Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Density Functional Theory Study of Antioxidant Adsorption onto Single- Wall Boron Nitride Nanotubes: Design of New Antioxidant Delivery Systems

Author(s): Samereh Ghazanfary, Fatemeh Oroojalian*, Rezvan Yazdian-Robati, Mehdi Dadmehr and Amirhossein Sahebkar*

Volume 22, Issue 7, 2019

Page: [470 - 482] Pages: 13

DOI: 10.2174/1386207322666190930113200

Price: $65

Abstract

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting.

Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory.

Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory.

Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased.

Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.

Keywords: Antioxidants, density functional theory, LDA/ DNP, Boron Nitride Nanotube (BNNT), drug delivery, external electric field.

[1]
Sun, J.; Furness, J.W.; Zhang, Y. Density Functional Theory. In: Mathematical Physics in Theoretical Chemistry; Blinder, S.M.; House, J.E., Eds.; Elsevier, 2019; pp. 119-159.
[http://dx.doi.org/10.1016/B978-0-12-813651-5.00004-8]
[2]
Oroojalian, F.; Babaei, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J. Controlled. Release, 2018, 288, 45-61.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.039]
[3]
Oroojalian, F.; Rezayan, A.H.; Shier, W.H.; Ramezani, M. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl-polyethylenimine-containing nanoplexes. Int. J. Pharm., 2017, 523, 102-120.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.024]
[4]
Karimi, M.A.; Dadmehr, M.; Hosseini, M.; Korouzhdehi, B.; Oroojalian, F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC Adv, 2019, 58, 12063-12069.
[http://dx.doi.org/10.1039/C9RA01564G]
[5]
Oroojalian, F.; Jahanafrooz, Z.; Chogan, F.; Rezayan, A.H.; Malekzade, E.; Rezaei, S.J.T.; Nabid, M.R.; Sahebkar, A. Synthesis and evaluation of injectable thermosensitive penta‐block copolymer hydrogel (PNIPAAm‐PCL‐PEG‐PCL‐PNIPAAm) and star‐shaped poly (CL— CO— LA)‐b‐PEG for wound healing applications. J. Cell. Biochem., 2019, 120(10), 17194-17207.
[http://dx.doi.org/10.1002/jcb.28980] [PMID: 31104319]
[6]
Yang, C-K. Exploring the interaction between the boron nitride nanotube and biological molecules. Comput. Phys. Commun., 2011, 182, 39-42.
[http://dx.doi.org/10.1016/j.cpc.2010.07.040]
[7]
Wang, C.; Guo, C. Computational study on the interaction of nucleobases with boron‐rich boron nitride nanotubes. Quantum Chem., 2018, 118e25757
[http://dx.doi.org/10.1002/qua.25757]
[8]
Vashist, S.K.; Zheng, D.; Pastorin, G.; Al-Rubeaane, K.; Luong, J.H.T.; Sheu, F.S. Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 2011, 49, 4077-4097.
[http://dx.doi.org/10.1016/j.carbon.2011.05.049]
[9]
Kaur, J.; Singla, P.; Goel, N. Adsorption of oxazole and isoxazole on BNNT surface: A DFT study. Appl. Surf. Sci., 2015, 328, 632-640.
[http://dx.doi.org/10.1016/j.apsusc.2014.12.099]
[10]
Alinezhad, H.; Ganji, M.D.; Soleymani, E.; Tajbakhsh, M. A comprehensive theoretical investigation about the bio-functionalization capability of single walled CNT, BNNT and SiCNT using DNA/RNA nucleobases. Appl. Surf. Sci., 2017, 422, 56-72.
[11]
Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today, 2009, 4, 8-10.
[http://dx.doi.org/10.1016/j.nantod.2008.09.001]
[12]
Ciofani, G.; Raffa, V.; Yu, J.; Chen, Y.; Obata, Y.; Takeoka, S.; Menciassi, A.; Cuschieri, A. Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr. Nanosci., 2009, 5, 33-38.
[http://dx.doi.org/10.2174/157341309787314557]
[13]
Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Cytocompatibility, interactions, and uptake of polyethyleneimine‐coated boron nitride nanotubes by living cells: Confirmation of their potential for biomedical applications. Biotechnol. Bioeng., 2008, 101(4), 850-858.
[http://dx.doi.org/10.1002/bit.21952] [PMID: 18512259]
[14]
Ciofani, G.; Raffa, V.; Menciassi, A.; Dario, P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J. Nanosci. Nanotechnol., 2008, 8(12), 6223-6231.
[PMID: 19205187]
[15]
Wang, Z.; He, H.; Slough, W.; Pandey, R.; Karna, S.P. Nature of interaction between semiconducting nanostructures and biomolecules: Chalcogenide QDs and BNNT with DNA molecules. J. Phys. Chem. C, 2015, 119, 25965-25973.
[http://dx.doi.org/10.1021/acs.jpcc.5b08084]
[16]
Fan, G.; Zhu, S.; Ni, K.; Xu, H. Theoretical study of the adsorption of aromatic amino acids on a single-wall boron nitride nanotube with empirical dispersion correction. Can. J. Chem., 2017, 95, 1-710.
[http://dx.doi.org/10.1139/cjc-2017-0118]
[17]
Xu, H.; Li, L.; Fan, G.; Chu, X. DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem., 2018, 1131, 58-68.
[http://dx.doi.org/10.1016/j.comptc.2018.03.032]
[18]
Omidi, M.; Malakoutian, M.; Choolaei, M.; Oroojalian, F.; Haghiralsadat, F.; Yazdian, F. A label-free detection of biomolecules using micromechanical biosensors. Chin. Lett. Phys., 2013, 30068701
[http://dx.doi.org/10.1088/0256-307X/30/6/068701]
[19]
Rashidi, A. Omidi, M.; Choolaei, M.; Nazarzadeh, M.; Yadegari, A.; Haghierosadat, F.; Oroojalian, F.; Azhdari, M. Electromechanical Properties of Vertically Aligned Carbon Nanotube. In: Advanced Materials Research; Trans Tech Publications: Switzerland, 2013; pp. 332-336.
[20]
Nia, A.H.; Behnam, B.; Taghavi, S.; Oroojalian, F.; Eshghi, H.; Shier, W.T.; Abnous, K.; Ramezani, M.J.M. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate–polyethylenimine conjugates as non-viral gene carriers. MedChemComm, 2017, 8, 364-375.
[http://dx.doi.org/10.1039/C6MD00481D]
[21]
Farmanzadeh, D.; Ghazanfary, S. DFT studies of functionalized zigzag and armchair boron nitride nanotubes as nanovectors for drug delivery of collagen amino acids. Struct. Chem., 2014, 25, 293-300.
[http://dx.doi.org/10.1007/s11224-013-0292-3]
[22]
Farmanzadeh, D.; Ghazanfary, S. BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: A first-principles study. Appl. Surf. Sci., 2014, 2014, 391-399.
[23]
Agrawal, M.; Biswas, A. Molecular diagnostics of neurodegenerative disorders. Front. Mol. Biosci., 2015, 2015 doi: 10.3389/fmolb.2015.00054.
[http://dx.doi.org/10.3389/fmolb.2015.00054]
[24]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.J.C. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7, 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19724665]
[25]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 20172525967
[26]
Heo, H.J.; Lee, C.C. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem., 2004, 52, 7514-7517.
[http://dx.doi.org/10.1021/jf049243r]
[27]
Martin, A.; Youdim, K.; Szprengiel, A.; Shukitt-Hale, B.; Joseph, J. Roles of vitamins E and C on neurodegenerative diseases and cognitive performance. Nutr. Rev., 2002, 60(10 Pt 1), 308-326.
[http://dx.doi.org/10.1301/002966402320583433]
[28]
Johnson, W.M.; Wilson-Delfosse, A.L.; Mieyal, J.J. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 2012, 4(10), 1399-1440.
[http://dx.doi.org/10.3390/nu4101399]
[29]
Bilska, A.; Włodek, L. Lipoic acid-the drug of the future. Pharmacol. Rep., 2005, 57(5), 570-577.
[30]
Maczurek, A.; Hager, K.; Kenklies, M.; Sharman, M.; Martins, R.; Engel, J.; Carlson, D.A.; Münch, G. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv. Drug Delivery. Rev., 2008, 60, 1463-1470.
[http://dx.doi.org/10.1016/j.addr.2008.04.015]
[31]
Toklu, H.Z.; Hakan, T.; Celik, H.; Biber, N.; Erzik, C.; Ogunc, A.V.; Akakin, D.; Cikler, E.; Cetinel, S.; Ersahin, M.; Sener, G. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J. Spinal Cord Med., 2010, 33, 401-409.
[http://dx.doi.org/10.1080/10790268.2010.11689719]
[32]
Ao, Z.M; Peeters, FM. High-capacity hydrogen storage in Al-adsorbed graphene. Phys. Rev., 2010, B 81, 205406.
[http://dx.doi.org/10.1103/PhysRevB.81.205406]
[33]
Delley, B.J.M.S. The conductor-like screening model for polymers and surfaces. Mol. Simul., 2007, 32, 117-123.
[http://dx.doi.org/10.1080/08927020600589684]
[34]
Chermette, H. Chemical reactivity indexes in density functional theory. J. Comput. Chem., 1999, 20(1), 129-154.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129: AID-JCC13>3.0.CO;2-A]
[35]
Roy, R.K.; Saha, S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2010, 106, 118-162.
[http://dx.doi.org/10.1039/b811052m]
[36]
Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev., 2003, 103, 1793-1874.
[37]
Parr, R.G. donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: the density functional viewpoint. J. Chem. Phys., 1978, 68, 3801.
[http://dx.doi.org/10.1063/1.436185]
[38]
Parr, R.G.; Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[39]
Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[40]
Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity index. Chem. Rev., 2006, 106, 2065-2091.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy