Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

A Review on the Finite Element Modeling of the Particle Reinforced Metal Matrix Composites in Cutting Process

Author(s): Xiaole Qi*, Guohe Li, Qi Zhang and Fei Sun

Volume 14, Issue 1, 2020

Page: [39 - 55] Pages: 17

DOI: 10.2174/1872212113666191001223709

Price: $65

conference banner
Abstract

Background: Particle Reinforced Metal Matrix Composites (PRMMCs) are widely used because of the higher specific strength, better dimensional stability, lower thermal expansion coefficient, better wear and corrosion resistance. However, the existence of reinforcing particles makes it hard to machine. The main manifestations are as follows: severe tool wear, easy generation of debris tumors in processing, and many defects on the machined surface, etc. These seriously limit its wider application. The Finite Element Method (FEM) has been widely applied in the research of PRMMCs machining according to recent patents, which can improve the efficiency and reduce the cost of research. Therefore, it is necessary to carry out a deep research for the processing technology of PRMMCs.

Methods: In this paper, the latest research progress of finite element simulation of cutting PRMMCs was summarized. The key technologies of finite element simulation, including constitutive model, geometric model, friction model between chip and tool, fracture criterion and mesh generation, are comprehensively analyzed and summarized. The application in the specific processing methods was discussed, such as turning, milling, grinding, ultrasonic vibration grinding and drilling. The existing problems and development direction of the simulation of PRMMCs cutting are also given. Besides, a lot of patents on finite element simulation for PRMMCs machining were studied.

Results: Finite element model for the actual composition determines the accuracy of finite element simulation. Through the secondary development of finite element software, a more realistic finite element model of Particle reinforced metal matrix composites can be established.

Conclusion: Finite Element Method (FEM) provides a new approach for the study of mechanism of Particle reinforced metal matrix composites machining. Quantitative analysis and prediction of micro- details in cutting can be realized.

Keywords: Finite element simulation, particle reinforced composites, cutting process, mechanism.

Graphical Abstract

[1]
L. Zhou, S.T. Huang, and D. Wang, "Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools", Int. J. Adv. Manuf. Technol., vol. 52, pp. 619-626, 2011.
[http://dx.doi.org/10.1007/s00170-010-2776-2]
[2]
J. Liu, K. Cheng, H. Ding, S. Chen, and L. Zhao, "Simulation study of the influence of cutting speed and tool–particle interaction location on surface formation mechanism in micromachining SiCp/Al composites", Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., vol. 232, pp. 2044-2056, 2017.
[http://dx.doi.org/10.1177/0954406217713521]
[3]
J. Liu, K. Cheng, H. Ding, S. Chen, and L. Zhao, "An investigation of surface defect formation in micro milling the 45% SiCp/Al composite", Procedia. Cirp., vol. 45, pp. 211-214, 2016.
[http://dx.doi.org/10.1016/j.procir.2016.02.327]
[4]
Q. Wu, W. Xu, and L. Zhang, "“A micromechanics analysis of the material removal mechanisms in the cutting of ceramic particle reinforced metal matrix composites”, Machining Science and Technology", Mach. Sci. Technol., vol. 22, pp. 638-651, 2018.
[http://dx.doi.org/10.1080/10910344.2017.1382516]
[5]
B.B. Wang, L.J. Xie, X.B. Wang, and X.L. Chen, "Simulation studies of the cutting process on SiCp/Al composites with different volume fraction of reinforced SiC Particles", Mater. Sci. Forum, vol. 800-801, pp. 321-326, 2014.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.800-801.321]
[6]
B.B. Wang, L.J. Xie, X.L. Chen, and X.B. Wang, "The milling simulation and experimental research on high volume fraction of SiCp/Al", Int. J. Adv. Manuf. Technol., vol. 82, pp. 809-816, 2016.
[http://dx.doi.org/10.1007/s00170-015-7399-1]
[7]
Q. Wu, Y. Si, G.S. Wang, and L. Wang, "Machinability of a silicon carbide particle-reinforced metal matrix composite", Rsc. Adv., vol. 6, pp. 21765-21775, 2016.
[http://dx.doi.org/10.1039/C6RA00340K]
[8]
C.Z. Duan, W. Sun, C. Fu, and F.Y. Zhang, "Modeling and simulation of tool-chip interface friction in cutting Al/SiCp composites based on a three-phase friction model", Int. J. Mech. Sci., vol. 142-143, pp. 384-396, 2018.
[http://dx.doi.org/10.1016/j.ijmecsci.2018.05.014]
[9]
C.Z. Duan, W. Sun, C. Fu, and F.Y. Zhang, "Modeling and Simulation of three-phase friction coefficient for cutting SiCp/Al Composites", Int. J. Mech. Sci., vol. 40, pp. 509-517, 2019.
[http://dx.doi.org/10.1016/j.ijmecsci.2018.05.014]
[10]
M. Fathipour, M. Hamedi, and R. Yousefi, "Numerical and experimental analysis of machining of Al (20vol% SiC) composite by the use of ABAQUS software", Mater. Sci. Eng. Technol., vol. 44, pp. 14-20, 2013.
[11]
U. Umer, M. Ashfaq, J.A. Qudeiri, H.M.A. Hussein, S.N. Danish, and A.R. Ahmari, "Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements", Int. J. Adv. Manuf. Technol., vol. 78, pp. 1171-1179, 2015.
[http://dx.doi.org/10.1007/s00170-014-6715-5]
[12]
Y. Wu, "Research on cutting simulation and experimental verification of SiCp/Al composites Ph.D thesis Harbin. Inst. Technol., 2017",
[13]
A. Ghandehariun, H.A. Kishawy, U. Umer, and H.M. Hussein, "On tool-workpiece interactions during machining metal matrix composites: investigation of the effect of cutting speed", Int. J. Adv. Manuf. Technol., vol. 84, pp. 2423-2435, 2016.
[http://dx.doi.org/10.1007/s00170-015-7869-5]
[14]
A. Ghandehariun, H.A. Kishawy, U. Umer, and H.M. Hussein, "Analysis of tool-particle interactions during cutting process of metal matrix composites", Int. J. Adv. Manuf. Technol., vol. 82, pp. 143-152, 2016.
[http://dx.doi.org/10.1007/s00170-015-7346-1]
[15]
A. Ghandehariun, M. Nazzal, H.A. Kishawy, and U. Umer, "On modeling the deformations and tool-workpiece interactions during machining metal matrix composites", Int. J. Adv. Manuf. Technol., vol. 91, pp. 1507-1516, 2017.
[http://dx.doi.org/10.1007/s00170-016-9776-9]
[16]
X. Teng, D. Huo, W. Chen, E. Wong, L. Zheng, and I. Shyh, "Finite element modelling on cutting mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius", J. Manuf. Process., vol. 32, pp. 116-126, 2018.
[http://dx.doi.org/10.1016/j.jmapro.2018.02.006]
[17]
W. H. Wang, Y.F. Xiong, R.S. Jiang, K.Y. Lin, D.Z. Zhao, K. Cui, Q. Chao, and X. F. Liu, Fast solution of J-C constitutive model for in-situ TiB2 particle reinforced aluminum matrix composites CN 107967381A, 2018..
[18]
X.G. Xue, L.J. Xie, and T. Wang, "Study on the constitutive model of SiCp/Al composites", Key Eng. Mater., vol. 693, pp. 621-628, 2016.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.693.621]
[19]
X. Chen, L. Xie, X. Xue, and X. Wang, "Research on 3d milling simulation of sicp/al composite based on a phenomenological model", Int. J. Adv. Manuf. Technol., vol. 92, pp. 2715-2723, 2017.
[http://dx.doi.org/10.1007/s00170-017-0315-0]
[20]
Y. Zhu, and H.A. Kishawy, "Influence of alumina particles on the mechanics of machining metal matrix composites", Int. J. Mach. Tools Manuf., vol. 45, pp. 389-398, 2005.
[http://dx.doi.org/10.1016/j.ijmachtools.2004.09.013]
[21]
T. Wang, "Basic research on high-speed milling of SiCp/Al composites with high volume fraction Ph.D thesis, Beijing Insti. Technol., 2015",
[22]
H. Gao and , Y. Huang, W.D. Nix, and J.W. Ni, "Mechanism-based strain gradient plasticity-I. Theory", J. Mech. Phys. Solids, vol. 47, pp. 1239-1263, 1999.
[http://dx.doi.org/10.1016/S0022-5096(98)00103-3]
[23]
C.R. Dandekar, and Y.C. Shin, "Multi-scale modeling to predict sub-surface damage applied to laser-assisted machining of a particulate reinforced metal matrix composite", J. Mater. Process. Technol., vol. 213, pp. 153-160, 2013.
[http://dx.doi.org/10.1016/j.jmatprotec.2012.09.010]
[24]
G. Tursun, U. Weber, E. Soppa, and S. Schmauder, "The influence of transition phases on the damage behaviour of an Al/10vol.% SiC composite", Comput. Mater. Sci., vol. 37, pp. 119-133, 2006.
[http://dx.doi.org/10.1016/j.commatsci.2005.12.018]
[25]
D.R. Veazie, and J. Qu, "Effects of interphases on the transverse stress-strain behavior in unidirectional fiber reinforced metal matrix composites", Compos. Eng., vol. 5, pp. 597-610, 1995.
[http://dx.doi.org/10.1016/0961-9526(95)00013-D]
[26]
M.M. Aghdam, and S.R. Falahatgar, "Micromechanical modeling of interface damage of metal matrix composites subjected to transverse loading", Compos. Struct., vol. 66, pp. 415-420, 2004.
[http://dx.doi.org/10.1016/j.compstruct.2004.04.063]
[27]
Y.S. Suh, S.P. Joshi, and K.T. Ramesh, "An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites", Acta Mater., vol. 57, pp. 5848-5861, 2009.
[http://dx.doi.org/10.1016/j.actamat.2009.08.010]
[28]
J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, and K. Yang, "An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites", Compos. Sci. Technol., vol. 71, pp. 39-45, 2011. [http://dx.doi.org/10.1016/j.compscitech.2010.09.014].
[29]
M.N. Yuan, Y.Q. Yang, C. Li, P.Y. Heng, and L.Z. Li, "Numerical analysis of the stress–strain distributions in the particle reinforced metal matrix composite SiC/6064Al", Mater. Des., vol. 38, pp. 1-6, 2012.
[http://dx.doi.org/10.1016/j.matdes.2011.12.043]
[30]
L. J. Xie, F. N. Gao, J. F. Xiang, G. H. Cheng, X. Hu, T. Wang, and X. B. Wang, Finite element modeling of particle reinforced composites considering microstructure interface CN 107766640A, 2018.
[31]
C.R. Dandekar, "Multi-scale modeling and laser-assisted machining of metal matrix composites Ph.D thesis, Purdue. Uni, 2010",
[32]
C. Liu, S. Huang, and L. Zhou, "Finite element simulation of high speed milling of SiCp/Al composites", Tool. Eng., vol. 9, pp. 34-38, 2013.
[33]
S. Sun, Z. Dong, and J. Liu, "Finite element simulation of three-dimensional micro-hole drilling for SiCp/Al composites based on ABAQUS/Explicit", Tool. Engin., vol. 52, pp. 56-59, 2018.
[34]
M.V. Ramesh, K.C. Chan, W.B. Lee, and C.F. Cheung, "Finite-element analysis of diamond turning of aluminium matrix composites", Compos. Sci. Technol., vol. 61, pp. 1449-1456, 2001.
[http://dx.doi.org/10.1016/S0266-3538(01)00047-1]
[35]
F. Chen, W. Wang, and X. Liu, "Finite element simulation analysis of milling and grinding of SiCp/Al materials", Aer. Manu. Technol., vol. 3, pp. 44-47, 2015.
[36]
A. Pramanik, L.C. Zhangand, and J.A. Arsecularatne, "An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting", Int. J. Mach. Tools Manuf., vol. 47, pp. 1497-1506, 2007.
[http://dx.doi.org/10.1016/j.ijmachtools.2006.12.004]
[37]
J. Wang, K. Chu, and J. Zhao, "Cutting simulation and experimental study of SiCp/Al composites", J. Syn. Cry., vol. 45, pp. 1756-1764, 2016.
[38]
C.R. Dandekar, and Y.C. Shin, "Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites", Compos. A. Appl. Sci. Manuf., vol. 40, pp. 1231-1239, 2009.
[http://dx.doi.org/10.1016/j.compositesa.2009.05.017]
[39]
X.J. Shui, Y.D. Zhang, and Q. Wu, "Mesoscopic Model for SiCP/Al Composites and Simulation on theCutting Process", Appl. Mech. Mater., vol. 487, pp. 189-194, 2014.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.487.189]
[40]
L. Zhou, C. Cui, P.F. Zhang, and Z.Y. Ma, "Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites", Int. J. Adv. Manuf. Technol., vol. 91, pp. 1935-1944, 2017.
[http://dx.doi.org/10.1007/s00170-016-9933-1]
[41]
L. Zhou, Y. Wang, Z.Y. Ma, and X.L. Yu, "Finite element and experimental studies of the formation mechanism of edge defects during machining of Si Cp/Al composites", Int. J. Mach. Tools Manuf., vol. 84, pp. 9-16, 2014.
[http://dx.doi.org/10.1016/j.ijmachtools.2014.03.003]
[42]
T. Wang, L. Xie, and X. Wang, "Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite", Int. J. Adv. Manuf. Technol., vol. 79, pp. 1185-1194, 2015.
[http://dx.doi.org/10.1007/s00170-015-6876-x]
[43]
H.X. Wang, J. Yang, Z.S. Liu, and W.J. Zhai, "Research on milling force in precision milling SiCp /Al composite materials", J. Harbin Inst. Technol., vol. 19, pp. 1-5, 2012.
[44]
J. Yang, " Finite element simulation and experimental study on precision milling process of aluminium-based silicon carbide Ph.D thesis, Beijing. Inst. Technol, 2012",
[45]
Y. Wang, W. Liao, K. Yang, X. Teng, and W. Chen, "Simulation and experimental investigation on the cutting mechanismand surface generation in machining SiCp/Al MMCs", Int. J. Adv. Manuf. Technol., vol. 100, pp. 1393-1404, 2019.
[http://dx.doi.org/10.1007/s00170-018-2769-0]
[46]
L. J. Xie, J. F. Xiang, X. Hu, F. N. Gao, G. H. Cheng, J. Yi, C. L. Li, Z. Liu, P. S. Le, and X. B. Wang, A finite element modeling method for particle reinforced composites based on pixel theory CN 108053478A, 2018..
[47]
U.A. Dabade, D. Dapkekar, and S.S. Joshi, "Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp composites", Int. J. Mach. Tools Manuf., vol. 49, pp. 690-700, 2009.
[http://dx.doi.org/10.1016/j.ijmachtools.2009.03.003]
[48]
J. Guo, R. Guo, and W. Gai, "Simulation of Particle Reinforced Composite Materials in Macro- and Meso-Scales", Appl. Mech. Mater., vol. 444-445, pp. 37-44, 2014.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.444-445.37]
[49]
S. Huang, Z. Wang, K. Jiao, and J. Li, "Chip formation and boundary damage simulation of SiCp/Al composites in high-speed orthogonal cutting", J. Syn. Cry., vol. 43, pp. 2717-2725, 2014.
[50]
J. Liu, "Experimental study and modeling of mechanical micromachining of particle reinforced heterogeneous materials” Ph.D thesis,Uni. Central. Florida, 2012",
[51]
G. Zavarise, P. Wriggers, and B.A. Schrefler, "A method for solving contact problems", Int. J. Numer. Methods Eng., vol. 42, pp. 473-498, 1998. [http://dx.doi.org/10.1002/(SICI)1097-0207(19980615)42:3<473: AID-NME367>3.0.CO;2-A].
[52]
R. Fletcher, “Practical methods of optimisation”. 2nd., Wiley: New. York, 1989.
[53]
T. Özel, "The influence of friction models on finite element simulations of machining", Int. J. Mach. Tools Manuf., vol. 46, no. 5, pp. 518-530, 2006.
[http://dx.doi.org/10.1016/j.ijmachtools.2005.07.001]
[54]
S.B. Prabu, and L. Karunamoorthy, "Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite", J. Mater. Process. Technol., vol. 207, pp. 53-62, 2008.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.12.077]
[55]
M. El-Gallab, and M. Sklad, "Machining of Al/SiC particulate metal matrix composites part III: comprehensive tool wear models", J. Mater. Process. Technol., vol. 101, pp. 10-20, 2000.
[http://dx.doi.org/10.1016/S0924-0136(99)00351-9]
[56]
M. El-Gallab, and M. Sklad, "Machining of aluminum/silicon carbide particulate metal matrix composites Part IV. Residual stresses in the machined workpiece", J. Mater. Process. Technol., vol. 152, pp. 23-34, 2004.
[http://dx.doi.org/10.1016/j.jmatprotec.2004.01.061]
[57]
L. Zhou, S.T. Huang, and C.Y. Zhang, "Numerical and experimental studies on the temperature field in precision grinding of SiCp/Al composites", Int. J. Adv. Manuf. Technol., vol. 67, pp. 1007-1014, 2013.
[http://dx.doi.org/10.1007/s00170-012-4543-z]
[58]
W. F. Ding, B. Zhao, J. H. Xu, and Y. C. Fu, A control method for grinding efficiency and surface quality of particle reinforced titanium matrix composites CN 104289980A, 2015..
[59]
C. Su, X. Mi, X. Sun, and M. Chu, "Simulation study on chip formation mechanism in grinding particle reinforced Cu-matrix composites", Int. J. Adv. Manuf. Technol., vol. 99, pp. 1249-1256, 2018.
[http://dx.doi.org/10.1007/s00170-018-2477-9]
[60]
W. Zheng, " Study on material removal and surface quality of SiCp/Al composites in ultrasonic vibration grinding Ph.D thesis, Harbin. Inst. Technol, 2017",
[61]
P. Ye, "Removal mechanism and machined surface morphology of SiCp/Al composites by ultrasonic vibration grinding Ph.D thesis, Harbin. Inst. Technol, 2017",
[62]
F. Hu, L. Xie, J. Xiang, U. Umer, and X. Nan, "Finite element modelling study on small-hole peck drilling of SiCp/Al composites", Int. J. Adv. Manuf. Technol., vol. 96, pp. 3719-3728, 2018.
[http://dx.doi.org/10.1007/s00170-018-1730-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy