductase is involved in the development of murine diet-induced nonalcoholic steatohepatitis. PLoS One, 2013, 8(9)e73591
[http://dx.doi.org/10.1371/journal.pone.0073591] [PMID: 24066058]
[13]
Ferreira, V.S.; Pernambuco, R.B.; Lopes, E.P. Frequency and risk factors associated with non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. Arq. Bras. Endocrinol. Metabol, 2010, 54(4), 362-368.
[http://dx.doi.org/10.1590/S0004-27302010000400004] [PMID: 20625647]
[14]
Hazlehurst, J.M.; Woods, C.; Marjot, T.; Cobbold, J.F.; Tomlinson, J.W. Non-alcoholic fatty liver disease and diabetes. Metabolism, 2016, 65(8), 1096-1108.
[http://dx.doi.org/10.1016/j.metabol.2016.01.001] [PMID: 26856933]
[15]
Hers, H.G. [Aldose reductase] Biochim. Biophys. Acta, 1960, 37, 120-126.
[http://dx.doi.org/10.1016/0006-3002(60)90085-8] [PMID: 14401390]
[16]
Cheng, H.M.; González, R.G. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metabolism, 1986, 35(4)(Suppl. 1), 10-14.
[http://dx.doi.org/10.1016/0026-0495(86)90180-0] [PMID: 3083198]
[17]
Qiu, L.; Wu, X.; Chau, J.F. Aldose reductase regulates hepatic peroxisome proliferator-activated receptor alpha phosphorylation and activity to impact lipid homeostasis. J. Biol. Chem., 2008, 283(25), 17175-17183.
[http://dx.doi.org/10.1074/jbc.M801791200] [PMID: 18445591]
[18]
Lanaspa, M.A.; Ishimoto, T.; Li, N. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat. Commun., 2013, 4, 2434.
[http://dx.doi.org/10.1038/ncomms3434] [PMID: 24022321]
[19]
Ho, E.C.; Lam, K.S.; Chen, Y.S. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes, 2006, 55(7), 1946-1953.
[http://dx.doi.org/10.2337/db05-1497] [PMID: 16804062]
[20]
Ter Horst, K.W.; Serlie, M.J. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients, 2017, 9(9), 9.
[http://dx.doi.org/10.3390/nu9090981] [PMID: 28878197]
[21]
Gao, H.; Guan, T.; Li, C. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evid. Based Complement. Alternat. Med., 2012, •••2012570948
[http://dx.doi.org/10.1155/2012/570948] [PMID: 23193424]
[22]
Sanchez-Lozada, L.G.; Andres-Hernando, A.; Garcia-Arroyo, F.E. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J. Biol. Chem., 2019, 294(11), 4272-4281.
[http://dx.doi.org/10.1074/jbc.RA118.006158] [PMID: 30651350]
[23]
Abdelmegeed, M.A.; Yoo, S.H.; Henderson, L.E.; Gonzalez, F.J.; Woodcroft, K.J.; Song, B.J. PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J. Nutr., 2011, 141(4), 603-610.
[http://dx.doi.org/10.3945/jn.110.135210] [PMID: 21346097]
[24]
Djouadi, F.; Weinheimer, C.J.; Saffitz, J.E. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator- activated receptor alpha- deficient mice. J. Clin. Invest., 1998, 102(6), 1083-1091.
[http://dx.doi.org/10.1172/JCI3949] [PMID: 9739042]
[25]
O’connor, T.; Ireland, L.S.; Harrison, D.J.; Hayes, J.D. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem. J., 1999, 343(Pt 2), 487-504.
[http://dx.doi.org/10.1042/bj3430487] [PMID: 10510318]
[26]
Brown, K.E.; Broadhurst, K.A.; Mathahs, M.M. Immunodetection of aldose reductase in normal and diseased human liver. Histol. Histopathol., 2005, 20(2), 429-436.
[PMID: 15736047]
[27]
Takahashi, M.; Hoshi, A.; Fujii, J. Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma. Jpn. J. Cancer Res., 1996, 87(4), 337-341.
[http://dx.doi.org/10.1111/j.1349-7006.1996.tb00227.x] [PMID: 8641963]
[28]
Vander Jagt, D.L.; Kolb, N.S.; Vander Jagt, T.J. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim. Biophys. Acta, 1995, 1249(2), 117-126.
[http://dx.doi.org/10.1016/0167-4838(95)00021-L] [PMID: 7599164]
[29]
Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 1991, 11(1), 81-128.
[http://dx.doi.org/10.1016/0891-5849(91)90192-6] [PMID: 1937131]
[30]
Iwata, T.; Sato, S.; Jimenez, J. Osmotic response element is required for the induction of aldose reductase by tumor necrosis factor-alpha. J. Biol. Chem., 1999, 274(12), 7993-8001.
[http://dx.doi.org/10.1074/jbc.274.12.7993] [PMID: 10075698]
[31]
Changxian Li, Y.S.; Ng, K.T.; Ling, C.C. Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J. Biol. Chem., 2006, 281, 17652-17660.
[32]
Ramana, K.V.; Bhatnagar, A.; Srivastava, S. Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J. Biol. Chem., 2006, 281(26), 17652-17660.
[http://dx.doi.org/10.1074/jbc.M600270200] [PMID: 16648138]
[33]
Delerive, P.; De Bosscher, K.; Besnard, S. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem., 1999, 274(45), 32048-32054.
[http://dx.doi.org/10.1074/jbc.274.45.32048] [PMID: 10542237]
[34]
Hotta, N.; Kawamori, R.; Fukuda, M.; Shigeta, Y. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet. Med., 2012, 29(12), 1529-1533.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03684.x] [PMID: 22507139]
[35]
Mok, S.Y.; Lee, S. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem., 2013, 136(2), 969-974.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.091] [PMID: 23122151]
[36]
Luo, W.J.; Cheng, T.Y.; Wong, K.I. Novel therapeutic drug identification and gene correlation for fatty liver disease using high-content screening: Proof of concept. Eur. J. Pharm. Sci., 2018, 121, 106-117.
[http://dx.doi.org/10.1016/j.ejps.2018.05.018] [PMID: 29800612]
[37]
Veeresham, C.; Rama Rao, A.; Asres, K. Aldose reductase inhibitors of plant origin. Phytother. Res., 2014, 28(3), 317-333.
[http://dx.doi.org/10.1002/ptr.5000] [PMID: 23674239]
[38]
Patel, D.K.; Kumar, R.; Sairam, K.; Hemalatha, S. Pharmacologically tested aldose reductase inhibitors isolated from plant sources - A concise report. Chin. J. Nat. Med., 2012, 10, 388-400.
[http://dx.doi.org/10.1016/S1875-5364(12)60078-8]
[39]
Yoshikawa, M.; Shimada, H.; Nishida, N. Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem. Pharm. Bull. (Tokyo), 1998, 46(1), 113-119.
[http://dx.doi.org/10.1248/cpb.46.113] [PMID: 9468642]
[40]
Haraguchi, H.; Kanada, M.; Fukuda, A.; Naruse, K.; Okamura, N.; Yagi, A. An inhibitor of aldose reductase and sorbitol accumulation from Anthocepharus chinensis. Planta Med., 1998, 64(1), 68-69.
[http://dx.doi.org/10.1055/s-2006-957369] [PMID: 9491768]
[41]
Jung, H.A.; Islam, M.D.; Kwon, Y.S. Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem. Toxicol., 2011, 49(2), 376-384.
[http://dx.doi.org/10.1016/j.fct.2010.11.012] [PMID: 21092751]
[42]
Jung, S.H.; Lee, Y.S.; Lee, S.; Lim, S.S.; Kim, Y.S.; Shin, K.H. Isoflavonoids from the rhizomes of Belamcanda chinensis and their effects on aldose reductase and sorbitol accumulation in streptozotocin induced diabetic rat tissues. Arch. Pharm. Res., 2002, 25(3), 306-312.
[http://dx.doi.org/10.1007/BF02976631] [PMID: 12135102]
[43]
Ueda, H.; Tachibana, Y.; Moriyasu, M.; Kawanishi, K.; Alves, S.M. Aldose reductase inhibitors from the fruits of Caesalpinia ferrea Mart. Phytomedicine, 2001, 8(5), 377-381.
[http://dx.doi.org/10.1078/0944-7113-00043] [PMID: 11695881]
[44]
Shin, K.H.; Kang, S.S.; Seo, E.A.; Shin, S.W. Isolation of aldose reductase inhibitors from the flowers of Chrysanthemum boreale. Arch. Pharm. Res., 1995, 18, 65-68.
[http://dx.doi.org/10.1007/BF02979135]
[45]
Yoshikawa, M.; Morikawa, T.; Murakami, T.; Toguchida, I.; Harima, S.; Matsuda, H. Medicinal flowers. I. Aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem. Pharm. Bull. (Tokyo), 1999, 47(3), 340-345.
[http://dx.doi.org/10.1248/cpb.47.340] [PMID: 10212384]
[46]
Du ZY, Bao YD, Liu Z, et al Curcumin analogs as potent aldose reductase inhibitors. Arch. Pharm. (Weinheim), 2006, 339(3), 123-128.
[http://dx.doi.org/10.1002/ardp.200500205] [PMID: 16528793]
[47]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Harima, S.; Yoshikawa, M. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem. Pharm. Bull. (Tokyo), 2002, 50(7), 972-975.
[http://dx.doi.org/10.1248/cpb.50.972] [PMID: 12130858]
[48]
Kim, J.M.; Jang, D.S.; Lee, Y.M. Aldose-reductase- and protein-glycation-inhibitory principles from the whole plant of Duchesnea chrysantha. Chem. Biodivers., 2008, 5(2), 352-356.
[http://dx.doi.org/10.1002/cbdv.200890034] [PMID: 18293434]
[49]
H. JS. S. LY, H. SK. Hyperin, An Aldose Reductase Inhibitor from Acanthopanax senticosus Leaves. Nat. Prod. Sci., 2003, 9, 4-6.
[50]
Haraguchi, H.; Ohmi, I.; Fukuda, A. Inhibition of aldose reductase and sorbitol accumulation by astilbin and taxifolin dihydroflavonols in Engelhardtia chrysolepis. Biosci. Biotechnol. Biochem., 1997, 61(4), 651-654.
[http://dx.doi.org/10.1271/bbb.61.651] [PMID: 9145524]
[51]
Patel, M.B.; Mishra, S.M. Aldose reductase inhibitory activity of a C-glycosidic flavonoid derived from Enicostemma hyssopifolium. J. Complement. Integr. Med., 2009, 6, 5.
[http://dx.doi.org/10.2202/1553-3840.1217]
[52]
Jang, D.S.; Yoo, N.H.; Kim, N.H. 3,5-Di-O-caffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Biol. Pharm. Bull., 2010, 33(2), 329-333.
[http://dx.doi.org/10.1248/bpb.33.329] [PMID: 20118563]
[53]
Jang, D.S.; Yoo, N.H.; Lee, Y.M.; Yoo, J.L.; Kim, Y.S.; Kim, J.S. Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch. Pharm. Res., 2008, 31(7), 900-904.
[http://dx.doi.org/10.1007/s12272-001-1244-z] [PMID: 18704333]
[54]
Yoo, N.H.; Jang, D.S.; Yoo, J.L. Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J. Nat. Prod., 2008, 71(4), 713-715.
[http://dx.doi.org/10.1021/np070489a] [PMID: 18298080]
[55]
Xu, Z.; Yang, H.; Zhou, M.; Feng, Y.; Jia, W. Inhibitory effect of total lignan from Fructus Arctii on aldose reductase. Phytother. Res., 2010, 24(3), 472-473.
[http://dx.doi.org/10.1002/ptr.2828] [PMID: 19373770]
[56]
Lee, Y.S.; Kim, S.H.; Jung, S.H.; Kim, J.K.; Pan, C.H.; Lim, S.S. Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biol. Pharm. Bull., 2010, 33(5), 917-921.
[http://dx.doi.org/10.1248/bpb.33.917] [PMID: 20460778]
[57]
Aida, K.; Tawata, M.; Shindo, H. Isoliquiritigenin: a new aldose reductase inhibitor from glycyrrhizae radix. Planta Med., 1990, 56(3), 254-258.
[http://dx.doi.org/10.1055/s-2006-960950] [PMID: 2118267]
[58]
Jang, D.S.; Kim, J.M.; Lee, Y.M.; Yoo, J.L.; Kim, Y.S. Flavonols from Houttuynia cordata with protein glycation and aldose reductase inhibitory activity. Nat. Prod. Sci., 2006, 12, 210-213.
[59]
Lee, J.; Kim, N.H.; Nam, J.W. Scopoletin from the flower buds of Magnolia fargesii inhibits protein glycation, aldose reductase, and cataractogenesis ex vivo. Arch. Pharm. Res., 2010, 33(9), 1317-1323.
[http://dx.doi.org/10.1007/s12272-010-0904-z] [PMID: 20945129]
[60]
Haraguchi, H.; Hayashi, R.; Ishizu, T.; Yagi, A. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro. Planta Med., 2003, 69(9), 853-855.
[http://dx.doi.org/10.1055/s-2003-43218] [PMID: 14598214]
[61]
Kadota, S.; Basnet, P.; Hase, K.; Namba, T. Matteuorienate A and B, two new and potent aldose reductase inhibitors from Matteuccia orientalis (Hook.) Trev. Chem. Pharm. Bull. (Tokyo), 1994, 42(8), 1712-1714.
[http://dx.doi.org/10.1248/cpb.42.1712] [PMID: 7954926]
[62]
Basnet, P.; Kadota, S.; Hase, K.; Namba, T. Five new C-methyl flavonoids, the potent aldose reductase inhibitors from Matteuccia orientalis Trev. Chem. Pharm. Bull. (Tokyo), 1995, 43(9), 1558-1564.
[http://dx.doi.org/10.1248/cpb.43.1558] [PMID: 7586082]
[63]
Kohda, H.; Tanaka, S.; Yamaoka, Y. Studies on lens-aldose-reductase inhibitor in medicinal plants. II. Active constituents of Monochasma savatierii Franch. et Maxim. Chem. Pharm. Bull. (Tokyo), 1989, 37(11), 3153-3154.
[http://dx.doi.org/10.1248/cpb.37.3153] [PMID: 2517245]
[64]
Matsuda, H.; Nishida, N.; Yoshikawa, M. Antidiabetic principles of natural medicines. V. Aldose reductase inhibitors from Myrcia multiflora DC. (2): Structures of myrciacitrins III, IV, and V. Chem. Pharm. Bull. (Tokyo), 2002, 50(3), 429-431.
[http://dx.doi.org/10.1248/cpb.50.429] [PMID: 11911215]
[65]
Ueda, H.; Kuroiwa, E.; Tachibana, Y.; Kawanishi, K.; Ayala, F.; Moriyasu, M. Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh. Phytomedicine, 2004, 11(7-8), 652-656.
[http://dx.doi.org/10.1016/j.phymed.2003.12.002] [PMID: 15636180]
[66]
Lim, S.S.; Jung, Y.J.; Hyun, S.K.; Lee, Y.S.; Choi, J.S. Rat lens aldose reductase inhibitory constituents of Nelumbo nucifera stamens. Phytother. Res., 2006, 20(10), 825-830.
[http://dx.doi.org/10.1002/ptr.1847] [PMID: 16881021]
[67]
Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rice and their aldose reductase inhibitory activities. Food Chem., 2007, 101, 1616-1625.
[http://dx.doi.org/10.1016/j.foodchem.2006.04.016]
[68]
Felício, J.D.; Gonçalez, E.; Braggio, M.M.; Costantino, L.; Albasini, A.; Lins, A.P. Inhibition of lens aldose reductase by biflavones from Ouratea spectabilis. Planta Med., 1995, 61(3), 217-220.
[http://dx.doi.org/10.1055/s-2006-958059] [PMID: 7617762]
[69]
Kim, J.; Lee, Y.; Lim, S.; Bae, Y. Aldose reductase inhibition effect of phenolicvcompounds isolated from paulownia coreana bark. J Korean Wood Sci Technol, 2010, 38, 159-164.
[http://dx.doi.org/10.5658/WOOD.2010.38.2.159]
[70]
Shimizu, M.; Horie, S.; Terashima, S. Studies on aldose reductase inhibitors from natural products. II. Active components of a Paraguayan crude drug “Para-parai mí,” Phyllanthus niruri. Chem. Pharm. Bull. (Tokyo), 1989, 37(9), 2531-2532.
[http://dx.doi.org/10.1248/cpb.37.2531] [PMID: 2514047]
[71]
Jung, S.H.; Lee, J.M.; Lee, H.J.; Kim, C.Y.; Lee, E.H.; Um, B.H. Aldose reductase and advanced glycation endproducts inhibitory effect of Phyllostachys nigra. Biol. Pharm. Bull., 2007, 30(8), 1569-1572.
[http://dx.doi.org/10.1248/bpb.30.1569] [PMID: 17666823]
[72]
Jang, D.S.; Lee, Y.M.; Jeong, I.H.; Kim, J.S. Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharm. Res., 2010, 33(6), 875-880.
[http://dx.doi.org/10.1007/s12272-010-0610-x] [PMID: 20607492]
[73]
Haraguchi, H.; Ohmi, I.; Sakai, S. Effect of Polygonum hydropiper sulfated flavonoids on lens aldose reductase and related enzymes. J. Nat. Prod., 1996, 59(4), 443-445.
[http://dx.doi.org/10.1021/np9601622] [PMID: 8699190]
[74]
Terashima, S.; Shimizu, M.; Nakayama, H. Studies on aldose reductase inhibitors from medicinal plant of “sinfito,” Potentilla candicans, and further synthesis of their related compounds. Chem. Pharm. Bull. (Tokyo), 1990, 38(10), 2733-2736.
[http://dx.doi.org/10.1248/cpb.38.2733] [PMID: 2127556]
[75]
Yoshikawa, M.; Murakami, T.; Ishiwada, T. New flavonol oligoglycosides and polyacylated sucroses with inhibitory effects on aldose reductase and platelet aggregation from the flowers of Prunus mume. J. Nat. Prod., 2002, 65(8), 1151-1155.
[http://dx.doi.org/10.1021/np020058m] [PMID: 12193020]
[76]
Lee, E.H.; Song, D.G.; Lee, J.Y.; Pan, C.H.; Um, B.H.; Jung, S.H. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol. Pharm. Bull., 2008, 31(8), 1626-1630.
[http://dx.doi.org/10.1248/bpb.31.1626] [PMID: 18670102]
[77]
Morikawa, T.; Kishi, A.; Pongpiriyadacha, Y.; Matsuda, H.; Yoshikawa, M. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J. Nat. Prod., 2003, 66(9), 1191-1196.
[http://dx.doi.org/10.1021/np0301543] [PMID: 14510595]
[78]
Lee, Y.S.; Lee, S.; Lee, H.S.; Kim, B.K.; Ohuchi, K.; Shin, K.H. Inhibitory effects of isorhamnetin-3-O-beta-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol. Pharm. Bull., 2005, 28(5), 916-918.
[http://dx.doi.org/10.1248/bpb.28.916] [PMID: 15863906]
[79]
Xie, H.; Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M.; Tani, T. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of Saussureosides A and B from Saussurea medusa. Chem. Pharm. Bull. (Tokyo), 2005, 53(11), 1416-1422.
[http://dx.doi.org/10.1248/cpb.53.1416] [PMID: 16272724]
[80]
Güvenç, A.; Okada, Y.; Akkol, E.K.; Duman, H.; Okuyama, T.; Çalış, İ. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem., 2010, 118, 686-692.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.034]
[81]
Morikawa, T.; Xie, H.; Wang, T.; Matsuda, H.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXXII. aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B(4), B(5), C(1), and D(1)-D(3). Chem. Pharm. Bull. (Tokyo), 2008, 56(10), 1438-1444.
[http://dx.doi.org/10.1248/cpb.56.1438] [PMID: 18827386]
[82]
Jung, H.A.; Yoon, N.Y.; Kang, S.S.; Kim, Y.S.; Choi, J.S. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol., 2008, 60(9), 1227-1236.
[http://dx.doi.org/10.1211/jpp.60.9.0016] [PMID: 18718128]
[83]
Wang, W.; Okada, Y.; Shi, H.; Wang, Y.; Okuyama, T. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. J. Nat. Prod., 2005, 68(4), 620-622.
[http://dx.doi.org/10.1021/np040199j] [PMID: 15844965]
[84]
Chung, I.M.; Kim, M.Y.; Park, W.H.; Moon, H.I. Aldose reductase inhibitors from Viola hondoensis W. Becker et H Boss. Am. J. Chin. Med., 2008, 36(4), 799-803.
[http://dx.doi.org/10.1142/S0192415X08006247] [PMID: 18711775]
[85]
Feng, B.; Wang, T.; Zhang, Y. Aldose Reductase Inhibitors from Stellera chamaejasme. Pharm. Biol., 2005, 43, 12-14.
[http://dx.doi.org/10.1080/13880200590903246]
[86]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 788-795.
[http://dx.doi.org/10.1248/cpb.50.788] [PMID: 12045333]
[87]
Terashima, S.; Shimizu, M.; Horie, S.; Morita, N. Studies on aldose reductase inhibitors from natural products. IV. Constituents and aldose reductase inhibitory effect of Chrysanthemum morifolium, Bixa orellana and Ipomoea batatas. Chem. Pharm. Bull. (Tokyo), 1991, 39(12), 3346-3347.
[http://dx.doi.org/10.1248/cpb.39.3346] [PMID: 1814628]
[88]
Zhang, J.Q.; Zhou, Y.P. [Inhibition of aldose reductase from rat lens by some Chinese herbs and their components]. Zhongguo Zhongyao Zazhi 1989, 14(9), 557-559, 576.
[PMID: 2511877]
[89]
Park, C-H.; Lim, S.S. Lee D-U. Structure-Activity Relationships of Components from the Roots of Pueraria thunbergiana Having Aldose Reductase Inhibitory and Antioxidative Activity. Bull. Korean Chem. Soc., 2007, 28, 493-495.
[http://dx.doi.org/10.5012/bkcs.2007.28.3.493]
[90]
Muthenna, P.; Suryanarayana, P.; Gunda, S.K.; Petrash, J.M.; Reddy, G.B. Inhibition of aldose reductase by dietary antioxidant curcumin: mechanism of inhibition, specificity and significance. FEBS Lett., 2009, 583(22), 3637-3642.
[http://dx.doi.org/10.1016/j.febslet.2009.10.042] [PMID: 19850041]
[91]
Gupta, S.; Singh, N.; Jaggi, A.S. Alkaloids as aldose reductase inhibitors, with special reference to berberine. J. Altern. Complement. Med., 2014, 20(3), 195-205.
[http://dx.doi.org/10.1089/acm.2013.0088] [PMID: 24236461]
[92]
Jung, H.A.; Yoon, N.Y.; Bae, H.J.; Min, B.S.; Choi, J.S. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch. Pharm. Res., 2008, 31(11), 1405-1412.
[http://dx.doi.org/10.1007/s12272-001-2124-z] [PMID: 19023536]
[93]
Kato, A.; Yasuko, H.; Goto, H.; Hollinshead, J.; Nash, R.J.; Adachi, I. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine, 2009, 16(2-3), 258-261.
[http://dx.doi.org/10.1016/j.phymed.2007.04.008] [PMID: 17498942]
[94]
S. A-K. Inhibition of lens aldose reductase by protopine alkaloids. Saudi Pharm. J., 1996, 4, 45-47.
[95]
Soo-Mi, Jeong; Gyung, HyeHuh Kim J-I. Quercetin ameliorates insulin sensitivity and liver steatosis partly by increasing adiponectin expression in ob/ob mice. Food Sci. Biotechnol., 2015, 24, 273-279.
[http://dx.doi.org/10.1007/s10068-015-0036-9]
[96]
Yin, Y.; Gao, L.; Lin, H. Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochem. Biophys. Res. Commun., 2017, 482(4), 720-726.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.101] [PMID: 27888103]
[97]
Zang, Y.; Igarashi, K.; Li, Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Biosci. Biotechnol. Biochem., 2016, 80(8), 1580-1586.
[http://dx.doi.org/10.1080/09168451.2015.1116928] [PMID: 27170065]
[98]
Yin, H.; Huang, L.; Ouyang, T.; Chen, L. Baicalein improves liver inflammation in diabetic db/db mice by regulating HMGB1/TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2018, 55, 55-62.
[http://dx.doi.org/10.1016/j.intimp.2017.12.002] [PMID: 29223854]
[99]
Kheiripour, N.; Karimi, J.; Khodadadi, I.; Tavilani, H.; Goodarzi, M.T.; Hashemnia, M. Silymarin prevents lipid accumulation in the liver of rats with type 2 diabetes via sirtuin1 and SREBP-1c. J. Basic Clin. Physiol. Pharmacol., 2018, 29(3), 301-308.
[http://dx.doi.org/10.1515/jbcpp-2017-0122] [PMID: 29476664]
[100]
Jung-In Kim. Ga-Yeong Jin, Soo-Jung Kang, Lee A-Y. Myricetin ameliorates liver steatosis in diabetic obese mice. The FASEB Journal 2015;608.302015
[101]
Yoshimura, Y.; Nishii, S.; Zaima, N.; Moriyama, T.; Kawamura, Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun., 2013, 434(3), 486-491.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.100] [PMID: 23583377]
[102]
Polce, S.A.; Burke, C.; França, L.M.; Kramer, B.; de Andrade Paes, A.M.; Carrillo-Sepulveda, M.A. Ellagic Acid Alleviates Hepatic Oxidative Stress and Insulin Resistance in Diabetic Female Rats. Nutrients, 2018, 10(5), 10.
[http://dx.doi.org/10.3390/nu10050531] [PMID: 29693586]
[103]
Liu, C.; Wang, Z.; Song, Y. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. BioMed Res. Int., 2015, •••2015313808
[http://dx.doi.org/10.1155/2015/313808] [PMID: 25705654]
[104]
Panchal, S.K.; Ward, L.; Brown, L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur. J. Nutr., 2013, 52(2), 559-568.
[http://dx.doi.org/10.1007/s00394-012-0358-9] [PMID: 22538930]
[105]
Liu, Q.; Pan, R.; Ding, L. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int. Immunopharmacol., 2017, 49, 132-141.
[http://dx.doi.org/10.1016/j.intimp.2017.05.026] [PMID: 28577437]
[106]
Shi, T.; Zhuang, R.; Zhou, H.; Wang, F.; Shao, Y.; Cai, Z. Effect of apigenin on protein expressions of PPARs in liver tissues of rats with nonalcoholic steatohepatitis Zhonghua Gan Zang Bing Za Zhi, 2015, 23(2), 124-129.
[PMID: 25880979]
[107]
Chang, C.J.; Tzeng, T.F.; Liou, S.S.; Chang, Y.S.; Liu, I.M. Myricetin Increases Hepatic Peroxisome Proliferator-Activated Receptor α Protein Expression and Decreases Plasma Lipids and Adiposity in Rats. Evid. Based Complement. Alternat. Med., 2012, •••2012787152
[http://dx.doi.org/10.1155/2012/787152] [PMID: 22474525]
[108]
Chang, C.J.; Tzeng, T.F.; Liou, S.S.; Chang, Y.S.; Liu, I.M. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Med., 2011, 77(17), 1876-1882.
[http://dx.doi.org/10.1055/s-0031-1279992] [PMID: 21728151]
[109]
Zhou, Y.; Ding, Y.L.; Zhang, J.L.; Zhang, P.; Wang, J.Q.; Li, Z.H. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed. Pharmacother., 2018, 97, 1397-1408.
[http://dx.doi.org/10.1016/j.biopha.2017.10.035] [PMID: 29156529]
[110]
Liou, C.J.; Wei, C.H.; Chen, Y.L.; Cheng, C.Y.; Wang, C.L.; Huang, W.C. Fisetin protects against hepatic steatosis through regulation of the sirt1/ampk and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell. Physiol. Biochem., 2018, 49(5), 1870-1884.
[http://dx.doi.org/10.1159/000493650] [PMID: 30235452]
[111]
Liu, H.; Zhong, H.; Yin, Y.; Jiang, Z. Genistein has beneficial effects on hepatic steatosis in high fat-high sucrose diet-treated rats. Biomed. Pharmacother., 2017, 91, 964-969.
[http://dx.doi.org/10.1016/j.biopha.2017.04.130] [PMID: 28514835]
[112]
Dai, J.; Liang, K.; Zhao, S. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc. Natl. Acad. Sci. USA, 2018, 115(26), E5896-E5905.
[http://dx.doi.org/10.1073/pnas.1801745115] [PMID: 29891721]
[113]
Zhang, J.; Zhang, H.; Deng, X. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice. Life Sci., 2018, 192, 46-54.
[http://dx.doi.org/10.1016/j.lfs.2017.11.027] [PMID: 29158052]
[114]
Liu, X.; Li, G.; Zhu, H. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRα and PPARα transcriptional programs. Endocr. J., 2010, 57(10), 881-893.
[http://dx.doi.org/10.1507/endocrj.K10E-043] [PMID: 20724798]
[115]
Das, N.; Sikder, K.; Bhattacharjee, S. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice. Food Funct., 2013, 4(6), 889-898.
[http://dx.doi.org/10.1039/c3fo30241e] [PMID: 23644882]
[116]
Panchal, S.K.; Poudyal, H.; Brown, L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J. Nutr., 2012, 142(6), 1026-1032.
[http://dx.doi.org/10.3945/jn.111.157263] [PMID: 22535755]
[117]
Surapaneni, K.M.; Priya, V.V.; Mallika, J. Pioglitazone, quercetin and hydroxy citric acid effect on cytochrome P450 2E1 (CYP2E1) enzyme levels in experimentally induced non alcoholic steatohepatitis (NASH). Eur. Rev. Med. Pharmacol. Sci., 2014, 18(18), 2736-2741.
[PMID: 25317811]
[118]
Feng, X.; Yu, W.; Li, X. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol., 2017, 136, 136-149.
[http://dx.doi.org/10.1016/j.bcp.2017.04.014] [PMID: 28414138]
[119]
Xu, M.; Sun, Y.; Dai, X. Fisetin attenuates high fat diet-triggered hepatic lipid accumulation: A mechanism involving liver inflammation overload associated TACE/TNF-α pathway. J. Funct. Foods, 2019, 53, 7-21.
[http://dx.doi.org/10.1016/j.jff.2018.12.007]
[120]
Li, B.; Wang, L.; Lu, Q.; Da, W. Liver injury attenuation by curcumin in a rat NASH model: an Nrf2 activation-mediated effect? Ir. J. Med. Sci., 2016, 185(1), 93-100.
[http://dx.doi.org/10.1007/s11845-014-1226-9] [PMID: 25385666]
[121]
Yao, J.; Zhi, M.; Minhu, C. Effect of silybin on high-fat-induced fatty liver in rats. Braz. J. Med. Biol. Res., 2011, 44(7), 652-659.
[http://dx.doi.org/10.1590/S0100-879X2011007500083] [PMID: 21755261]
[122]
Guo, Y.; Wang, S.; Wang, Y.; Zhu, T. Silymarin improved diet-induced liver damage and insulin resistance by decreasing inflammation in mice. Pharm. Biol., 2016, 54(12), 2995-3000.
[http://dx.doi.org/10.1080/13880209.2016.1199042] [PMID: 27387273]
[123]
Ji, G.; Yang, Q.; Hao, J. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol., 2011, 11(6), 762-768.
[http://dx.doi.org/10.1016/j.intimp.2011.01.036] [PMID: 21320636]
[124]
Yalniz, M.; Bahcecioglu, I.H.; Kuzu, N. Preventive role of genistein in an experimental non-alcoholic steatohepatitis model. J. Gastroenterol. Hepatol., 2007, 22(11), 2009-2014.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04681.x] [PMID: 17914984]
[125]
Susutlertpanya, W.; Werawatganon, D.; Siriviriyakul, P.; Klaikeaw, N. Genistein Attenuates Nonalcoholic Steatohepatitis and Increases Hepatic PPARγ in a Rat Model. Evid. Based Complement. Alternat. Med., 2015, •••2015509057
[http://dx.doi.org/10.1155/2015/509057] [PMID: 26246839]
[126]
Su, H.M.; Feng, L.N.; Zheng, X.D.; Chen, W. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice. J. Zhejiang Univ. Sci. B, 2016, 17(6), 437-446.
[http://dx.doi.org/10.1631/jzus.B1600074] [PMID: 27256677]
[127]
Marcolin, E.; San-Miguel, B.; Vallejo, D. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J. Nutr., 2012, 142(10), 1821-1828.
[http://dx.doi.org/10.3945/jn.112.165274] [PMID: 22915297]
[128]
Sagawa, H.; Naiki-Ito, A.; Kato, H. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis, 2015, 36(12), 1539-1549.
[http://dx.doi.org/10.1093/carcin/bgv143] [PMID: 26494227]
[129]
Leclercq, I.A.; Farrell, G.C.; Sempoux, C.; dela Peña, A.; Horsmans, Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J. Hepatol., 2004, 41(6), 926-934.
[http://dx.doi.org/10.1016/j.jhep.2004.08.010] [PMID: 15582125]
[130]
Aghazadeh, S.; Amini, R.; Yazdanparast, R.; Ghaffari, S.H. Anti-apoptotic and anti-inflammatory effects of Silybum marianum in treatment of experimental steatohepatitis. Exp. Toxicol. Pathol., 2011, 63(6), 569-574.
[http://dx.doi.org/10.1016/j.etp.2010.04.009] [PMID: 20471811]
[131]
Yoo, N.Y.; Jeon, S.; Nam, Y.; Park, Y.J.; Won, S.B.; Kwon, Y.H. Dietary supplementation of genistein alleviates liver inflammation and fibrosis mediated by a methionine-choline-deficient diet in db/db mice. J. Agric. Food Chem., 2015, 63(17), 4305-4311.
[http://dx.doi.org/10.1021/acs.jafc.5b00398] [PMID: 25885479]
[132]
Sivakumar, A.S.; Anuradha, C.V. Effect of galangin supplementation on oxidative damage and inflammatory changes in fructose-fed rat liver. Chem. Biol. Interact., 2011, 193(2), 141-148.
[http://dx.doi.org/10.1016/j.cbi.2011.06.003] [PMID: 21708140]
[133]
Shi, Y.S.; Li, C.B.; Li, X.Y. Fisetin Attenuates Metabolic Dysfunction in Mice Challenged with a High-Fructose Diet. J. Agric. Food Chem., 2018, 66(31), 8291-8298.
[http://dx.doi.org/10.1021/acs.jafc.8b02140] [PMID: 30040414]
[134]
Mohamed Salih, S.; Nallasamy, P.; Muniyandi, P.; Periyasami, V.; Carani Venkatraman, A. Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J. Diabetes, 2009, 1(4), 278-287.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00045.x] [PMID: 20923528]
[135]
Zhong, X.; Liu, H. Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways. Biomed. Pharmacother., 2018, 98, 111-117.
[http://dx.doi.org/10.1016/j.biopha.2017.12.026] [PMID: 29247950]
[136]
Guo, J.; Meng, Y.; Zhao, Y.; Hu, Y.; Ren, D.; Yang, X. Myricetin derived from Hovenia dulcis Thunb. ameliorates vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct., 2015, 6(5), 1620-1634.
[http://dx.doi.org/10.1039/C4FO01073F] [PMID: 25881982]
[137]
Xu, D.; Xu, M.; Jeong, S. The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front. Pharmacol., 2019, 9, 1428.
[http://dx.doi.org/10.3389/fphar.2018.01428] [PMID: 30670963]
[138]
Wang, C.; Cui, Y.; Li, C. Nrf2 deletion causes “benign” simple steatosis to develop into nonalcoholic steatohepatitis in mice fed a high-fat diet. Lipids Health Dis., 2013, 12, 165.
[http://dx.doi.org/10.1186/1476-511X-12-165] [PMID: 24188280]
[139]
Leung, T.M.; Nieto, N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol., 2013, 58(2), 395-398.
[http://dx.doi.org/10.1016/j.jhep.2012.08.018] [PMID: 22940046]
[140]
Gong, P.; Cederbaum, A.I. Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1. Hepatology, 2006, 43(1), 144-153.
[http://dx.doi.org/10.1002/hep.21004] [PMID: 16374848]
[141]
Shen, K.; Feng, X.; Pan, H.; Zhang, F.; Xie, H.; Zheng, S. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor. Oxid. Med. Cell. Longev., 2017, •••20176169128
[http://dx.doi.org/10.1155/2017/6169128] [PMID: 28757911]
[142]
Kuo, J.J.; Chang, H.H.; Tsai, T.H.; Lee, T.Y. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int. J. Mol. Med., 2012, 30(3), 673-679.
[http://dx.doi.org/10.3892/ijmm.2012.1049] [PMID: 22751848]
[143]
Deng, Y.; Tang, K.; Chen, R. Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signalling pathway. Exp. Ther. Med., 2019, 17(3), 2091-2098.
[http://dx.doi.org/10.3892/etm.2019.7208] [PMID: 30867696]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy