Research Article

载脂蛋白A5和人类脂肪间充质干细胞成脂调控的新见解。

卷 20, 期 2, 2020

页: [144 - 156] 页: 13

弟呕挨: 10.2174/1566524019666190927155702

价格: $65

摘要

背景:肥胖症的标志是甘油三酸酯(TG)在脂肪组织中的过度积累。载脂蛋白A5(ApoA5)已显示影响肥胖症的患病率和发病机理。但是,基本机制仍有待阐明。 方法:用600 ng / ml人重组ApoA5蛋白处理人脂肪来源的间充质干细胞(AMSC)。确定了ApoA5对细胞内TG含量和成脂相关因子表达的影响。此外,还观察到ApoA5对CIDE-C表达的影响。 结果:在脂肪形成过程中,ApoA5处理可减少脂质滴的细胞内积累和TG水平。同时,ApoA5下调了脂肪形成相关因子的表达水平,包括CCAAT增强子结合蛋白α/β(C /EBPα/β),脂肪酸合成酶(FAS)和脂肪酸结合蛋白4(FABP4)。此外,通过抑制CIDE-C表达来介导ApoA5对脂肪形成的抑制,CIDE-C表达是促进脂肪形成过程的重要因素。但是,过度表达细胞内CIDE-C可能会导致ApoA5在抑制AMSCs成脂中的功能丧失。 结论:总之,ApoA5通过至少部分下调CIDE-C表达来抑制AMSC的成脂过程。本研究提供了新颖的机制,通过该机制,ApoA5可通过人类的AMSC预防肥胖。

关键词: 载脂蛋白A5,CIDE-C,脂肪来源的间充质干细胞,脂肪形成,抑制,AMSC

[1]
Su X, Kong Y, Peng DQ. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis 2018; 17(1): 174.
[http://dx.doi.org/10.1186/s12944-018-0833-2] [PMID: 30053818]
[2]
Poston L, Caleyachetty R, Cnattingius S, et al. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endocrinol 2016; 4(12): 1025-36.
[http://dx.doi.org/10.1016/S2213-8587(16)30217-0] [PMID: 27743975]
[3]
Wu CL, Zhao SP, Yu BL. Intracellular role of exchangeable apolipoproteins in energy homeostasis, obesity and non-alcoholic fatty liver disease. Biol Rev Camb Philos Soc 2015; 90(2): 367-76.
[http://dx.doi.org/10.1111/brv.12116] [PMID: 24834836]
[4]
Tang M, Chen R, Wang H, et al. Obesity-induced methylation of osteopontin contributes to adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cells Int 2019; 20191238153
[http://dx.doi.org/10.1155/2019/1238153] [PMID: 30911298]
[5]
Debnath T, Chelluri LK. Standardization and quality assessment for clinical grade mesenchymal stem cells from human adipose tissue. Hematol Transfus Cell Ther 2019; 41(1): 7-16.
[http://dx.doi.org/10.1016/j.htct.2018.05.001] [PMID: 30793099]
[6]
Sabol RA, Bowles AC, Côté A, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res 2019; 21(1): 67.
[http://dx.doi.org/10.1186/s13058-019-1153-9] [PMID: 31118047]
[7]
Elosua R, Ordovas JM, Cupples LA, et al. Variants at the APOA5 locus, association with carotid atherosclerosis, and modification by obesity: The Framingham Study. J Lipid Res 2006; 47(5): 990-6.
[http://dx.doi.org/10.1194/jlr.M500446-JLR200] [PMID: 16474174]
[8]
Zhao SP, Hu S, Li J, et al. Association of human serum apolipoprotein A5 with lipid profiles affected by gender. Clin Chim Acta 2007; 376(1-2): 68-71.
[http://dx.doi.org/10.1016/j.cca.2006.07.014] [PMID: 16962087]
[9]
Huang XS, Zhao SP, Hu M, Bai L, Zhang Q, Zhao W. Decreased apolipoprotein A5 is implicated in insulin resistance-related hypertriglyceridemia in obesity. Atherosclerosis 2010; 210(2): 563-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.12.004] [PMID: 20047745]
[10]
Jakel H, Nowak M, Moitrot E, et al. The liver X receptor ligand T0901317 down-regulates APOA5 gene expression through activation of SREBP-1c. J Biol Chem 2004; 279(44): 45462-9.
[http://dx.doi.org/10.1074/jbc.M404744200] [PMID: 15317819]
[11]
Kluger M, Heeren J, Merkel M. Apoprotein A-V: an important regulator of triglyceride metabolism. J Inherit Metab Dis 2008; 31(2): 281-8.
[http://dx.doi.org/10.1007/s10545-008-0863-4] [PMID: 18415697]
[12]
Feng Q, Baker SS, Liu W, et al. Increased apolipoprotein A5 expression in human and rat non-alcoholic fatty livers. Pathology 2015; 47(4): 341-8.
[http://dx.doi.org/10.1097/PAT.0000000000000251] [PMID: 25938357]
[13]
Zheng XY, Zhao SP, Yu BL, Wu CL, Liu L. Apolipoprotein A5 internalized by human adipocytes modulates cellular triglyceride content. Biol Chem 2012; 393(3): 161-7.
[http://dx.doi.org/10.1515/hsz-2011-0259] [PMID: 22718631]
[14]
Ito M, Nagasawa M, Omae N, Ide T, Akasaka Y, Murakami K. Differential regulation of CIDEA and CIDEC expression by insulin via Akt1/2- and JNK2-dependent pathways in human adipocytes. J Lipid Res 2011; 52(8): 1450-60.
[http://dx.doi.org/10.1194/jlr.M012427] [PMID: 21636835]
[15]
Nishino N, Tamori Y, Tateya S, et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 2008; 118(8): 2808-21.
[http://dx.doi.org/10.1172/JCI34090] [PMID: 18654663]
[16]
Jambunathan S, Yin J, Khan W, Tamori Y, Puri V. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One 2011; 6(12)e28614
[http://dx.doi.org/10.1371/journal.pone.0028614] [PMID: 22194867]
[17]
Nishimoto Y, Nakajima S, Tateya S, Saito M, Ogawa W, Tamori Y. Cell death-inducing DNA fragmentation factor A-like effector A and fat-specific protein 27β coordinately control lipid droplet size in brown adipocytes. J Biol Chem 2017; 292(26): 10824-34.
[http://dx.doi.org/10.1074/jbc.M116.768820] [PMID: 28490632]
[18]
Puri V, Ranjit S, Konda S, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 2008; 105(22): 7833-8.
[http://dx.doi.org/10.1073/pnas.0802063105] [PMID: 18509062]
[19]
Puri V. Fasting regulates FSP27 expression in the liver. J Lipid Res 2013; 54(3): 569-70.
[http://dx.doi.org/10.1194/jlr.E036020] [PMID: 23335806]
[20]
Bociąga-Jasik M, Polus A, Góralska J, et al. Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes. Pharmacol Rep 2013; 65(4): 937-50.
[http://dx.doi.org/10.1016/S1734-1140(13)71075-2] [PMID: 24145088]
[21]
Zheng XY, Yu BL, Xie YF, Zhao SP, Wu CL. Apolipoprotein A5 regulates intracellular triglyceride metabolism in adipocytes. Mol Med Rep 2017; 16(5): 6771-9.
[http://dx.doi.org/10.3892/mmr.2017.7461] [PMID: 28901468]
[22]
Zhu WF, Wang CL, Liang L, et al. Triglyceride-raising APOA5 genetic variants are associated with obesity and non-HDL-C in Chinese children and adolescents. Lipids Health Dis 2014; 13: 93.
[http://dx.doi.org/10.1186/1476-511X-13-93] [PMID: 24903888]
[23]
Zheng XY, Zhao SP, Yan H. The role of apolipoprotein A5 in obesity and the metabolic syndrome. Biol Rev Camb Philos Soc 2013; 88(2): 490-8.
[http://dx.doi.org/10.1111/brv.12005] [PMID: 23279260]
[24]
Niculescu LS, Fruchart-Najib J, Fruchart JC, Sima A. Apolipoprotein A-V gene polymorphisms in subjects with metabolic syndrome. Clin Chem Lab Med 2007; 45(9): 1133-9.
[http://dx.doi.org/10.1515/CCLM.2007.257] [PMID: 17635078]
[25]
Zhao SP, Li R, Dai W, Yu BL, Chen LZ, Huang XS. Xuezhikang contributes to greater triglyceride reduction than simvastatin in hypertriglyceridemia rats by up-regulating apolipoprotein A5 via the PPARα signaling pathway. PLoS One 2017; 12(9)e0184949
[http://dx.doi.org/10.1371/journal.pone.0184949] [PMID: 28934253]
[26]
Li HX, Luo X, Liu RX, Yang YJ, Yang GS. Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol Cell Endocrinol 2008; 291(1-2): 116-24.
[http://dx.doi.org/10.1016/j.mce.2008.05.005] [PMID: 18584948]
[27]
Chen J, Bao C, Kim JT, Cho JS, Qiu S, Lee HJ. Sulforaphene inhibition of adipogenesis via hedgehog signaling in 3T3-L1 adipocytes. J Agric Food Chem 2018; 66(45): 11926-34.
[http://dx.doi.org/10.1021/acs.jafc.8b04330] [PMID: 30354116]
[28]
Smith A, Yu X, Yin L. Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. Pestic Biochem Physiol 2018; 150: 48-58.
[http://dx.doi.org/10.1016/j.pestbp.2018.07.003] [PMID: 30195387]
[29]
Cho YL, Min JK, Roh KM, et al. Phosphoprotein phosphatase 1CB (PPP1CB), a novel adipogenic activator, promotes 3T3-L1 adipogenesis. Biochem Biophys Res Commun 2015; 467(2): 211-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.004] [PMID: 26449462]
[30]
Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 2012; 32(5): 1094-8.
[http://dx.doi.org/10.1161/ATVBAHA.111.241489] [PMID: 22517368]
[31]
Zhou L, Park SY, Xu L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun 2015; 6: 5949.
[http://dx.doi.org/10.1038/ncomms6949] [PMID: 25565658]
[32]
Vilà-Brau A, De Sousa-Coelho AL, Gonçalves JF, Haro D, Marrero PF. Fsp27/CIDEC is a CREB target gene induced during early fasting in liver and regulated by FA oxidation rate. J Lipid Res 2013; 54(3): 592-601.
[http://dx.doi.org/10.1194/jlr.M028472] [PMID: 23220584]
[33]
Qian H, Chen Y, Nian Z, et al. HDAC6-mediated acetylation of lipid droplet-binding protein CIDEC regulates fat-induced lipid storage. J Clin Invest 2017; 127(4): 1353-69.
[http://dx.doi.org/10.1172/JCI85963] [PMID: 28287402]
[34]
Matsuo K, Matsusue K, Aibara D, Takiguchi S, Gonzalez FJ, Yamano S. Insulin represses fasting-induced expression of hepatic fat-specific protein 27. Biol Pharm Bull 2017; 40(6): 888-93.
[http://dx.doi.org/10.1248/bpb.b17-00105] [PMID: 28566630]
[35]
Samuels JS, Shashidharamurthy R, Rayalam S. Novel anti-obesity effects of beer hops compound xanthohumol: role of AMPK signaling pathway. Nutr Metab (Lond) 2018; 15: 42.
[http://dx.doi.org/10.1186/s12986-018-0277-8] [PMID: 29946343]
[36]
Reynés B, García-Ruiz E, Oliver P, Palou A. Gene expression of peripheral blood mononuclear cells is affected by cold exposure. Am J Physiol Regul Integr Comp Physiol 2015; 309(8): R824-34.
[http://dx.doi.org/10.1152/ajpregu.00221.2015] [PMID: 26246506]
[37]
García-Ruiz E, Reynés B, Díaz-Rúa R, Ceresi E, Oliver P, Palou A. The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. Int J Obes 2015; 39(11): 1619-29.
[http://dx.doi.org/10.1038/ijo.2015.112] [PMID: 26063331]
[38]
Koo SY, Hwang JH, Yang SH, et al. Anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin. Mar Drugs 2019; 17(5)E311
[http://dx.doi.org/10.3390/md17050311] [PMID: 31137922]
[39]
Fang D, Shi X, Lu T, Ruan H, Gao Y. The glycoprotein follistatin-like 1 promotes brown adipose thermogenesis. Metabolism 2019; 98: 16-26.
[http://dx.doi.org/10.1016/j.metabol.2019.05.008] [PMID: 31132382]
[40]
Sánchez-Moreno C, Ordovás JM, Smith CE, Baraza JC, Lee YC, Garaulet M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J Nutr 2011; 141(3): 380-5.
[http://dx.doi.org/10.3945/jn.110.130344] [PMID: 21209257]
[41]
Kisfali P, Mohás M, Maász A, et al. Haplotype analysis of the apolipoprotein A5 gene in patients with the metabolic syndrome. Nutr Metab Cardiovasc Dis 2010; 20(7): 505-11.
[http://dx.doi.org/10.1016/j.numecd.2009.05.001] [PMID: 19692219]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy