General Review Article

Computational Strategy Revealing the Structural Determinant of Ligand Selectivity towards Highly Similar Protein Targets

Author(s): Hanxun Wang, Yinli Gao, Jian Wang* and Maosheng Cheng

Volume 21, Issue 1, 2020

Page: [76 - 88] Pages: 13

DOI: 10.2174/1389450120666190926113524

Price: $65

Abstract

Background: Poor selectivity of drug candidates may lead to toxicity and side effects accounting for as high as 60% failure rate, thus, the selectivity is consistently significant and challenging for drug discovery.

Objective: To find highly specific small molecules towards very similar protein targets, multiple strategies are always employed, including (1) To make use of the diverse shape of binding pocket to avoid steric bump; (2) To increase binding affinities for favorite residues; (3) To achieve selectivity through allosteric regulation of target; (4) To stabalize the inactive conformation of protein target and (5) To occupy dual binding pockets of single target.

Conclusion: In this review, we summarize computational strategies along with examples of their successful applications in designing selective ligands, with the aim to provide insights into everdiversifying drug development practice and inspire medicinal chemists to utilize computational strategies to avoid potential side effects due to low selectivity of ligands.

Keywords: Computational strategy, allosteric regulation, selectivity mechanism, drug development, toxicity, drug discovery.

Graphical Abstract

[1]
Brown D, Superti-Furga G. Rediscovering the sweet spot in drug discovery. Drug Discov Today 2003; 8(23): 1067-77.
[http://dx.doi.org/10.1016/S1359-6446(03)02902-7] [PMID: 14693466]
[2]
Knight ZA, Shokat KM. Features of selective kinase inhibitors. Chem Biol 2005; 12(6): 621-37.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.011] [PMID: 15975507]
[3]
Rockey WM, Elcock AH. Rapid computational identification of the targets of protein kinase inhibitors. J Med Chem 2005; 48(12): 4138-52.
[http://dx.doi.org/10.1021/jm049461b] [PMID: 15943486]
[4]
Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta 2004; 1697(1-2): 243-57.
[http://dx.doi.org/10.1016/j.bbapap.2003.11.028] [PMID: 15023365]
[5]
Vieth M, Sutherland JJ, Robertson DH, Campbell RM. Kinomics: characterizing the therapeutically validated kinase space. Drug Discov Today 2005; 10(12): 839-46.
[http://dx.doi.org/10.1016/S1359-6446(05)03477-X] [PMID: 15970266]
[6]
Verras AD, Kuntz I. Ortiz de Montellano P. Chapter 10 Cytochrome P450 Enzymes: Computational Approaches to Substrate Prediction. Annu Rep Comput Chem 2006; 2: 171-95.
[http://dx.doi.org/10.1016/S1574-1400(06)02010-X]
[7]
Clark E, Chapter D. 10 Computational Prediction of ADMET Properties: Recent Developments and Future Challenges. Annu Rep Comput Chem 2005; 1: 133-51.
[http://dx.doi.org/10.1016/S1574-1400(05)01010-8]
[8]
Cheng A. Chapter 2 predicting selectivity and druggability in drug discovery. Annu Rep Comput Chem 2008; 4: 23-37.
[http://dx.doi.org/10.1016/S1574-1400(08)00002-9]
[9]
Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 1997; 14(5): 568-71.
[http://dx.doi.org/10.1023/A:1012188625088] [PMID: 9165525]
[10]
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45(12): 2615-23.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[11]
Oprea TI, Davis AM, Teague SJ, Leeson PD. ChemInform abstract: Is there a difference between leads and drugs? A Historical Perspective. J Chem Inf Comput Sci 2001; 41(5): 1308-15.
[12]
Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002; 9(9): 646-52.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[13]
Abel R, Wang L, Harder ED, Berne BJ, Friesner RA. Advancing drug discovery through enhanced free energy calculations. Acc Chem Res 2017; 50(7): 1625-32.
[http://dx.doi.org/10.1021/acs.accounts.7b00083] [PMID: 28677954]
[14]
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10(5): 449-61.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[15]
Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov 2018; 17(5): 353-77.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[16]
James PA, Oparil S, Carter BL, et al. Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014; 311(5): 507-20.
[http://dx.doi.org/10.1001/jama.2013.284427] [PMID: 24352797]
[17]
Alonso-Llamazares A, López-Alonso J, del Barrio M, Casanova E, Calvo P, Chinchetru MA. Cloning of chicken and mouse α1b adrenergic receptor. Biochimica et Biophysica Acta (BBA)-. Gene Structure and Expression 1998; 1396(3): 263-6.
[http://dx.doi.org/10.1016/S0167-4781(97)00230-3]
[18]
Cleophas TJ, van der Sluijs J, van der Vring JA, et al. Combination of calcium channel blockers and beta-blockers for patients with exercise-induced angina pectoris: beneficial effect of calcium channel blockers largely determined by their effect on heart rate. J Clin Pharmacol 1999; 39(7): 738-46.
[http://dx.doi.org/10.1177/00912709922008263] [PMID: 10392329]
[19]
Stapleton MP. Sir James Black and propranolol. The role of the basic sciences in the history of cardiovascular pharmacology. Tex Heart Inst J 1997; 24(4): 336-42.
[PMID: 9456487]
[20]
Chen N, Zhou M, Yang M, et al. Calcium channel blockers versus other classes of drugs for hypertension. Cochrane Database Syst Rev 2010; (8): CD003654
[http://dx.doi.org/10.1002/14651858.CD003654.pub4] [PMID: 20687074]
[21]
Wiysonge CS, Bradley HA, Volmink J, Mayosi BM, Mbewu A, Opie LH. Beta-blockers for hypertension. Cochrane Database Syst Rev 2012; 11(1)CD002003
[PMID: 23152211]
[22]
National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 2007; 120(5)(Suppl.): S94-S138.
[http://dx.doi.org/10.1016/j.jaci.2007.09.029] [PMID: 17983880]
[23]
Fraley DS, Bruns FJ, Segel DP, Adler S, Cotev S. Propranolol-related bronchospasm in patients without history of asthma. South Med J 1980; 73(2): 238-40.
[http://dx.doi.org/10.1097/00007611-198002000-00030] [PMID: 7355327]
[24]
Horev A, Haim A, Zvulunov A. Propranolol induced hypoglycemia. Pediatr Endocrinol Rev 2015; 12(3): 308-10.
[PMID: 25962208]
[25]
Moukhametzianov R, Warne T, Edwards PC, et al. Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci USA 2011; 108(20): 8228-32.
[http://dx.doi.org/10.1073/pnas.1100185108] [PMID: 21540331]
[26]
Masureel M, Zou Y, Picard LP, et al. Publisher Correction: Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat Chem Biol 2019; 15(2): 205.
[http://dx.doi.org/10.1038/s41589-018-0182-5] [PMID: 30504785]
[27]
Ring AM, Manglik A, Kruse AC, et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 2013; 502(7472): 575-9.
[http://dx.doi.org/10.1038/nature12572] [PMID: 24056936]
[28]
Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med 2018; 130(1): 55-71.
[http://dx.doi.org/10.1080/00325481.2018.1412799] [PMID: 29202670]
[29]
Walker C. Are all oral cox-2 selective inhibitors the same? a consideration of celecoxib, etoricoxib, and diclofenac. Int J Rheumatol 2018; 20181302835
[http://dx.doi.org/10.1155/2018/1302835] [PMID: 30631366]
[30]
Kirkby NS, Chan MV, Zaiss AK, et al. Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways. Proc Natl Acad Sci USA 2016; 113(2): 434-9.
[http://dx.doi.org/10.1073/pnas.1517642113] [PMID: 26712011]
[31]
Świątek P, Strzelecka M, Urniaz R, et al. Synthesis, COX-1/2 inhibition activities and molecular docking study of isothiazolopyridine derivatives. Bioorg Med Chem 2017; 25(1): 316-26.
[http://dx.doi.org/10.1016/j.bmc.2016.10.036] [PMID: 27842798]
[32]
Chandrasekharan NV, Dai H, Roos KL, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002; 99(21): 13926-31.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[33]
Abdellatif KRA, Abdelgawad MA, Labib MB, Zidan TH. Synthesis and biological evaluation of new diarylpyrazole and triarylimidazoline derivatives as selective cox-2 inhibitors. Arch Pharm (Weinheim) 2017; 350(8)1600386
[http://dx.doi.org/10.1002/ardp.201600386] [PMID: 28605057]
[34]
Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 2013; 16(5): 821-47.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[35]
Consalvi S, Biava M, Poce G. COX inhibitors: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25(12): 1357-71.
[http://dx.doi.org/10.1517/13543776.2015.1090973] [PMID: 26566186]
[36]
Moore RA, Derry S, Phillips CJ, McQuay HJ. Nonsteroidal anti-inflammatory drugs (NSAIDs), cyxlooxygenase-2 selective inhibitors (coxibs) and gastrointestinal harm: review of clinical trials and clinical practice. BMC Musculoskelet Disord 2006; 7(1): 79.
[http://dx.doi.org/10.1186/1471-2474-7-79] [PMID: 17054784]
[37]
Mancilla-Percino T, Trejo-Muñoz CR, Díaz-Gandarilla JA, et al. Isoindoline derivatives of α-amino acids as cyclooxygenase 1 and 2 inhibitors. Arch Pharm (Weinheim) 2016; 349(3): 175-85.
[http://dx.doi.org/10.1002/ardp.201500372] [PMID: 26762192]
[38]
Hawkey CJ. COX-2 inhibitors. Lancet 1999; 353(9149): 307-14.
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[39]
Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998; 38(1): 97-120.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.97] [PMID: 9597150]
[40]
Hawkey CJ. COX-1 and COX-2 inhibitors. Best Pract Res Clin Gastroenterol 2001; 15(5): 801-20.
[http://dx.doi.org/10.1053/bega.2001.0236] [PMID: 11566042]
[41]
Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996; 384(6610): 644-8.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[42]
Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367(6458): 40-6.
[http://dx.doi.org/10.1038/367040a0] [PMID: 8107774]
[43]
Rane CK, Minden A, Eds. P21 activated kinase signaling in cancerSeminars in cancer biology;. Elsevier 2018.
[44]
Hao C, Zhao F, Song H, et al. Structure-based design of 6-chloro-4-aminoquinazoline-2-carboxamide derivatives as potent and selective p21-activated kinase 4 (pak4) inhibitors. J Med Chem 2018; 61(1): 265-85.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01342] [PMID: 29190083]
[45]
Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer 2014; 14(1): 13-25.
[http://dx.doi.org/10.1038/nrc3645] [PMID: 24505617]
[46]
Arias-Romero LE, Chernoff J. A tale of two Paks. Biol Cell 2008; 100(2): 97-108.
[http://dx.doi.org/10.1042/BC20070109] [PMID: 18199048]
[47]
Chan PM, Manser E. PAKs in human disease Progress in molecular biology and translational science 106. Elsevier 2012; pp. 171-87.
[48]
Crawford JJ, Lee W, Aliagas I, et al. Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors. J Med Chem 2015; 58(12): 5121-36.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00572] [PMID: 26030457]
[49]
Rudolph J, Aliagas I, Crawford JJ, et al. Leveraging the pre-dfg residue thr-406 to obtain high kinase selectivity in an aminopyrazole-type pak1 inhibitor series. ACS Med Chem Lett 2015; 6(6): 711-5.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00151] [PMID: 26101579]
[50]
Rudolph J, Murray LJ, Ndubaku CO, et al. Chemically diverse group i p21-activated kinase (pak) inhibitors impart acute cardiovascular toxicity with a narrow therapeutic window. J Med Chem 2016; 59(11): 5520-41.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00638] [PMID: 27167326]
[51]
Bradshaw-Pierce EL, Pitts TM, Tan AC, et al. Tumor p-glycoprotein correlates with efficacy of pf-3758309 in in vitro and in vivo models of colorectal cancer. Front Pharmacol 2013; 4: 22.
[http://dx.doi.org/10.3389/fphar.2013.00022] [PMID: 23524533]
[52]
Ryu BJ, Kim S, Min B, et al. Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor. Cancer Lett 2014; 349(1): 45-50.
[http://dx.doi.org/10.1016/j.canlet.2014.03.024] [PMID: 24704155]
[53]
Staben ST, Feng JA, Lyle K, et al. Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors. J Med Chem 2014; 57(3): 1033-45.
[http://dx.doi.org/10.1021/jm401768t] [PMID: 24432870]
[54]
Abu Aboud O, Chen CH, Senapedis W, Baloglu E, Argueta C, Weiss RH. Dual and specific inhibition of nampt and pak4 by kpt-9274 decreases kidney cancer growth. Mol Cancer Ther 2016; 15(9): 2119-29.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0197] [PMID: 27390344]
[55]
Zhang J, Wang J, Guo Q, et al. LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells. Cancer Lett 2012; 317(1): 24-32.
[http://dx.doi.org/10.1016/j.canlet.2011.11.007] [PMID: 22085492]
[56]
Hao C, Huang W, Li X, et al. Development of 2, 4-diaminoquinazoline derivatives as potent PAK4 inhibitors by the core refinement strategy. Eur J Med Chem 2017; 131: 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.063] [PMID: 28284095]
[57]
Hao C, Li X, Song S, et al. Advances in the 1-phenanthryl-tetrahydroisoquinoline series of PAK4 inhibitors: potent agents restrain tumor cell growth and invasion. Org Biomol Chem 2016; 14(32): 7676-90.
[http://dx.doi.org/10.1039/C6OB01072E] [PMID: 27454186]
[58]
Wu T, Pang Y, Guo J, Yin W, Zhu M, Hao C, et al. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-qui nazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity. Molecules 2018; 23(2): 417.
[http://dx.doi.org/10.3390/molecules23020417]
[59]
Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999; 11(2): 219-25.
[http://dx.doi.org/10.1016/S0955-0674(99)80029-5] [PMID: 10209156]
[60]
Wymann MP, Zvelebil M, Laffargue M. Phosphoinositide 3-kinase signalling--which way to target? Trends Pharmacol Sci 2003; 24(7): 366-76.
[http://dx.doi.org/10.1016/S0165-6147(03)00163-9] [PMID: 12871670]
[61]
Walker EH, Pacold ME, Perisic O, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 2000; 6(4): 909-19.
[http://dx.doi.org/10.1016/S1097-2765(05)00089-4] [PMID: 11090628]
[62]
Garlich JR, De P, Dey N, et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 2008; 68(1): 206-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0669] [PMID: 18172313]
[63]
Yaguchi S, Fukui Y, Koshimizu I, et al. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 2006; 98(8): 545-56.
[http://dx.doi.org/10.1093/jnci/djj133] [PMID: 16622124]
[64]
Wang X, Ding J, Meng LH. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin 2015; 36(10): 1170-6.
[http://dx.doi.org/10.1038/aps.2015.71] [PMID: 26364801]
[65]
Sabbah DA, Vennerstrom JL, Zhong H. Docking studies on isoform-specific inhibition of phosphoinositide-3-kinases. J Chem Inf Model 2010; 50(10): 1887-98.
[http://dx.doi.org/10.1021/ci1002679] [PMID: 20866085]
[66]
Robinson D, Bertrand T, Carry JC, et al. Differential water thermodynamics determine pi3k-beta/delta selectivity for solvent-exposed ligand modifications. J Chem Inf Model 2016; 56(5): 886-94.
[http://dx.doi.org/10.1021/acs.jcim.5b00641] [PMID: 27144736]
[67]
Tonks NK, Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 1988; 263(14): 6722-30.
[PMID: 2834386]
[68]
Tonks NK, Diltz CD, Fischer EH. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 1988; 263(14): 6731-7.
[PMID: 2834387]
[69]
Bjørbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 2004; 59(1): 305-31.
[http://dx.doi.org/10.1210/rp.59.1.305] [PMID: 14749508]
[70]
Egawa K, Maegawa H, Shimizu S, et al. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells. J Biol Chem 2001; 276(13): 10207-11.
[http://dx.doi.org/10.1074/jbc.M009489200] [PMID: 11136729]
[71]
Klaman LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20(15): 5479-89.
[http://dx.doi.org/10.1128/MCB.20.15.5479-5489.2000] [PMID: 10891488]
[72]
Rondinone CM, Trevillyan JM, Clampit J, et al. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 2002; 51(8): 2405-11.
[http://dx.doi.org/10.2337/diabetes.51.8.2405] [PMID: 12145151]
[73]
Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr Pharm Des 2010; 16(16): 1843-62.
[http://dx.doi.org/10.2174/138161210791209027] [PMID: 20337577]
[74]
Soysal S, Obermann EC, Gao F, et al. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res Treat 2013; 137(2): 637-44.
[http://dx.doi.org/10.1007/s10549-012-2373-1] [PMID: 23242616]
[75]
Stuible M, Doody KM, Tremblay ML. PTP1B and TC-PTP: regulators of transformation and tumorigenesis. Cancer Metastasis Rev 2008; 27(2): 215-30.
[http://dx.doi.org/10.1007/s10555-008-9115-1] [PMID: 18236007]
[76]
Liu G, Xin Z, Liang H, et al. Selective protein tyrosine phosphatase 1B inhibitors: targeting the second phosphotyrosine binding site with non-carboxylic acid-containing ligands. J Med Chem 2003; 46(16): 3437-40.
[http://dx.doi.org/10.1021/jm034088d] [PMID: 12877578]
[77]
You-Ten KE, Muise ES, Itié A, et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med 1997; 186(5): 683-93.
[http://dx.doi.org/10.1084/jem.186.5.683] [PMID: 9271584]
[78]
Li X, Wang L, Shi D. The design strategy of selective PTP1B inhibitors over TCPTP. Bioorg Med Chem 2016; 24(16): 3343-52.
[http://dx.doi.org/10.1016/j.bmc.2016.06.035] [PMID: 27353889]
[79]
Nankar RP, Doble M. Non-peptidyl insulin mimetics as a potential antidiabetic agent. Drug Discov Today 2013; 18(15-16): 748-55.
[http://dx.doi.org/10.1016/j.drudis.2013.04.005] [PMID: 23603635]
[80]
Wiesmann C, Barr KJ, Kung J, et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 2004; 11(8): 730-7.
[http://dx.doi.org/10.1038/nsmb803] [PMID: 15258570]
[81]
Okuda K, Weisberg E, Gilliland DG, Griffin JD. ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 97(8): 2440-8.
[http://dx.doi.org/10.1182/blood.V97.8.2440] [PMID: 11290609]
[82]
Cloutier G, Qin Z. Ultrasound backscattering from non-aggregating and aggregating erythrocytes--a review. Biorheology 1997; 34(6): 443-70.
[http://dx.doi.org/10.3233/BIR-1997-34607] [PMID: 9640358]
[83]
Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2(5): 561-6.
[http://dx.doi.org/10.1038/nm0596-561] [PMID: 8616716]
[84]
Kalmanti L, Saussele S, Lauseker M, et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia 2015; 29(5): 1123-32.
[http://dx.doi.org/10.1038/leu.2015.36] [PMID: 25676422]
[85]
Wylie AA, Schoepfer J, Jahnke W, et al. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature 2017; 543(7647): 733-7.
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[86]
Jahnke W, Grotzfeld RM, Pellé X, et al. Binding or bending: distinction of allosteric Abl kinase agonists from antagonists by an NMR-based conformational assay. J Am Chem Soc 2010; 132(20): 7043-8.
[http://dx.doi.org/10.1021/ja101837n] [PMID: 20450175]
[87]
Mauro M, Boquimpani C, Minami Y, et al. Oral asciminib (abl001) vs bosutinib in patients with chronic myeloid leukemia in chronic phase (cml-cp) who received ≥ 2 prior tyrosine kinase inhibitors (tkis): a multicenter, open-label, randomized, phase 3 study. Clin Lymphoma Myeloma Leuk 2017; 17: S315-6.
[http://dx.doi.org/10.1016/j.clml.2017.07.116]
[88]
Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 2006; 24(11): 1770-83.
[http://dx.doi.org/10.1200/JCO.2005.03.7689] [PMID: 16603719]
[89]
Bártová I, Otyepka M, Kríz Z, Koca J. The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK. Protein Sci 2005; 14(2): 445-51.
[http://dx.doi.org/10.1110/ps.04959705] [PMID: 15632290]
[90]
De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. Crystal structure of cyclin-dependent kinase 2. Nature 1993; 363(6430): 595-602.
[http://dx.doi.org/10.1038/363595a0] [PMID: 8510751]
[91]
Squires MS, Feltell RE, Wallis NG, et al. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol Cancer Ther 2009; 8(2): 324-32.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0890] [PMID: 19174555]
[92]
Danhier F, Ucakar B, Magotteaux N, Brewster ME, Préat V. Active and passive tumor targeting of a novel poorly soluble cyclin dependent kinase inhibitor, JNJ-7706621. Int J Pharm 2010; 392(1-2): 20-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.018] [PMID: 20226846]
[93]
Byth KF, Thomas A, Hughes G, et al. AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to pharmacodynamic changes and potent antitumor effects in human tumor xenografts. Mol Cancer Ther 2009; 8(7): 1856-66.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0836] [PMID: 19509270]
[94]
Wood DJ, Korolchuk S, Tatum NJ, Wang LZ, Endicott JA, Noble MEM, et al. Differences in the Conformational Energy Landscape of CDK1 and CDK2 Suggest a Mechanism for Achieving Selective CDK Inhibition. Cell Chem Biol 2019; 26(1): 121-30.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.015]
[95]
Alexander LT, Möbitz H, Drueckes P, et al. Type II Inhibitors Targeting CDK2. ACS Chem Biol 2015; 10(9): 2116-25.
[http://dx.doi.org/10.1021/acschembio.5b00398] [PMID: 26158339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy