Review Article

治疗性适体:不断发展以寻找其临床领域

卷 27, 期 25, 2020

页: [4181 - 4193] 页: 13

弟呕挨: 10.2174/0929867326666191001125101

价格: $65

摘要

背景:被称为适体的短寡核苷酸,可以折叠成三维结构,使它们选择性结合并抑制致病蛋白的活性的发现,现已超过25年了。 SELEX方法学的发明预示着一个时代,在该时代,可以针对各种治疗靶标产生此类基于核酸的配体。 结果:现在已经在实验室中通过组合化学方法鉴定出大量适体,并且自然界中发现了越来越多的适体。通常将这种适体的亲和力和活性与抗体进行比较,但是与大量且越来越多的治疗性抗体相比,这些试剂中只有少数进入了临床研究。靶向VEGF的一种治疗性适体已投放市场,而其他3种已进入III期临床试验。 结论:在本手稿中,我们希望读者认识到,适体成为一类药物的成功与其说是核酸生物化学有关,不如说是与靶标验证和整体药物化学有关。

关键词: 适体,DNA,RNA,治疗,临床试验,寡核苷酸。

[1]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[2]
Cullen, B.R.; Greene, W.C. Regulatory pathways governing HIV-1 replication. Cell, 1989, 58(3), 423-426.
[http://dx.doi.org/10.1016/0092-8674(89)90420-0] [PMID: 2569361]
[3]
Burgert, H.G.; Ruzsics, Z.; Obermeier, S.; Hilgendorf, A.; Windheim, M.; Elsing, A. Subversion of host defense mechanisms by adenoviruses. Curr. Top. Microbiol. Immunol., 2002, 269, 273-318.
[http://dx.doi.org/10.1007/978-3-642-59421-2_16] [PMID: 12224514]
[4]
Sullenger, B.A.; Gallardo, H.F.; Ungers, G.E.; Gilboa, E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell, 1990, 63(3), 601-608.
[http://dx.doi.org/10.1016/0092-8674(90)90455-N] [PMID: 2225067]
[5]
Bielinska, A.; Shivdasani, R.A.; Zhang, L.Q.; Nabel, G.J. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science, 1990, 250(4983), 997-1000.
[http://dx.doi.org/10.1126/science.2237444] [PMID: 2237444]
[6]
Mandal, M.; Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol., 2004, 5(6), 451-463.
[http://dx.doi.org/10.1038/nrm1403] [PMID: 15173824]
[7]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[8]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[9]
Gold, L.; Polisky, B.; Uhlenbeck, O.; Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem., 1995, 64, 763-797.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.003555] [PMID: 7574500]
[10]
Nimjee, S.M.; Rusconi, C.P.; Sullenger, B.A. Aptamers: an emerging class of therapeutics. Annu. Rev. Med., 2005, 56, 555-583.
[http://dx.doi.org/10.1146/annurev.med.56.062904.144915] [PMID: 15660527]
[11]
Mehan, M.R.; Ostroff, R.; Wilcox, S.K.; Steele, F.; Schneider, D.; Jarvis, T.C.; Baird, G.S.; Gold, L.; Janjic, N. Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. Adv. Exp. Med. Biol., 2013, 735, 283-300.
[http://dx.doi.org/10.1007/978-1-4614-4118-2_20] [PMID: 23402035]
[12]
Kohn, D.B.; Bauer, G.; Rice, C.R.; Rothschild, J.C.; Carbonaro, D.A.; Valdez, P.; Hao, Ql.; Zhou, C.; Bahner, I.; Kearns, K.; Brody, K.; Fox, S.; Haden, E.; Wilson, K.; Salata, C.; Dolan, C.; Wetter, C.; Aguilar-Cordova, E.; Church, J. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood, 1999, 94(1), 368-371.
[http://dx.doi.org/10.1182/blood.V94.1.368.413a47_368_371] [PMID: 10381536]
[13]
Mann, M.J.; Whittemore, A.D.; Donaldson, M.C.; Belkin, M.; Conte, M.S.; Polak, J.F.; Orav, E.J.; Ehsan, A.; Dell’Acqua, G.; Dzau, V.J. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet, 1999, 354(9189), 1493-1498.
[http://dx.doi.org/10.1016/S0140-6736(99)09405-2] [PMID: 10551494]
[14]
DiGiusto, D.L.; Krishnan, A.; Li, L.; Li, H.; Li, S.; Rao, A.; Mi, S.; Yam, P.; Stinson, S.; Kalos, M.; Alvarnas, J.; Lacey, S.F.; Yee, J.K.; Li, M.; Couture, L.; Hsu, D.; Forman, S.J.; Rossi, J.J.; Zaia, J.A. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci. Transl. Med., 2010, 2(36)36ra43
[http://dx.doi.org/10.1126/scitranslmed.3000931] [PMID: 20555022]
[15]
Chung, J.; Scherer, L.J.; Gu, A.; Gardner, A.M.; Torres-Coronado, M.; Epps, E.W.; Digiusto, D.L.; Rossi, J.J. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene. Mol. Ther., 2014, 22(5), 952-963.
[http://dx.doi.org/10.1038/mt.2014.32] [PMID: 24576853]
[16]
Morishita, R.; Gibbons, G.H.; Horiuchi, M.; Ellison, K.E.; Nakama, M.; Zhang, L.; Kaneda, Y.; Ogihara, T.; Dzau, V.J. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc. Natl. Acad. Sci. USA, 1995, 92(13), 5855-5859.
[http://dx.doi.org/10.1073/pnas.92.13.5855] [PMID: 7597041]
[17]
Alexander, J.H.; Hafley, G.; Harrington, R.A.; Peterson, E.D.; Ferguson, T.B., Jr; Lorenz, T.J.; Goyal, A.; Gibson, M.; Mack, M.J.; Gennevois, D.; Califf, R.M.; Kouchoukos, N.T. PREVENT IV Investigators. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA, 2005, 294(19), 2446-2454.
[http://dx.doi.org/10.1001/jama.294.19.2446] [PMID: 16287955]
[18]
Conte, M.S.; Bandyk, D.F.; Clowes, A.W.; Moneta, G.L.; Seely, L.; Lorenz, T.J.; Namini, H.; Hamdan, A.D.; Roddy, S.P.; Belkin, M.; Berceli, S.A.; DeMasi, R.J.; Samson, R.H.; Berman, S.S. PREVENT III Investigators Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg., 2006, 43(4), 742-751.
[http://dx.doi.org/10.1016/j.jvs.2005.12.058] [PMID: 16616230]
[19]
Suzuki, J.; Tezuka, D.; Morishita, R.; Isobe, M. An initial case of suppressed restenosis with nuclear factor-kappa B decoy transfection after percutaneous coronary intervention. J. Gene Med., 2009, 11(1), 89-91.
[http://dx.doi.org/10.1002/jgm.1266] [PMID: 19003802]
[20]
Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; Etter, J.P.; Li, P.K.; Wang, L.; Chiosea, S.; Seethala, R.R.; Gooding, W.E.; Chen, X.; Kaminski, N.; Pandit, K.; Johnson, D.E.; Grandis, J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0191] [PMID: 22719020]
[21]
Zhang, Q.; Hossain, D.M.; Duttagupta, P.; Moreira, D.; Zhao, X.; Won, H.; Buettner, R.; Nechaev, S.; Majka, M.; Zhang, B.; Cai, Q.; Swiderski, P.; Kuo, Y.H.; Forman, S.; Marcucci, G.; Kortylewski, M. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood, 2016, 127(13), 1687-1700.
[http://dx.doi.org/10.1182/blood-2015-08-665604] [PMID: 26796361]
[22]
Kotula, J.W.; Sun, J.; Li, M.; Pratico, E.D.; Fereshteh, M.P.; Ahrens, D.P.; Sullenger, B.A.; Kovacs, J.J. Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PLoS One, 2014, 9(4)e9344
[http://dx.doi.org/10.1371/journal.pone.0093441] [PMID: 24736311]
[23]
Beigelman, L.; McSwiggen, J.A.; Draper, K.G.; Gonzalez, C.; Jensen, K.; Karpeisky, A.M.; Modak, A.S.; Matulic-Adamic, J.; DiRenzo, A.B.; Haeberli, P. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem., 1995, 270(43), 25702-25708.
[http://dx.doi.org/10.1074/jbc.270.43.25702] [PMID: 7592749]
[24]
Jellinek, D.; Green, L.S.; Bell, C.; Lynott, C.K.; Gill, N.; Vargeese, C.; Kirschenheuter, G.; McGee, D.P.; Abesinghe, P.; Pieken, W.A. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry, 1995, 34(36), 11363-11372.
[http://dx.doi.org/10.1021/bi00036a009] [PMID: 7547864]
[25]
Tucker, C.E.; Chen, L.S.; Judkins, M.B.; Farmer, J.A.; Gill, S.C.; Drolet, D.W. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B Biomed. Sci. Appl., 1999, 732(1), 203-212.
[http://dx.doi.org/10.1016/S0378-4347(99)00285-6] [PMID: 10517237]
[26]
Willis, M.C.; Collins, B.D.; Zhang, T.; Green, L.S.; Sebesta, D.P.; Bell, C.; Kellogg, E.; Gill, S.C.; Magallanez, A.; Knauer, S.; Bendele, R.A.; Gill, P.S.; Janjić, N.; Collins, B. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug. Chem., 1998, 9(5), 573-582.
[http://dx.doi.org/10.1021/bc980002x] [PMID: 9736491]
[27]
Drolet, D.W.; Green, L.S.; Gold, L.; Janjic, N. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther., 2016, 26(3), 127-146.
[http://dx.doi.org/10.1089/nat.2015.0573] [PMID: 26757406]
[28]
Ruckman, J.; Green, L.S.; Beeson, J.; Waugh, S.; Gillette, W.L.; Henninger, D.D.; Claesson-Welsh, L.; Janjić, N. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem., 1998, 273(32), 20556-20567.
[http://dx.doi.org/10.1074/jbc.273.32.20556] [PMID: 9685413]
[29]
Eyetech Study GroupPreclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina, 2002, 22(2), 143-152.
[http://dx.doi.org/10.1097/00006982-200204000-00002] [PMID: 11927845]
[30]
Eyetech Study GroupAnti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology, 2003, 110(5), 979-986.
[http://dx.doi.org/10.1016/S0161-6420(03)00085-X] [PMID: 12750101]
[31]
Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr; Feinsod, M.; Guyer, D.R. VEGF Inhibition Study in Ocular Neovascularization Clinical Trial GroupPegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med., 2004, 351(27), 2805-2816.
[http://dx.doi.org/10.1056/NEJMoa042760] [PMID: 15625332]
[32]
Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. MARINA Study GroupRanibizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2006, 355(14), 1419-1431.
[http://dx.doi.org/10.1056/NEJMoa054481] [PMID: 17021318]
[33]
Ferrara, N.; Gerber, H-P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[34]
Dunn, E.N.; Hariprasad, S.M.; Sheth, V.S. An Overview of the fovista and rinucumab trials and the fate of anti-pdgf medications. Ophthalmic Surg. Lasers Imaging Retina, 2017, 48(2), 100-104.
[http://dx.doi.org/10.3928/23258160-20170130-02] [PMID: 28195611]
[35]
Rusconi, C.P.; Scardino, E.; Layzer, J.; Pitoc, G.A.; Ortel, T.L.; Monroe, D.; Sullenger, B.A. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature, 2002, 419(6902), 90-94.
[http://dx.doi.org/10.1038/nature00963] [PMID: 12214238]
[36]
Dyke, C.K.; Steinhubl, S.R.; Kleiman, N.S.; Cannon, R.O.; Aberle, L.G.; Lin, M.; Myles, S.K.; Melloni, C.; Harrington, R.A.; Alexander, J.H.; Becker, R.C.; Rusconi, C.P. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation, 2006, 114(23), 2490-2497.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.668434] [PMID: 17101847]
[37]
Rusconi, C.P.; Roberts, J.D.; Pitoc, G.A.; Nimjee, S.M.; White, R.R.; Quick, G., Jr; Scardino, E.; Fay, W.P.; Sullenger, B.A. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol., 2004, 22(11), 1423-1428.
[http://dx.doi.org/10.1038/nbt1023] [PMID: 15502817]
[38]
Nimjee, S.M.; Keys, J.R.; Pitoc, G.A.; Quick, G.; Rusconi, C.P.; Sullenger, B.A. A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol. Ther., 2006, 14(3), 408-415.
[http://dx.doi.org/10.1016/j.ymthe.2006.04.006] [PMID: 16765093]
[39]
Vavalle, J.P.; Rusconi, C.P.; Zelenkofske, S.; Wargin, W.A.; Alexander, J.H.; Becker, R.C. A phase 1 ascending dose study of a subcutaneously administered factor IXa inhibitor and its active control agent. J. Thromb. Haemost., 2012, 10(7), 1303-1311.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04742.x] [PMID: 22500821]
[40]
Povsic, T.J.; Vavalle, J.P.; Aberle, L.H.; Kasprzak, J.D.; Cohen, M.G.; Mehran, R.; Bode, C.; Buller, C.E.; Montalescot, G.; Cornel, J.H.; Rynkiewicz, A.; Ring, M.E.; Zeymer, U.; Natarajan, M.; Delarche, N.; Zelenkofske, S.L.; Becker, R.C.; Alexander, J.H. A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur. Heart J., 2012.
[http://dx.doi.org/10.1093/eurheartj/ehs232] [PMID: 22859796]
[41]
Lincoff, A.M.; Mehran, R.; Povsic, T.J.; Zelenkofske, S.L.; Huang, Z.; Armstrong, P.W.; Steg, P.G.; Bode, C.; Cohen, M.G.; Buller, C.; Laanmets, P.; Valgimigli, M.; Marandi, T.; Fridrich, V.; Cantor, W.J.; Merkely, B.; Lopez-Sendon, J.; Cornel, J.H.; Kasprzak, J.D.; Aschermann, M.; Guetta, V.; Morais, J.; Sinnaeve, P.R.; Huber, K.; Stables, R.; Sellers, M.A.; Borgman, M.; Glenn, L.; Levinson, A.I.; Lopes, R.D.; Hasselblad, V.; Becker, R.C.; Alexander, J.H. REGULATE-PCI Investigators. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet, 2016, 387(10016), 349-356.
[http://dx.doi.org/10.1016/S0140-6736(15)00515-2] [PMID: 26547100]
[42]
Ganson, N.J.; Povsic, T.J.; Sullenger, B.A.; Alexander, J.H.; Zelenkofske, S.L.; Sailstad, J.M.; Rusconi, C.P.; Hershfield, M.S. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol., 2015, 137(5), 1610-1613.
[http://dx.doi.org/10.1016/j.jaci.2015.10.034.] [PMID: 26688515]
[43]
Nimjee, S.M.; Povsic, T.J.; Sullenger, B.A.; Becker, R.C. Translation and clinical development of antithrombotic aptamers. translation and clinical development of antithrombotic aptamers. Nucleic Acid Ther., 2016, 26(3), 147-155.
[http://dx.doi.org/10.1089/nat.2015.0581] [PMID: 26882082]
[44]
Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[45]
Gilbert, J.C.; DeFeo-Fraulini, T.; Hutabarat, R.M.; Horvath, C.J.; Merlino, P.G.; Marsh, H.N.; Healy, J.M.; Boufakhreddine, S.; Holohan, T.V.; Schaub, R.G. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation, 2007, 116(23), 2678-2686.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.724864] [PMID: 18025536]
[46]
Markus, H.S.; McCollum, C.; Imray, C.; Goulder, M.A.; Gilbert, J.; King, A. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke, 2011, 42(8), 2149-2153.
[http://dx.doi.org/10.1161/STROKEAHA.111.616649] [PMID: 21700934]
[47]
Jilma, B.; Paulinska, P.; Jilma-Stohlawetz, P.; Gilbert, J.C.; Hutabarat, R.; Knöbl, P. A randomised pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb. Haemost., 2010, 104(3), 563-570.
[http://dx.doi.org/10.1160/TH10-01-0027] [PMID: 20589313]
[48]
Jilma-Stohlawetz, P.; Gilbert, J.C.; Gorczyca, M.E.; Knöbl, P.; Jilma, B. A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb. Haemost., 2011, 106(3), 539-547.
[http://dx.doi.org/10.1160/TH11-02-0069] [PMID: 21833442]
[49]
Jilma-Stohlawetz, P.; Gorczyca, M.E.; Jilma, B.; Siller-Matula, J.; Gilbert, J.C.; Knöbl, P. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb. Haemost., 2011, 105(3), 545-552.
[http://dx.doi.org/10.1160/TH10-08-0520] [PMID: 21174003]
[50]
Jilma-Stohlawetz, P.; Knöbl, P.; Gilbert, J.C.; Jilma, B. The anti-von Willebrand factor aptamer ARC1779 increases von Willebrand factor levels and platelet counts in patients with type 2B von Willebrand disease. Thromb. Haemost., 2012, 108(2), 284-290.
[http://dx.doi.org/10.1160/TH11-12-0889] [PMID: 22740102]
[51]
Eulberg, D.; Klussmann, S. Spiegelmers: biostable aptamers. ChemBioChem, 2003, 4(10), 979-983.
[http://dx.doi.org/10.1002/cbic.200300663] [PMID: 14523914]
[52]
Vater, A.; Klussmann, S. Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discov. Today, 2015, 20(1), 147-155.
[http://dx.doi.org/10.1016/j.drudis.2014.09.004] [PMID: 25236655]
[53]
Menne, J.; Eulberg, D.; Beyer, D.; Baumann, M.; Saudek, F.; Valkusz, Z.; Wiecek, A.; Haller, H. Emapticap Study, G., C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant., 2016.
[http://dx.doi.org/10.1093/ndt/gfv459]
[54]
Bates, P.J.; Laber, D.A.; Miller, D.M.; Thomas, S.D.; Trent, J.O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol., 2009, 86(3), 151-164.
[http://dx.doi.org/10.1016/j.yexmp.2009.01.004] [PMID: 19454272]
[55]
Rosenberg, J.E.; Bambury, R.M.; Van Allen, E.M.; Drabkin, H.A.; Lara, P.N., Jr; Harzstark, A.L.; Wagle, N.; Figlin, R.A.; Smith, G.W.; Garraway, L.A.; Choueiri, T.; Erlandsson, F.; Laber, D.A. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest. New Drugs, 2014, 32(1), 178-187.
[http://dx.doi.org/10.1007/s10637-013-0045-6] [PMID: 24242861]
[56]
Hirota, M.; Murakami, I.; Ishikawa, Y.; Suzuki, T.; Sumida, S.; Ibaragi, S.; Kasai, H.; Horai, N.; Drolet, D.W.; Gupta, S.; Janjic, N.; Schneider, D.J. Chemically modified interleukin-6 aptamer inhibits development of collagen-induced arthritis in Cynomolgus monkeys. Nucleic Acid Ther., 2016, 26(1), 10-19.
[http://dx.doi.org/10.1089/nat.2015.0567] [PMID: 26579954]
[57]
Layzer, J.M.; Sullenger, B.A. Simultaneous generation of aptamers to multiple gamma-carboxyglutamic acid proteins from a focused aptamer library using DeSELEX and convergent selection. Oligonucleotides, 2007, 17(1), 1-11.
[http://dx.doi.org/10.1089/oli.2006.0059] [PMID: 17461758]
[58]
Ray, P.; Rialon-Guevara, K.L.; Veras, E.; Sullenger, B.A.; White, R.R. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker. J. Clin. Invest., 2012, 122(5), 1734-1741.
[http://dx.doi.org/10.1172/JCI62385] [PMID: 22484812]
[59]
Dua, P.; Kim, S.; Lee, D.K. Nucleic acid aptamers targeting cell-surface proteins. Methods, 2011, 54(2), 215-225.
[http://dx.doi.org/10.1016/j.ymeth.2011.02.002] [PMID: 21300154]
[60]
Wang, J.; Li, G. Aptamers against cell surface receptors: selection, modification and application. Curr. Med. Chem., 2011, 18(27), 4107-4116.
[http://dx.doi.org/10.2174/092986711797189628] [PMID: 21838694]
[61]
Magalhães, M.L.; Byrom, M.; Yan, A.; Kelly, L.; Li, N.; Furtado, R.; Palliser, D.; Ellington, A.D.; Levy, M. A general RNA motif for cellular transfection. Mol. Ther., 2012, 20(3), 616-624.
[http://dx.doi.org/10.1038/mt.2011.277] [PMID: 22233578]
[62]
Mi, J.; Liu, Y.; Rabbani, Z.N.; Yang, Z.; Urban, J.H.; Sullenger, B.A.; Clary, B.M. In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol., 2010, 6(1), 22-24.
[http://dx.doi.org/10.1038/nchembio.277] [PMID: 19946274]
[63]
Mi, J.; Ray, P.; Liu, J.; Kuan, C.T.; Xu, J.; Hsu, D.; Sullenger, B.A.; White, R.R.; Clary, B.M. In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther.Nucleic Acids,, 2016. 5e315
[64]
McNamara, J.O., II; Andrechek, E.R.; Wang, Y.; Viles, K.D.; Rempel, R.E.; Gilboa, E.; Sullenger, B.A.; Giangrande, P.H. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol., 2006, 24(8), 1005-1015.
[http://dx.doi.org/10.1038/nbt1223] [PMID: 16823371]
[65]
Zhou, J.; Rossi, J.J. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides, 2011, 21(1), 1-10.
[http://dx.doi.org/10.1089/oli.2010.0264] [PMID: 21182455]
[66]
Dollins, C.M.; Nair, S.; Boczkowski, D.; Lee, J.; Layzer, J.M.; Gilboa, E.; Sullenger, B.A. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol., 2008, 15(7), 675-682.
[http://dx.doi.org/10.1016/j.chembiol.2008.05.016] [PMID: 18635004]
[67]
McNamara, J.O.; Kolonias, D.; Pastor, F.; Mittler, R.S.; Chen, L.; Giangrande, P.H.; Sullenger, B.; Gilboa, E. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest., 2008, 118(1), 376-386.
[http://dx.doi.org/10.1172/JCI33365] [PMID: 18060045]
[68]
Pastor, F.; Kolonias, D.; McNamara, J.O., II; Gilboa, E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol. Ther., 2011, 19(10), 1878-1886.
[http://dx.doi.org/10.1038/mt.2011.145] [PMID: 21829171]
[69]
Powell Gray, B.; Kelly, L.; Ahrens, D.P.; Barry, A.P.; Kratschmer, C.; Levy, M.; Sullenger, B.A. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(18), 4761-4766.
[http://dx.doi.org/10.1073/pnas.1717705115] [PMID: 29666232]
[70]
Yan, A.C.; Levy, M. Aptamer-mediated delivery and cell targeting aptamers: room for improvement. Nucleic Acid Ther., 2018, 28(3), 194-199.
[http://dx.doi.org/10.1089/nat.2018.0732] [PMID: 29883295]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy