Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Using the Chou’s Pseudo Component to Predict the ncRNA Locations Based on the Improved K-Nearest Neighbor (iKNN) Classifier

Author(s): Chengyan Wu*, Qianzhong Li, Ru Xing and Guo-Liang Fan

Volume 15, Issue 6, 2020

Page: [563 - 573] Pages: 11

DOI: 10.2174/1574893614666191003142406

Price: $65

Abstract

Background: The non-coding RNA identification at the organelle genome level is a challenging task. In our previous work, an ncRNA dataset with less than 80% sequence identity was built, and a method incorporating an increment of diversity combining with support vector machine method was proposed.

Objective: Based on the ncRNA_361 dataset, a novel decision-making method-an improved KNN (iKNN) classifier was proposed.

Methods: In this paper, based on the iKNN algorithm, the physicochemical features of nucleotides, the degeneracy of genetic codons, and topological secondary structure were selected to represent the effective ncRNA characters. Then, the incremental feature selection method was utilized to optimize the feature set.

Results: The results of iKNN indicated that the decision-making method of mean value is distinctly superior to the traditional decision-making method of majority vote the Increment of Diversity Combining Support Vector Machine (ID-SVM). The iKNN algorithm achieved an overall accuracy of 97.368% in the jackknife test, when k=3.

Conclusion: It should be noted that the triplets of the structure-sequence mode under reading frames not only contains the entire sequence information but also reflects whether the base was paired or not, and the secondary structural topological parameters further describe the ncRNA secondary structure on the spatial level. The ncRNA dataset and the iKNN classifier are freely available at http://202.207.14.87:8032/fuwu/iKNN/index.asp.

Keywords: Organelle genome, non-coding RNA, open reading frame, spatial structure, feature selection, K-nearest neighbor method.

Graphical Abstract

[1]
Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012; 9(6): 703-19.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[2]
Wickelgren I. Molecular biology. Spinning junk into gold. Science 2003; 300(5626): 1646-9.
[http://dx.doi.org/10.1126/science.300.5626.1646] [PMID: 12805516]
[3]
Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 2011; 71(1): 3-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2483] [PMID: 21199792]
[4]
Leidinger P, Keller A, Backes C, Huwer H, Meese E. MicroRNA expression changes after lung cancer resection: a follow-up study. RNA Biol 2012; 9(6): 900-10.
[http://dx.doi.org/10.4161/rna.20107] [PMID: 22664918]
[5]
Diederichs S. Non-coding RNA and disease. RNA Biol 2012; 9(6): 701-2.
[http://dx.doi.org/10.4161/rna.20972] [PMID: 22664913]
[6]
Belostotsky R, Frishberg Y, Entelis N. Human mitochondrial tRNA quality control in health and disease: a channelling mechanism? RNA Biol 2012; 9(1): 33-9.
[http://dx.doi.org/10.4161/rna.9.1.18009] [PMID: 22258151]
[7]
Zhang T, Tan P, Wang L, et al. RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res 2017; 45(D1): D135-8.
[PMID: 27543076]
[8]
Wu CY, Li QZ, Feng ZX. Non-coding RNA identification based on topology secondary structure and reading frame in organelle genome level. Genomics 2016; 107(1): 9-15.
[http://dx.doi.org/10.1016/j.ygeno.2015.12.002] [PMID: 26697761]
[9]
Bu D, Yu K, Sun S, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 2012; 40(Database issue): D210-5.
[http://dx.doi.org/10.1093/nar/gkr1175] [PMID: 22135294]
[10]
Shen HB, Chou KC. Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 2007; 355(4): 1006-11.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.071] [PMID: 17346678]
[11]
Chou KC, Shen HB. Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-Nearest Neighbor classifiers. J Proteome Res 2006; 5(8): 1888-97.
[http://dx.doi.org/10.1021/pr060167c] [PMID: 16889410]
[12]
Zuo YC, Su WX, Zhang SH, et al. Discrimination of membrane transporter protein types using K-nearest neighbor method derived from the similarity distance of total diversity measure. Mol Biosyst 2015; 11(3): 950-7.
[http://dx.doi.org/10.1039/C4MB00681J] [PMID: 25607774]
[13]
Shen HB, Chou KC. EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Commun 2007; 364(1): 53-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.098] [PMID: 17931599]
[14]
Chou KC, Shen HB. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One 2010; 5(4)e9931
[http://dx.doi.org/10.1371/journal.pone.0009931] [PMID: 20368981]
[15]
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9.
[http://dx.doi.org/10.1093/bioinformatics/btl158] [PMID: 16731699]
[16]
Zhang GY, Fang BS. Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo-amino acid composition. J Theor Biol 2008; 253(2): 310-5.
[http://dx.doi.org/10.1016/j.jtbi.2008.03.015] [PMID: 18471832]
[17]
Zhang GY, Li HC, Gao JQ, Fang BS. Predicting lipase types by improved Chou’s pseudo-amino acid composition. Protein Pept Lett 2008; 15(10): 1132-7.
[http://dx.doi.org/10.2174/092986608786071184] [PMID: 19075826]
[18]
Chou KC, Shen HB. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 2006; 347(1): 150-7.
[http://dx.doi.org/10.1016/j.bbrc.2006.06.059] [PMID: 16808903]
[19]
Chou KC, Shen HB. Large-scale plant protein subcellular location prediction. J Cell Biochem 2007; 100(3): 665-78.
[http://dx.doi.org/10.1002/jcb.21096] [PMID: 16983686]
[20]
Shen HB, Chou KC. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 2007; 363(2): 297-303.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.140] [PMID: 17880924]
[21]
Chou KC, Shen HB. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 2007; 360(2): 339-45.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.027] [PMID: 17586467]
[22]
Lan L, Djuric N, Guo Y, et al. MS-k NN: protein function prediction by integrating multiple data sources.BMC bioin-formatics. BioMed Central 2013; 14(3): S8.
[PMID: 23514608]
[23]
Dhawan M, Selvaraja S, Duan ZH. Application of committee kNN classifiers for gene expression profile classification. Int J Bioinform Res Appl 2010; 6(4): 344-52.
[http://dx.doi.org/10.1504/IJBRA.2010.035998] [PMID: 20940122]
[24]
Ladunga I. More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res 2007; 35(2): 433-40.
[http://dx.doi.org/10.1093/nar/gkl1065] [PMID: 17169992]
[25]
Liu L, Li QZ, Lin H, Zuo YC. The effect of regions flanking target site on siRNA potency. Genomics 2013; 102(4): 215-22.
[http://dx.doi.org/10.1016/j.ygeno.2013.07.009] [PMID: 23891614]
[26]
Peek AS. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features. BMC Bioinformatics 2007; 8(1): 182.
[http://dx.doi.org/10.1186/1471-2105-8-182] [PMID: 17553157]
[27]
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23(19): 2507-17.https://academic.oup.com/bioinformatics/article/23/19/2507/185254
[28]
Jiang P, Wu H, Wang W, et al. MiPred: classification of real and pseudo microRNA precur-sors using random forest prediction model with combined features. Nucleic Acids Res 2007; 35(Suppl. 2): W339-44.
[29]
Teramoto R, Aoki M, Kimura T, Kanaoka M. Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Lett 2005; 579(13): 2878-82.
[http://dx.doi.org/10.1016/j.febslet.2005.04.045] [PMID: 15878553]
[30]
Wang Y, Chen X, Jiang W, et al. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM. Genomics 2011; 98(2): 73-8.
[http://dx.doi.org/10.1016/j.ygeno.2011.04.011] [PMID: 21586321]
[31]
Hofacker IL, Fontana W, Stadler PF, et al. Fast folding and comparison of RNA secondary structur-esMonatshefte für Chemie/Chemical Monthly 1994; 125(2): 167-88.
[32]
Xue C, Li F, He T, Liu GP, Li Y, Zhang X. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005; 6(1): 310.
[http://dx.doi.org/10.1186/1471-2105-6-310] [PMID: 16381612]
[33]
Liu B, Liu F, Fang L, Wang X, Chou KC. repRNA: a web server for generating various feature vectors of RNA sequences. Mol Genet Genomics 2016; 291(1): 473-81.
[http://dx.doi.org/10.1007/s00438-015-1078-7] [PMID: 26085220]
[34]
Liu B, Fang L, Liu F, Wang X, Chen J, Chou KC. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One 2015; 10(3)e0121501
[http://dx.doi.org/10.1371/journal.pone.0121501] [PMID: 25821974]
[35]
Liu Z, Xiao X, Qiu WR, Chou KC. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal Biochem 2015; 474: 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[36]
Chiu JKH, Chen YPP. Pairwise RNA secondary structure alignment with conserved stem pattern. Bioinformatics 2015; 31(24): 3914-21.
[http://dx.doi.org/10.1093/bioinformatics/btv471] [PMID: 26275897]
[37]
Xu X, Chen SJ. Physics-based RNA structure prediction. Biophys Rep 2015; 1(1): 2-13.
[http://dx.doi.org/10.1007/s41048-015-0001-4] [PMID: 26942214]
[38]
Rahman ME, Islam R, Islam S, Mondal SI, Amin MR. MiRANN: a reliable approach for improved classification of precursor microRNA using artificial neural network model Genomics 2012; 99(4): 189-94.
[http://dx.doi.org/10.1016/j.ygeno.2012.02.001] [PMID: 22349176]
[39]
Ding H, Lin H, Chen W, et al. Prediction of protein structural classes based on feature selection technique. Interdiscip Sci 2014; 6(3): 235-40.
[http://dx.doi.org/10.1007/s12539-013-0205-6] [PMID: 25205501]
[40]
Jia P, Qian Z, Feng K, Lu W, Li Y, Cai Y. Prediction of membrane protein types in a hybrid space. J Proteome Res 2008; 7(3): 1131-7.
[http://dx.doi.org/10.1021/pr700715c] [PMID: 18260610]
[41]
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27(8): 1226-8.
[http://dx.doi.org/10.1109/]]
[42]
Chou KC, Zhang CT. Prediction of protein structural classes. Crit Rev Biochem Mol Biol 1995; 30(4): 275-349.
[http://dx.doi.org/10.3109/10409239509083488] [PMID: 7587280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy