Review Article

微管蛋白抑制剂与秋水仙碱的结合:从2015年到2019年的审查。

卷 27, 期 40, 2020

页: [6787 - 6814] 页: 28

弟呕挨: 10.2174/0929867326666191003154051

价格: $65

摘要

由于秋水仙碱位点的三个结构域有利于与小分子化合物结合,因此微管蛋白上的秋水仙碱位点已成为抗肿瘤药物开发的常见靶标,因此,大量的微管蛋白抑制剂与秋水仙碱结合过去几年中已经报告并评估了该站点。在这项研究中,根据2015年至2019年的文献对针对秋水仙碱位点的微管蛋白抑制剂及其作为抗肿瘤药的应用进行了综述。微管蛋白抑制剂根据结构特征分为十类,包括秋水仙碱衍生物,CA-4类似物,查尔酮类似物,香豆素类似物,吲哚杂物,喹啉和喹唑啉类似物,木脂素和鬼臼毒素衍生物,吩噻嗪类似物,N-杂环杂种等。它们中的大多数在体外和体内均显示出有效的抗肿瘤活性,包括对耐多药(MDR)细胞系的抗增殖作用和抗血管特性。在这篇综述中,详细描述了针对秋水仙碱位点的微管蛋白抑制剂的设计,合成和结构-活性关系的分析。此外,表中进一步列出了多靶点抑制剂,抗MDR化合物和在体内具有抗肿瘤活性的抑制剂,以清晰展示有效的微管蛋白抑制剂,这对药物化学研究人员可能是有益的。

关键词: 微管蛋白抑制剂,秋水仙碱位点,抗肿瘤活性,多药耐药性,多靶点,结构域。

[1]
Pasquier, E.; Kavallaris, M. Microtubules: a dynamic target in cancer therapy. IUBMB Life, 2008, 60(3), 165-170.
[http://dx.doi.org/10.1002/iub.25] [PMID: 18380008]
[2]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[3]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204.
[http://dx.doi.org/10.1038/nrc2803] [PMID: 20147901]
[4]
Chinen, T.; Liu, P.; Shioda, S.; Pagel, J.; Cerikan, B.; Lin, T.C.; Gruss, O.; Hayashi, Y.; Takeno, H.; Shima, T.; Okada, Y.; Hayakawa, I.; Hayashi, Y.; Kigoshi, H.; Usui, T.; Schiebel, E. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat. Commun., 2015, 6(1), 8722.
[http://dx.doi.org/10.1038/ncomms9722] [PMID: 26503935]
[5]
Parker, A.L.; Kavallaris, M.; McCarroll, J.A. Microtubules and their role in cellular stress in cancer. Front. Oncol., 2014, 4, 153.
[http://dx.doi.org/10.3389/fonc.2014.00153] [PMID: 24995158]
[6]
Mitchison, T.; Kirschner, M.; Mitchison, T.K.M. Dynamic instability of microtubule growth. Nature, 1984, 312(5991), 237-242.
[http://dx.doi.org/10.1038/312237a0] [PMID: 6504138]
[7]
Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol., 1997, 13(1), 83-117.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.83] [PMID: 9442869]
[8]
Risinger, A.L.; Giles, F.J.; Mooberry, S.L. Microtubule dynamics as a target in oncology. Cancer Treat. Rev., 2009, 35(3), 255-261.
[http://dx.doi.org/10.1016/j.ctrv.2008.11.001] [PMID: 19117686]
[9]
Akhmanova, A.; Steinmetz, M.O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol., 2015, 16(12), 711-726.
[http://dx.doi.org/10.1038/nrm4084] [PMID: 26562752]
[10]
Li, W.; Sun, H.; Xu, S.; Zhu, Z.; Xu, J. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med. Chem., 2017, 9(15), 1765-1794.
[http://dx.doi.org/10.4155/fmc-2017-0100] [PMID: 28929799]
[11]
Lindamulage, I.K.; Vu, H.Y.; Karthikeyan, C.; Knockleby, J.; Lee, Y.F.; Trivedi, P.; Lee, H. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci. Rep., 2017, 7(1), 10298.
[http://dx.doi.org/10.1038/s41598-017-10972-0] [PMID: 28860494]
[12]
Podolski-Renić, A.; Banković, J.; Dinić, J.; Ríos-Luci, C.; Fernandes, M.X.; Ortega, N.; Kovačević-Grujičić, N.; Martín, V.S.; Padrón, J.M.; Pešić, M. DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. Eur. J. Pharm. Sci., 2017, 105, 159-168.
[http://dx.doi.org/10.1016/j.ejps.2017.05.011] [PMID: 28502672]
[13]
Arnst, K.E.; Wang, Y.; Hwang, D-J.; Xue, Y.; Costello, T.; Hamilton, D.; Chen, Q.; Yang, J.; Park, F.; Dalton, J.T.; Miller, D.D.; Li, W.; Potent, A.A. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res., 2018, 78(1), 265-277.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0577] [PMID: 29180476]
[14]
Bai, Z.; Gao, M.; Zhang, H.; Guan, Q.; Xu, J.; Li, Y.; Qi, H.; Li, Z.; Zuo, D.; Zhang, W.; Wu, Y. BZML, a novel colchicine binding site inhibitor, overcomes multidrug resistance in A549/Taxol cells by inhibiting P-gp function and inducing mitotic catastrophe. Cancer Lett., 2017, 402, 81-92.
[http://dx.doi.org/10.1016/j.canlet.2017.05.016] [PMID: 28576750]
[15]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[16]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[17]
Jin, Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat. Prod. Rep., 2016, 33(11), 1268-1317.
[http://dx.doi.org/10.1039/C6NP00067C] [PMID: 27714029]
[18]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[19]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. 1,3,5-triazines: a promising scaffold for anticancer drugs development. Eur. J. Med. Chem., 2017, 142, 523-549.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.035] [PMID: 29046238]
[20]
Singla, P.; Luxami, V.; Paul, K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem., 2015, 102, 39-57.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.037] [PMID: 26241876]
[21]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: an overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[22]
Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta, A. Benzotriazole: an overview on its versatile biological behavior. Eur. J. Med. Chem., 2015, 97(1), 612-648.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.089] [PMID: 25293580]
[23]
Piekuś-Słomka, N.; Mikstacka, R.; Ronowicz, J.; Sobiak, S. Hybrid cis-stilbene molecules: novel anticancer agents. Int. J. Mol. Sci., 2019, 20(6), 1300.
[http://dx.doi.org/10.3390/ijms20061300] [PMID: 30875859]
[24]
Siebert, A.; Gensicka, M.; Cholewinski, G.; Dzierzbicka, K. Synthesis of combretastatin A-4 analogs and their biological activities. Anticancer. Agents Med. Chem., 2016, 16(8), 942-960.
[http://dx.doi.org/10.2174/1871520616666160204111832] [PMID: 26845138]
[25]
Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: an ancient drug with novel applications. Br. J. Dermatol., 2018, 178(2), 350-356.
[http://dx.doi.org/10.1111/bjd.15896] [PMID: 28832953]
[26]
Dalbeth, N. Gout in 2010: progress and controversies in treatment. Nat. Rev. Rheumatol., 2011, 7(2), 77-78.
[http://dx.doi.org/10.1038/nrrheum.2010.222] [PMID: 21289611]
[27]
Finkelstein, Y.; Aks, S.E.; Hutson, J.R.; Juurlink, D.N.; Nguyen, P.; Dubnov-Raz, G.; Pollak, U.; Koren, G.; Bentur, Y. Colchicine poisoning: the dark side of an ancient drug. Clin. Toxicol. (Phila.), 2010, 48(5), 407-414.
[http://dx.doi.org/10.3109/15563650.2010.495348] [PMID: 20586571]
[28]
Majcher, U.; Klejborowska, G.; Moshari, M.; Maj, E.; Wietrzyk, J.; Bartl, F.; Tuszynski, J.A.; Huczyński, A. Antiproliferative activity and molecular docking of novel double-modified colchicine derivatives. Cells, 2018, 7(11), 192.
[http://dx.doi.org/10.3390/cells7110192] [PMID: 30388878]
[29]
Majcher, U.; Urbaniak, A.; Maj, E.; Moshari, M.; Delgado, M.; Wietrzyk, J.; Bartl, F.; Chambers, T.C.; Tuszynski, J.A.; Huczyński, A. Synthesis, antiproliferative activity and molecular docking of thiocolchicine urethanes. Bioorg. Chem., 2018, 81, 553-566.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.004] [PMID: 30248507]
[30]
Majcher, U.; Klejborowska, G.; Kaik, M.; Maj, E.; Wietrzyk, J.; Moshari, M.; Preto, J.; Tuszynski, J.; Huczyński, A. Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells, 2018, 7(11), 216.
[http://dx.doi.org/10.3390/cells7110216] [PMID: 30463236]
[31]
Gentile, F.; Deriu, M.A.; Barakat, K.; Danani, A.; Tuszynski, J. A novel interaction between the tlr7 and a colchicine derivative revealed through a computational and experimental study. Pharmaceuticals (Basel), 2018, 11(1), 22.
[http://dx.doi.org/10.3390/ph11010022] [PMID: 29462934]
[32]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.035] [PMID: 25805446]
[33]
Singh, B.; Kumar, A.; Joshi, P.; Guru, S.K.; Kumar, S.; Wani, Z.A.; Mahajan, G.; Hussain, A.; Qazi, A.K.; Kumar, A.; Bharate, S.S.; Gupta, B.D.; Sharma, P.R.; Hamid, A.; Saxena, A.K.; Mondhe, D.M.; Bhushan, S.; Bharate, S.B.; Vishwakarma, R.A. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem., 2015, 13(20), 5674-5689.
[http://dx.doi.org/10.1039/C5OB00406C] [PMID: 25895604]
[34]
Kumar, A.; Singh, B.; Mahajan, G.; Sharma, P.R.; Bharate, S.B.; Mintoo, M.J.; Mondhe, D.M. A novel colchicine-based microtubule inhibitor exhibits potent antitumor activity by inducing mitochondrial mediated apoptosis in MIA PaCa-2 pancreatic cancer cells. Tumour Biol., 2016, 37(10), 13121-13136.
[http://dx.doi.org/10.1007/s13277-016-5160-5] [PMID: 27449046]
[35]
Kumar, A.; Singh, B.; Sharma, P.R.; Bharate, S.B.; Saxena, A.K.; Mondhe, D.M. A novel microtubule depolymerizing colchicine analogue triggers apoptosis and autophagy in HCT-116 colon cancer cells. Cell Biochem. Funct., 2016, 34(2), 69-81.
[http://dx.doi.org/10.1002/cbf.3166] [PMID: 26919061]
[36]
Herdman, C.A.; Strecker, T.E.; Tanpure, R.P.; Chen, Z.; Winters, A.; Gerberich, J.; Liu, L.; Hamel, E.; Mason, R.P.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of benzocyclooctene-based and indene-based anticancer agents that function as inhibitors of tubulin polymerization. MedChemComm, 2016, 7(12), 2418-2427.
[http://dx.doi.org/10.1039/C6MD00459H] [PMID: 28217276]
[37]
Mu, Y.; Liu, Y.; Xiang, J.; Zhang, Q.; Zhai, S.; Russo, D.P.; Zhu, H.; Bai, X.; Yan, B. From fighting depression to conquering tumors: a novel tricyclic thiazepine compound as a tubulin polymerization inhibitor. Cell Death Dis., 2016, 7(3), e2143-e2143.
[http://dx.doi.org/10.1038/cddis.2016.53] [PMID: 26986511]
[38]
Wang, L.; Woods, K.W.; Li, Q.; Barr, K.J.; McCroskey, R.W.; Hannick, S.M.; Gherke, L.; Credo, R.B.; Hui, Y-H.; Marsh, K.; Warner, R.; Lee, J.Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S.H.; Sham, H.L. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem., 2002, 45(8), 1697-1711.
[http://dx.doi.org/10.1021/jm010523x] [PMID: 11931625]
[39]
Mann, J. Natural products in cancer chemotherapy: past, present and future. Nat. Rev. Cancer, 2002, 2(2), 143-148.
[http://dx.doi.org/10.1038/nrc723] [PMID: 12635177]
[40]
Burja, B.; Čimbora-Zovko, T.; Tomić, S.; Jelusić, T.; Kočevar, M.; Polanc, S.; Osmak, M. Pyrazolone-fused combretastatins and their precursors: synthesis, cytotoxicity, antitubulin activity and molecular modeling studies. Bioorg. Med. Chem., 2010, 18(7), 2375-2387.
[http://dx.doi.org/10.1016/j.bmc.2010.03.006] [PMID: 20338766]
[41]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and B-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6(1), 25387.
[http://dx.doi.org/10.1038/srep25387] [PMID: 27138035]
[42]
Grisham, R.; Ky, B.; Tewari, K.S.; Chaplin, D.J.; Walker, J. Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events and hypertension management. Gynecol. Oncol. Res. Pract., 2018, 5(1), 1.
[http://dx.doi.org/10.1186/s40661-017-0058-5] [PMID: 29318022]
[43]
Garon, E.B.; Neidhart, J.D.; Gabrail, N.Y.; de Oliveira, M.R.; Balkissoon, J.; Kabbinavar, F. A randomized Phase II trial of the tumor vascular disrupting agent CA4P (fosbretabulin tromethamine) with carboplatin, paclitaxel, and bevacizumab in advanced nonsquamous non-small-cell lung cancer. OncoTargets Ther., 2016, 9, 7275-7283.
[http://dx.doi.org/10.2147/OTT.S109186] [PMID: 27942221]
[44]
Tozer, G.M.; Kanthou, C.; Baguley, B.C. Disrupting tumour blood vessels. Nat. Rev. Cancer, 2005, 5(6), 423-435.
[http://dx.doi.org/10.1038/nrc1628] [PMID: 15928673]
[45]
Xu, Q.; Qi, H.; Sun, M.; Zuo, D.; Jiang, X.; Wen, Z.; Wang, Z.; Wu, Y.; Zhang, W. synthesis and biological evaluation of 3-Alkyl-1,5-Diaryl-1H-Pyrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative activity. PLoS One, 2015, 10(6)e0128710
[http://dx.doi.org/10.1371/journal.pone.0128710] [PMID: 26061410]
[46]
Yang, W.; Hu, Y.; Yang, Y.S.; Zhang, F.; Zhang, Y.B.; Wang, X.L.; Tang, J.F.; Zhong, W.Q.; Zhu, H.L. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2013, 21(5), 1050-1063.
[http://dx.doi.org/10.1016/j.bmc.2013.01.013] [PMID: 23391364]
[47]
Li, Y.J.; Qin, Y.J.; Makawana, J.A.; Wang, Y.T.; Zhang, Y.Q.; Zhang, Y.L.; Yang, M.R.; Jiang, A.Q.; Zhu, H.L. Synthesis, biological evaluation and molecular modeling of 1,3,4-thiadiazol-2-amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2014, 22(15), 4312-4322.
[http://dx.doi.org/10.1016/j.bmc.2014.05.017] [PMID: 24909678]
[48]
Thomas, E.; Gopalakrishnan, V.; Hegde, M.; Kumar, S.; Karki, S.S.; Raghavan, S.C.; Choudhary, B. A novel resveratrol based tubulin inhibitor induces mitotic arrest and activates apoptosis in cancer cells. Sci. Rep., 2016, 6(1), 34653.
[http://dx.doi.org/10.1038/srep34653] [PMID: 27748367]
[49]
Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Combretastatin A-4 analogue: a dual-targeting and tubulin inhibitor containing antitumor Pt(IV) moiety with a unique mode of action. Bioconjug. Chem., 2016, 27(9), 2132-2148.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00353] [PMID: 27494235]
[50]
Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: more than just vascular targeting agents? J. Pharmacol. Exp. Ther., 2015, 355(2), 212-227.
[http://dx.doi.org/10.1124/jpet.115.226225] [PMID: 26354991]
[51]
Mao, J.; Wang, D.; Wang, Z.; Tian, W.; Li, X.; Duan, J.; Wang, Y.; Yang, H.; You, L.; Cheng, Y.; Bian, J.; Chen, Z.; Yang, Y. Combretastatin A-1 phosphate, a microtubule inhibitor, acts on both hepatocellular carcinoma cells and tumor-associated macrophages by inhibiting the Wnt/β-catenin pathway. Cancer Lett., 2016, 380(1), 134-143.
[http://dx.doi.org/10.1016/j.canlet.2016.06.020] [PMID: 27349166]
[52]
Doura, T.; Takahashi, K.; Ogra, Y.; Suzuki, N. Combretastatin A4-β-galactosyl conjugates for ovarian cancer prodrug monotherapy. ACS Med. Chem. Lett., 2017, 8(2), 211-214.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00427] [PMID: 28197314]
[53]
Engdahl, A.J.; Torres, E.A.; Lock, S.E.; Engdahl, T.B.; Mertz, P.S.; Streu, C.N. Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett., 2015, 17(18), 4546-4549.
[http://dx.doi.org/10.1021/acs.orglett.5b02262] [PMID: 26335519]
[54]
Fu, D.J.; Fu, L.; Liu, Y.C.; Wang, J.W.; Wang, Y.Q.; Han, B.K.; Li, X.R.; Zhang, C.; Li, F.; Song, J.; Zhao, B.; Mao, R.W.; Zhao, R.H.; Zhang, S.Y.; Zhang, L.; Zhang, Y.B.; Liu, H.M. Structure-activity relationship studies of β-lactam-azide analogues as orally active antitumor agents targeting the tubulin colchicine site. Sci. Rep., 2017, 7(1), 12788.
[http://dx.doi.org/10.1038/s41598-017-12912-4] [PMID: 28986548]
[55]
Wang, F.; Yang, Z.; Liu, Y.; Ma, L.; Wu, Y.; He, L.; Shao, M.; Yu, K.; Wu, W.; Pu, Y.; Nie, C.; Chen, L. Synthesis and biological evaluation of diarylthiazole derivatives as antimitotic and antivascular agents with potent antitumor activity. Bioorg. Med. Chem., 2015, 23(13), 3337-3350.
[http://dx.doi.org/10.1016/j.bmc.2015.04.055] [PMID: 25937236]
[56]
Yu, K.; Li, R.; Yang, Z.; Wang, F.; Wu, W.; Wang, X.; Nie, C.; Chen, L. Discovery of a potent microtubule-targeting agent: synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives. Bioorg. Med. Chem. Lett., 2015, 25(11), 2302-2307.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.028] [PMID: 25933592]
[57]
Lai, Q.; Wang, Y.; Wang, R.; Lai, W.; Tang, L.; Tao, Y.; Liu, Y.; Zhang, R.; Huang, L.; Xiang, H.; Zeng, S.; Gou, L.; Chen, H.; Yao, Y.; Yang, J. Design, synthesis and biological evaluation of a novel tubulin inhibitor 7a3 targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 156, 162-179.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.010] [PMID: 30006162]
[58]
Zhang, Y.L.; Li, B.Y.; Yang, R.; Xia, L.Y.; Fan, A.L.; Chu, Y.C.; Wang, L.J.; Wang, Z.C.; Jiang, A.Q.; Zhu, H.L. A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity via mitotic catastrophe. Eur. J. Med. Chem., 2019, 163, 896-910.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.030] [PMID: 30580241]
[59]
Zhang, C.; Zhang, X.; Wang, G.; Peng, Y.; Zhang, X.; Wu, H.; Yu, B.; Sun, J. Preclinical pharmacokinetics of C118P, a novel prodrug of microtubules inhibitor and its metabolite C118 in mice, rats, and dogs. Molecules, 2018, 23(11), 2883.
[http://dx.doi.org/10.3390/molecules23112883] [PMID: 30400617]
[60]
Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.027] [PMID: 29554587]
[61]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26(18), 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044] [PMID: 27515320]
[62]
Lamaa, D.; Lin, H.P.; Zig, L.; Bauvais, C.; Bollot, G.; Bignon, J.; Levaique, H.; Pamlard, O.; Dubois, J.; Ouaissi, M.; Souce, M.; Kasselouri, A.; Saller, F.; Borgel, D.; Jayat-Vignoles, C.; Al-Mouhammad, H.; Feuillard, J.; Benihoud, K.; Alami, M.; Hamze, A. Design and synthesis of tubulin and histone deacetylase inhibitor based on iso-combretastatin A-4. J. Med. Chem., 2018, 61(15), 6574-6591.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00050] [PMID: 30004697]
[63]
Naret, T.; Bignon, J.; Bernadat, G.; Benchekroun, M.; Levaique, H.; Lenoir, C.; Dubois, J.; Pruvost, A.; Saller, F.; Borgel, D.; Manoury, B.; Leblais, V.; Darrigrand, R.; Apcher, S.; Brion, J.D.; Schmitt, E.; Leroux, F.R.; Alami, M.; Hamze, A. A fluorine scan of a tubulin polymerization inhibitor isocombretastatin A-4: design, synthesis, molecular modelling, and biological evaluation. Eur. J. Med. Chem., 2018, 143, 473-490.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.055] [PMID: 29202409]
[64]
Pang, Y.; An, B.; Lou, L.; Zhang, J.; Yan, J.; Huang, L.; Li, X.; Yin, S. Design, synthesis, and biological evaluation of novel selenium-containing isocombretastatins and phenstatins as antitumor agents. J. Med. Chem., 2017, 60(17), 7300-7314.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00480] [PMID: 28792756]
[65]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.028] [PMID: 29627654]
[66]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[67]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: a patent review (from June 2011 - 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[http://dx.doi.org/10.1517/13543776.2014.995627] [PMID: 25598152]
[68]
Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 422-432.
[PMID: 22721390]
[69]
Martel-Frachet, V.; Keramidas, M.; Nurisso, A.; DeBonis, S.; Rome, C.; Coll, J.L.; Boumendjel, A.; Skoufias, D.A.; Ronot, X. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget, 2015, 6(16), 14669-14686.
[http://dx.doi.org/10.18632/oncotarget.4144] [PMID: 26036640]
[70]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00021] [PMID: 27149641]
[71]
Du, S.; Sarver, J.G.; Trabbic, C.J.; Erhardt, P.W.; Schroering, A.; Maltese, W.A. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother. Pharmacol., 2019, 83(2), 237-254.
[http://dx.doi.org/10.1007/s00280-018-3726-1] [PMID: 30426158]
[72]
Wang, G.; Qiu, J.; Xiao, X.; Cao, A.; Zhou, F. Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg. Chem., 2018, 76, 249-257.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.017] [PMID: 29197743]
[73]
Sankawa, U.; Ebizuka, Y.; Miyazaki, T.; Isomura, Y.; Otsuka, H. Antitumor activity of shikonin and its derivatives. Chem. Pharm. Bull. (Tokyo), 1977, 25(9), 2392-2395.
[http://dx.doi.org/10.1248/cpb.25.2392] [PMID: 589729]
[74]
Qiu, H.Y.; Wang, F.; Wang, X.; Sun, W.X.; Qi, J.L.; Pang, Y.J.; Yang, R.W.; Lu, G.H.; Wang, X.M.; Yang, Y.H. Design, synthesis, and biological evaluation of chalcone-containing shikonin derivatives as inhibitors of tubulin polymerization. ChemMedChem, 2017, 12(5), 399-406.
[http://dx.doi.org/10.1002/cmdc.201700001] [PMID: 28211616]
[75]
Shankaraiah, N.; Nekkanti, S.; Brahma, U.R.; Praveen Kumar, N.; Deshpande, N.; Prasanna, D.; Senwar, K.R.; Jaya Lakshmi, U. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4805-4816.
[http://dx.doi.org/10.1016/j.bmc.2017.07.031] [PMID: 28774575]
[76]
Yan, W.; Xiangyu, C.; Ya, L.; Yu, W.; Feng, X. An orally antitumor chalcone hybrid inhibited HepG2 cells growth and migration as the tubulin binding agent. Invest. New Drugs, 2019, 37(4), 784-790.
[http://dx.doi.org/10.1007/s10637-019-00737-z] [PMID: 30740631]
[77]
Yan, W.; Yang, T.; Yang, J.; Wang, T.; Yu, Y.; Wang, Y.; Chen, Q.; Bai, P.; Li, D.; Ye, H.; Qiu, Q.; Zhou, Y.; Hu, Y.; Yang, S.; Wei, Y.; Li, W.; Chen, L. SKLB060 reversibly binds to colchicine site of tubulin and possesses efficacy in multidrug-resistant cell lines. Cell. Physiol. Biochem., 2018, 47(2), 489-504.
[http://dx.doi.org/10.1159/000489983] [PMID: 29794416]
[78]
Luo, G.; Tang, Z.; Li, X.; Hou, Q.; Chen, Y.; Lao, K.; Xiang, H. 3, 9-di-O-substituted coumestrols incorporating basic amine side chains act as novel apoptosis inducers with improved pharmacological selectivity. Bioorg. Chem., 2019, 85, 140-151.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.024] [PMID: 30612080]
[79]
Fu, D.J.; Li, P.; Wu, B.W.; Cui, X.X.; Zhao, C.B.; Zhang, S.Y. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors. Eur. J. Med. Chem., 2019, 165, 309-322.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.033] [PMID: 30690300]
[80]
Lee, Y.H.; Yuk, H.J.; Park, K.H.; Bae, Y.S. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem., 2013, 141(1), 381-388.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.053] [PMID: 23768371]
[81]
Strecker, T.E.; Odutola, S.O.; Lopez, R.; Cooper, M.S.; Tidmore, J.K.; Charlton-Sevcik, A.K.; Li, L.; MacDonough, M.T.; Hadimani, M.B.; Ghatak, A.; Liu, L.; Chaplin, D.J.; Mason, R.P.; Pinney, K.G.; Trawick, M.L. The vascular disrupting activity of OXi8006 in endothelial cells and its phosphate prodrug OXi8007 in breast tumor xenografts. Cancer Lett., 2015, 369(1), 229-241.
[http://dx.doi.org/10.1016/j.canlet.2015.08.021] [PMID: 26325604]
[82]
Yeh, Y.Y.; Liou, J.P.; Lee, Y.L.; Lin, J.Y.C.; Huang, H.M. MPT0B002, a novel microtubule inhibitor, downregulates T315I mutant Bcr-Abl and induces apoptosis of imatinib-resistant chronic myeloid leukemia cells. Invest. New Drugs, 2017, 35(4), 427-435.
[http://dx.doi.org/10.1016/j.canlet.2015.08.021] [PMID: 26325604]
[83]
Wu, Y.W.; Hsu, K.C.; Lee, H.Y.; Huang, T.C.; Lin, T.E.; Chen, Y.L.; Sung, T.Y.; Liou, J.P.; Hwang-Verslues, W.W.; Pan, S.L. HuangFu, W.C. A novel dual HDAC6 and tubulin inhibitor, MPT0B451, displays anti-tumor ability in human cancer cells in vitro and in vivo. Front. Pharmacol., 2018, 9, 205.
[http://dx.doi.org/10.3389/fphar.2018.00205] [PMID: 29593536]
[84]
Yan, J.; Hu, J.; An, B.; Huang, L.; Li, X. Design, synthesis and biological evaluation of cyclic-indole derivatives as anti-tumor agents via the inhibition of tubulin polymerization. Eur. J. Med. Chem., 2017, 125, 663-675.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.056] [PMID: 27721152]
[85]
La Regina, G.; Bai, R.; Coluccia, A.; Naccarato, V.; Famiglini, V.; Nalli, M.; Masci, D.; Verrico, A.; Rovella, P.; Mazzoccoli, C.; Da Pozzo, E.; Cavallini, C.; Martini, C.; Vultaggio, S.; Dondio, G.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.; Silvestri, R. New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. Eur. J. Med. Chem., 2018, 152, 283-297.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.042] [PMID: 29730191]
[86]
Tsai, I.T.; Kuo, C.C.; Liou, J.P.; Chang, J.Y. Novel microtubule inhibitor MPT0B098 inhibits hypoxia-induced epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. J. Biomed. Sci., 2018, 25(1), 28.
[http://dx.doi.org/10.1186/s12929-018-0432-6] [PMID: 29592811]
[87]
Li, W.; Sun, H.; Xu, F.; Shuai, W.; Liu, J.; Xu, S.; Yao, H.; Ma, C.; Zhu, Z.; Xu, J. Synthesis, molecular properties prediction and biological evaluation of indole-vinyl sulfone derivatives as novel tubulin polymerization inhibitors targeting the colchicine binding site. Bioorg. Chem., 2019, 85, 49-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.015] [PMID: 30599412]
[88]
Hwang, D.J.; Wang, J.; Li, W.; Miller, D.D. Structural optimization of indole derivatives acting at colchicine binding site as potential anticancer agents. ACS Med. Chem. Lett., 2015, 6(9), 993-997.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00208] [PMID: 26396686]
[89]
Chen, J.; Ahn, S.; Wang, J.; Lu, Y.; Dalton, J.T.; Miller, D.D.; Li, W. Discovery of novel 2-aryl-4-benzoyl-imidazole (ABI-III) analogues targeting tubulin polymerization as antiproliferative agents. J. Med. Chem., 2012, 55(16), 7285-7289.
[http://dx.doi.org/10.1021/jm300564b] [PMID: 22783954]
[90]
Kashyap, V.K.; Wang, Q.; Setua, S.; Nagesh, P.K.B.; Chauhan, N.; Kumari, S.; Chowdhury, P.; Miller, D.D.; Yallapu, M.M.; Li, W.; Jaggi, M.; Hafeez, B.B.; Chauhan, S.C. Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 29.
[http://dx.doi.org/10.1186/s13046-018-1009-7] [PMID: 30674344]
[91]
Wang, Q.; Arnst, K.E.; Wang, Y.; Kumar, G.; Ma, D.; Chen, H.; Wu, Z.; Yang, J.; White, S.W.; Miller, D.D.; Li, W. Structural modification of the 3,4,5-trimethoxyphenyl moiety in the tubulin inhibitor VERU-111 leads to improved antiproliferative activities. J. Med. Chem., 2018, 61(17), 7877-7891.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00827] [PMID: 30122035]
[92]
Wang, Y.T.; Cai, X.C.; Shi, T.Q.; Zhang, Y.L.; Wang, Z.C.; Liu, C.H.; Zhu, H.L. Synthesis, molecular docking and biological evaluation of 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as novel potential tubulin assembling inhibitors. Chem. Biol. Drug Des., 2017, 90(1), 112-118.
[http://dx.doi.org/10.1111/cbdd.12932] [PMID: 28032450]
[93]
Zuo, D.; Jiang, X.; Han, M.; Shen, J.; Lang, B.; Guan, Q.; Bai, Z.; Han, C.; Li, Z.; Zhang, W.; Wu, Y. Methyl 5-[(1H-indol-3-yl)selanyl]-1H-benzoimidazol-2-ylcarbamate (M-24), a novel tubulin inhibitor, causes G2/M arrest and cell apoptosis by disrupting tubulin polymerization in human cervical and breast cancer cells. Toxicol. in vitro, 2017, 42, 139-149.
[http://dx.doi.org/10.1016/j.tiv.2017.04.019] [PMID: 28412508]
[94]
Fan, A.; Wei, J.; Yang, M.; Zhang, Q.; Zhang, Y.; Liu, Q.; Li, N.; Zhao, D.; Lu, Y.; Li, J.; Zhao, J.; Deng, S.; Zhang, B.; Zhu, H.; Chen, X. Pharmacodynamic and pharmacokinetic characteristics of YMR-65, a tubulin inhibitor, in tumor-bearing mice. Eur. J. Pharm. Sci., 2018, 121, 74-84.
[http://dx.doi.org/10.1016/j.ejps.2018.05.011] [PMID: 29772274]
[95]
Chen, K.; Zhang, Y.L.; Fan, J.; Ma, X.; Qin, Y.J.; Zhu, H.L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.044] [PMID: 30041136]
[96]
Naaz, F.; Preeti Pallavi, M.C.; Shafi, S.; Mulakayala, N.; Shahar Yar, M.; Sampath Kumar, H.M. 1,2,3-triazole tethered Indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 and tubulin: their anti-proliferative and anti-inflammatory activity. Bioorg. Chem., 2018, 81, 1-20.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.029] [PMID: 30081353]
[97]
Hu, M.J.; Zhang, B.; Yang, H.K.; Liu, Y.; Chen, Y.R.; Ma, T.Z.; Lu, L.; You, W.W.; Zhao, P.L. Design, synthesis and molecular docking studies of novel indole-pyrimidine hybrids as tubulin polymerization inhibitors. Chem. Biol. Drug Des., 2015, 86(6), 1491-1500.
[http://dx.doi.org/10.1111/cbdd.12616] [PMID: 26177395]
[98]
Carta, D.; Bortolozzi, R.; Hamel, E.; Basso, G.; Moro, S.; Viola, G.; Ferlin, M.G. Novel 3-substituted 7-phenylpyrrolo[3,2-f]quinolin-9(6H)-ones as single entities with multitarget antiproliferative activity. J. Med. Chem., 2015, 58(20), 7991-8010.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00805] [PMID: 26418966]
[99]
Li, W.; Shuai, W.; Sun, H.; Xu, F.; Bi, Y.; Xu, J.; Ma, C.; Yao, H.; Zhu, Z.; Xu, S. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur. J. Med. Chem., 2019, 163, 428-442.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.070] [PMID: 30530194]
[100]
Tantak, M.P.; Klingler, L.; Arun, V.; Kumar, A.; Sadana, R.; Kumar, D. Design and synthesis of bis(indolyl) ketohydrazide-hydrazones: identification of potent and selective novel tubulin inhibitors. Eur. J. Med. Chem., 2017, 136, 184-194.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.078] [PMID: 28494255]
[101]
Barman, S.; Das, G.; Mondal, P.; Pradhan, K.; Jana, B.; Bhunia, D.; Saha, A.; Kar, C.; Ghosh, S. Tripodal molecular propellers perturb microtubule dynamics: indole acts as a blade and plays a crucial role in anticancer activity. Chem. Commun. (Camb.), 2019, 55(16), 2356-2359.
[http://dx.doi.org/10.1039/C9CC00074G] [PMID: 30724319]
[102]
Chang, L.C.; Yu, Y.L.; Liu, C.Y.; Cheng, Y.Y.; Chou, R.H.; Hsieh, M.T.; Lin, H.Y.; Hung, H.Y.; Huang, L.J.; Wu, Y.C.; Kuo, S.C. The newly synthesized 2-arylnaphthyridin-4-one, CSC-3436, induces apoptosis of non-small cell lung cancer cells by inhibiting tubulin dynamics and activating CDK1. Cancer Chemother. Pharmacol., 2015, 75(6), 1303-1315.
[http://dx.doi.org/10.1007/s00280-015-2765-0] [PMID: 25947085]
[103]
Chang, L.C.; Yu, Y.L.; Hsieh, M.T.; Wang, S.H.; Chou, R.H.; Huang, W.C.; Lin, H.Y.; Hung, H.Y.; Huang, L.J.; Kuo, S.C. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics. Am. J. Cancer Res., 2016, 6(4), 747-763.
[PMID: 27186428]
[104]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[105]
Guan, F.; Ding, R.; Zhang, Q.; Chen, W.; Li, F.; Long, L.; Li, W.; Li, L.; Yang, D.; Xie, L.; Yuan, S.; Wang, L. WX-132-18B, a novel microtubule inhibitor, exhibits promising anti-tumor effects. Oncotarget, 2017, 8(42), 71782-71796.
[http://dx.doi.org/10.18632/oncotarget.17710] [PMID: 29069746]
[106]
Kuroiwa, K.; Ishii, H.; Matsuno, K.; Asai, A.; Suzuki, Y. Synthesis and structure-activity relationship study of 1-phenyl-1-(quinazolin-4-yl)ethanols as anticancer agents. ACS Med. Chem. Lett., 2015, 6(3), 287-291.
[http://dx.doi.org/10.1021/ml5004684] [PMID: 25815147]
[107]
Wang, F.; Zheng, L.; Yi, Y.; Yang, Z.; Qiu, Q.; Wang, X.; Yan, W.; Bai, P.; Yang, J.; Li, D.; Pei, H.; Niu, T.; Ye, H.; Nie, C.; Hu, Y.; Yang, S.; Wei, Y.; Chen, L. SKLB-23bb, A HDAC6-selective inhibitor, exhibits superior and broad-spectrum antitumor activity via additionally targeting microtubules. Mol. Cancer Ther., 2018, 17(4), 763-775.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0332] [PMID: 29610282]
[108]
Xu, S.; An, B.; Li, Y.; Luo, X.; Li, X.; Jia, X. Synthesis and evaluation of new 2-chloro-4-aminopyrimidine and 2,6-dimethyl-4-aminopyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(10), 1769-1775.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.026] [PMID: 29673981]
[109]
Li, W.; Yin, Y.; Shuai, W.; Xu, F.; Yao, H.; Liu, J.; Cheng, K.; Xu, J.; Zhu, Z.; Xu, S. Discovery of novel quinazolines as potential anti-tubulin agents occupying three zones of colchicine domain. Bioorg. Chem., 2019, 83, 380-390.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.027] [PMID: 30408650]
[110]
Zayed, M.F.; Rateb, H.S.; Ahmed, S.; Khaled, O.A.; Ibrahim, S.R.M. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization. Molecules, 2018, 23(7), 1699.
[http://dx.doi.org/10.3390/molecules23071699] [PMID: 30002297]
[111]
Sonawane, V.; Mohd Siddique, M.U.; Jadav, S.S.; Sinha, B.N.; Jayaprakash, V.; Chaudhuri, B. Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy. Eur. J. Med. Chem., 2019, 165, 115-132.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.011] [PMID: 30665142]
[112]
Sy, L.K.; Brown, G.D. Novel phenylpropanoids and lignans from Illicium verum. J. Nat. Prod., 1998, 61(8), 987-992.
[http://dx.doi.org/10.1021/np9800553] [PMID: 9722481]
[113]
MacRae, W.D.; Towers, G.H.N. Biological activities of lignans. Phytochemistry, 1984, 23(6), 1207-1220.
[http://dx.doi.org/10.1016/S0031-9422(00)80428-8]
[114]
Takasaki, M.; Konoshima, T.; Komatsu, K.; Tokuda, H.; Nishino, H. Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa. Cancer Lett., 2000, 158(1), 53-59.
[http://dx.doi.org/10.1016/S0304-3835(00)00499-7] [PMID: 10940509]
[115]
Charlton, J.L. Antiviral activity of lignans. J. Nat. Prod., 1998, 61(11), 1447-1451.
[http://dx.doi.org/10.1021/np980136z] [PMID: 9834179]
[116]
Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev., 2003, 2(3), 371-390.
[http://dx.doi.org/10.1023/B:PHYT.0000045487.02836.32]
[117]
Williams, R.B.; Martin, S.M.; Lawrence, J.A.; Norman, V.L.; O’Neil-Johnson, M.; Eldridge, G.R.; Starks, C.M. Isolation and identification of the novel tubulin polymerization inhibitor bifidenone. J. Nat. Prod., 2017, 80(3), 616-624.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00893] [PMID: 28335606 ]
[118]
Mills, K.A.; Roach, S.T.; Quinn, J.M.; Guo, L.; Beck, H.M.; Lomonosova, E.; Ilivicky, A.R.; Starks, C.M.; Lawrence, J.A.; Hagemann, A.R.; McCourt, C.; Thaker, P.H.; Powell, M.A.; Mutch, D.G.; Fuh, K.C. SQ1274, a novel microtubule inhibitor, inhibits ovarian and uterine cancer cell growth. Gynecol. Oncol., 2018, 151(2), 337-344.
[http://dx.doi.org/10.1016/j.ygyno.2018.08.008]] [PMID: 30190114]
[119]
Huang, Z.; Williams, R.B.; Martin, S.M.; Lawrence, J.A.; Norman, V.L.; O’Neil-Johnson, M.; Harding, J.; Mangette, J.E.; Liu, S.; Guzzo, P.R.; Starks, C.M.; Eldridge, G.R. Bifidenone: structure-activity relationship and advanced preclinical candidate. J. Med. Chem., 2018, 61(15), 6736-6747.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01644] [PMID: 29995409]
[120]
Gordaliza, M.; García, P.A.; del Corral, J.M.; Castro, M.A.; Gómez-Zurita, M.A. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon, 2004, 44(4), 441-459.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.008] [PMID: 15302526]
[121]
Han, H.W.; Qiu, H.Y.; Hu, C.; Sun, W.X.; Yang, R.W.; Qi, J.L.; Wang, X.M.; Lu, G.H.; Yang, Y.H. Design, synthesis and anti-cancer activity evaluation of podophyllotoxin-norcantharidin hybrid drugs. Bioorg. Med. Chem. Lett., 2016, 26(14), 3237-3242.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.063] [PMID: 27262599]
[122]
Moise, I.M.; Bîcu, E.; Dubois, J.; Farce, A.; Rigo, B.; Ghinet, A. Methylene versus carbonyl bridge in the structure of new tubulin polymerization inhibitors with tricyclic A-rings. Bioorg. Med. Chem., 2016, 24(22), 6021-6030.
[http://dx.doi.org/10.1016/j.bmc.2016.09.063] [PMID: 27707624]
[123]
Liu, N.; Jin, Z.; Zhang, J.; Jin, J. Antitumor evaluation of novel phenothiazine derivatives that inhibit migration and tubulin polymerization against gastric cancer MGC-803 cells. Invest. New Drugs, 2019, 37(1), 188-198.
[http://dx.doi.org/10.1007/s10637-018-0682-x] [PMID: 30345465]
[124]
Minegishi, H.; Futamura, Y.; Fukashiro, S.; Muroi, M.; Kawatani, M.; Osada, H.; Nakamura, H. Methyl 3-((6-methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino)benzoate (GN39482) as a tubulin polymerization inhibitor identified by MorphoBase and ChemProteoBase profiling methods. J. Med. Chem., 2015, 58(10), 4230-4241.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00035] [PMID: 25938266]
[125]
Wu, J.D.; Cui, Y.J.; Zhou, Y.G.; Tang, L.Q.; Zhang, C.M.; Liu, Z.P. Tubulin colchicine site binding agent LL01 displays potent antitumor efficiency both in vitro and in vivo with suitable drug-like properties. Invest. New Drugs, 2020, 38(1), 29-38.
[http://dx.doi.org/10.1007/s10637-019-00753-z] [PMID: 30887253]
[126]
Cui, Y.J.; Tang, L.Q.; Zhang, C.M.; Liu, Z.P. Synthesis of novel pyrazole derivatives and their tumor cell growth inhibitory activity. Molecules, 2019, 24(2), 279.
[http://dx.doi.org/10.3390/molecules24020279] [PMID: 30642134]
[127]
An, W.; Wang, W.; Yu, T.; Zhang, Y.; Miao, Z.; Meng, T.; Shen, J. Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents. Eur. J. Med. Chem., 2016, 112, 367-372.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.004] [PMID: 26927488]
[128]
Wu, Y.; Feng, D.; Gao, M.; Wang, Z.; Yan, P.; Gu, Z.; Guan, Q.; Zuo, D.; Bao, K.; Sun, J.; Wu, Y.; Zhang, W. Design and synthesis of 5-aryl-4-(4-arylpiperazine-1-carbonyl)-2H-1,2,3-triazole derivatives as colchicine binding site inhibitors. Sci. Rep., 2017, 7(1), 17120.
[http://dx.doi.org/10.1038/s41598-017-17449-0] [PMID: 29215079]
[129]
Subba Rao, A.V.; Swapna, K.; Shaik, S.P.; Lakshma Nayak, V.; Srinivasa Reddy, T.; Sunkari, S.; Shaik, T.B.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg. Med. Chem., 2017, 25(3), 977-999.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[130]
Ameri, A.; Khodarahmi, G.; Forootanfar, H.; Hassanzadeh, F.; Hakimelahi, G.H. Hybrid pharmacophore design, molecular docking, synthesis, and biological evaluation of novel aldimine-type schiff base derivatives as tubulin polymerization inhibitor. Chem. Biodivers., 2018, 15(3)e1700518
[http://dx.doi.org/10.1002/cbdv.201700518] [PMID: 29292595]
[131]
Narayanan, S.; Gupta, P.; Nazim, U.; Ali, M.; Karadkhelkar, N.; Ahmad, M.; Chen, Z.S. Anti-cancer effect of indanone-based thiazolyl hydrazone derivative on colon cancer cell lines. Int. J. Biochem. Cell Biol., 2019, 110, 21-28.
[http://dx.doi.org/10.1016/j.biocel.2019.02.004] [PMID: 30794858]
[132]
Song, M.Y.; Cao, C.Y.; He, Q.R.; Dong, Q.M.; Li, D.; Tang, J.J.; Gao, J.M. Constructing novel dihydrofuran and dihydroisoxazole analogues of isocombretastatin-4 as tubulin polymerization inhibitors through [3+2] reactions. Bioorg. Med. Chem., 2017, 25(20), 5290-5302.
[http://dx.doi.org/10.1016/j.bmc.2017.07.048] [PMID: 28803799]
[133]
Ahsan, M.J.; Choupra, A.; Sharma, R.K.; Jadav, S.S.; Padmaja, P.; Hassan, M.Z.; Al-Tamimi, A.B.S.; Geesi, M.H.; Bakht, M.A. Rationale design, synthesis, cytotoxicity evaluation, and molecular docking studies of 1,3,4-oxadiazole analogues. Anticancer. Agents Med. Chem., 2018, 18(1), 121-138.
[http://dx.doi.org/10.2174/1871520617666170419124702] [PMID: 28425854]
[134]
Gilson, P.; Josa-Prado, F.; Beauvineau, C.; Naud-Martin, D.; Vanwonterghem, L.; Mahuteau-Betzer, F.; Moreno, A.; Falson, P.; Lafanechère, L.; Frachet, V.; Coll, J.L.; Fernando Díaz, J.; Hurbin, A.; Busser, B. Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties. Sci. Rep., 2017, 7(1), 1-14.
[http://dx.doi.org/10.1038/s41598-017-09491-9] [PMID: 28860487]
[135]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Passacantilli, S.; Naccarato, V.; Ortar, G.; Mazzoccoli, C.; Ruggieri, V.; Agriesti, F.; Piccoli, C.; Tataranni, T.; Nalli, M.; Brancale, A.; Vultaggio, S.; Mercurio, C.; Varasi, M.; Saponaro, C.; Sergio, S.; Maffia, M.; Coluccia, A.M.L.; Hamel, E.; Silvestri, R. 3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin. ACS Med. Chem. Lett., 2017, 8(5), 521-526.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00022] [PMID: 28523104]
[136]
Sakchaisri, K.; Kim, S.O.; Hwang, J.; Soung, N.K.; Lee, K.H.; Choi, T.W.; Lee, Y.; Park, C.M.; Thimmegowda, N.R.; Lee, P.Y.; Shwetha, B.; Srinivasrao, G.; Pham, T.T.H.; Jang, J.H.; Yum, H.W.; Surh, Y.J.; Lee, K.S.; Park, H.; Kim, S.J.; Kwon, Y.T.; Ahn, J.S.; Kim, B.Y. Anticancer activity of a novel small molecule tubulin inhibitor STK899704. PLoS One, 2017, 12(3)e0173311
[http://dx.doi.org/10.1371/journal.pone.0173311] [PMID: 28296906]
[137]
Zheng, Y.B.; Gong, J.H.; Liu, X.J.; Wu, S.Y.; Li, Y.; Xu, X.D.; Shang, B.Y.; Zhou, J.M.; Zhu, Z.L.; Si, S.Y.; Zhen, Y.S. A novel nitrobenzoate microtubule inhibitor that overcomes multidrug resistance exhibits antitumor activity. Sci. Rep., 2016, 6(1), 31472.
[http://dx.doi.org/10.1038/srep31472] [PMID: 27510727]
[138]
Döbber, A.; Phoa, A.F.; Abbassi, R.H.; Stringer, B.W.; Day, B.W.; Johns, T.G.; Abadleh, M.; Peifer, C.; Munoz, L. Development and biological evaluation of a photoactivatable small molecule microtubule-targeting agent. ACS Med. Chem. Lett., 2017, 8(4), 395-400.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00483] [PMID: 28435525]
[139]
Nakagawa-Goto, K.; Oda, A.; Hamel, E.; Ohkoshi, E.; Lee, K.H.; Goto, M. Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. J. Med. Chem., 2015, 58(5), 2378-2389.
[http://dx.doi.org/10.1021/jm501859j] [PMID: 25695315]
[140]
Hayakawa, I.; Shioda, S.; Chinen, T.; Hatanaka, T.; Ebisu, H.; Sakakura, A.; Usui, T.; Kigoshi, H. Discovery of O6-benzyl glaziovianin A, a potent cytotoxic substance and a potent inhibitor of α,β-tubulin polymerization. Bioorg. Med. Chem., 2016, 24(21), 5639-5645.
[http://dx.doi.org/10.1016/j.bmc.2016.09.026] [PMID: 27665177]
[141]
Luo, Y.; Zhou, Y.; Song, Y.; Chen, G.; Wang, Y.X.; Tian, Y.; Fan, W.W.; Yang, Y.S.; Cheng, T.; Zhu, H.L. Optimization of substituted cinnamic acyl sulfonamide derivatives as tubulin polymerization inhibitors with anticancer activity. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3634-3638.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.037] [PMID: 30389289]
[142]
Madadi, N.R.; Ketkar, A.; Penthala, N.R.; Bostian, A.C.L.; Eoff, R.L.; Crooks, P.A. Dioxol and dihydrodioxin analogs of 2- and 3-phenylacetonitriles as potent anti-cancer agents with nanomolar activity against a variety of human cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(9), 2164-2169.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.068] [PMID: 27017113]
[143]
Lin, H.Y.; Han, H.W.; Sun, W.X.; Yang, Y.S.; Tang, C.Y.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design and characterization of α-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur. J. Med. Chem., 2018, 144, 137-150.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.019] [PMID: 29268130]
[144]
Cheng, J.; Wu, Y.; Wang, Y.; Wang, C.; Wang, Y.; Wu, C.; Zeng, S.; Yu, Y.; Chen, Q. Structure of a benzylidene derivative of 9(10H)-anthracenone in complex with tubulin provides a rationale for drug design. Biochem. Biophys. Res. Commun., 2018, 495(1), 185-188.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.104] [PMID: 29102632]
[145]
Kaise, A.; Endo, Y.; Ohta, K. Anti-cancer activity of M-carborane-containing trimethoxyphenyl derivatives through tubulin polymerization inhibition. Bioorg. Med. Chem., 2019, 27(6), 1139-1144.
[http://dx.doi.org/10.1016/j.bmc.2019.02.018] [PMID: 30773422]
[146]
Kulshrestha, A.; Katara, G.K.; Ibrahim, S.A.; Patil, R.; Patil, S.A.; Beaman, K.D. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget, 2017, 8(40), 67017-67028.
[http://dx.doi.org/10.18632/oncotarget.17549] [PMID: 28978013]
[147]
Parrino, B.; Carbone, A.; Ciancimino, C.; Spanò, V.; Montalbano, A.; Barraja, P.; Cirrincione, G.; Diana, P.; Sissi, C.; Palumbo, M.; Pinato, O.; Pennati, M.; Beretta, G.; Folini, M.; Matyus, P.; Balogh, B.; Zaffaroni, N. Water-soluble isoindolo[2,1-a]quinoxalin-6-imines: in vitro antiproliferative activity and molecular mechanism(s) of action. Eur. J. Med. Chem., 2015, 94, 149-162.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.005] [PMID: 25768699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy