Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

The Molecular Diversity Scope of Urazole in the Synthesis of Organic Compounds

Author(s): Ghodsi M. Ziarani *, Fatemeh Mohajer, Razieh Moradi and Parisa Mofatehnia

Volume 16, Issue 7, 2019

Page: [953 - 967] Pages: 15

DOI: 10.2174/1570179416666190925162215

Price: $65

Abstract

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities.

Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019.

Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.

Keywords: Triazoloindazoles, spiro triazoloindazoles, pyrazolotriazoles, spiro pyrazolotriazoles, phenyl-[1, 2, 4]- triazolidine derivatives, urazole.

« Previous
Graphical Abstract

[1]
Adib, M.; Omidi, M.; Bijanzadeh, H.R. Efficient, simple synthesis of stable phosphorus ylides derived from 4-aryl urazoles. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(8), 1732-1738.
[http://dx.doi.org/10.1080/10426500903251357]
[2]
Hamidian, H.; Fozooni, S.; Hassankhani, A.; Mohammadi, S.Z. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk. Molecules, 2011, 16(11), 9041-9048.
[http://dx.doi.org/10.3390/molecules16119041] [PMID: 22031067]
[3]
Ménard, C.; Doris, E.; Mioskowski, C.Ph. 3BiCO3: a mild reagent for in situ oxidation of urazoles to triazolinediones. Tetrahedron Lett., 2003, 44(35), 6591-6593.
[http://dx.doi.org/10.1016/S0040-4039(03)01684-8]
[4]
Reddy, B.V.S.; Umadevi, N.; Narasimhulu, G.; Yadav, J.S. Iron(III)-catalyzed highly efficient, one-pot synthesis of triazolo[1,2-a]indazoletriones and spirotriazolo[1,2-a]indazoletetraones. Chem. Lett., 2013, 42(8), 927-929.
[http://dx.doi.org/10.1246/cl.130164]
[5]
De Bruycker, K.; Billiet, S.; Houck, H.A.; Chattopadhyay, S.; Winne, J.M.; Du Prez, F.E. Triazolinediones as highly enabling synthetic tools. Chem. Rev., 2016, 116(6), 3919-3974.
[http://dx.doi.org/10.1021/acs.chemrev.5b00599] [PMID: 26900710]
[6]
Franklin, E.C. Heterocyclic nitrogen compounds. I. Pentacyclic compounds. Chem. Rev., 1935, 16(3), 305-361.
[http://dx.doi.org/10.1021/cr60055a001]
[7]
Bergstrom, F.W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev., 1944, 35(2), 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[8]
Lichtenthaler, F.W. Unsaturated O- and N-heterocycles from carbohydrate feedstocks. Acc. Chem. Res., 2002, 35(9), 728-737.
[http://dx.doi.org/10.1021/ar010071i] [PMID: 12234202]
[9]
Azizian, J.; Delbari, A.S.; Yadollahzadeh, K.; Tahermansouri, H. One-pot stereoselective synthesis of dialkyl phosphorylsuccinates from phthalhydrazide, activated acetylenes, and trialkyl(aryl). Phosphites. Phosphorus Sulfur Silicon Relat. Elem., 2012, 187(1), 71-78.
[http://dx.doi.org/10.1080/10426507.2011.575423]
[10]
Gupta, S.; Saluja, P.; Khurana, J.M. DBU mediated confluent approach for the one-pot synthesis of novel 5-hydroxy pyrazolo [1, 2-a][1, 2, 4] triazoles and their dehydration to novel pyrazolo [1, 2-a][1, 2, 4] triazole derivatives. Tetrahedron, 2016, 72(27), 3986-3993.
[http://dx.doi.org/10.1016/j.tet.2016.05.021]
[11]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective. J. Med. Chem., 2014, 57(24), 10257-10274.
[12]
Calaza, M.I.; Cativiela, C. Stereoselective synthesis of quaternary proline analogues. Eur. J. Org. Chem., 2008, 2008(20), 3427-3448.
[13]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:aid-anie3168>3.0.co;2-u] [PMID: 11028061]
[14]
Sheibani, H.; Babaie, M. Three-component reaction to form 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanides. Synth. Commun., 2009, 40(2), 257-265.
[http://dx.doi.org/10.1080/00397910902964866]
[15]
Schultz, D.M.; Yoon, T.P. Solar synthesis: Prospects in visible light photocatalysis. Science, 2014, 343(6174)1239176
[http://dx.doi.org/10.1126/science.1239176] [PMID: 24578578]
[16]
Zolfigol, M.A.; Khazaei, A.; Faal-Rastegar, T.; Mallakpour, S.; Khavasi, H.R.; Salehi, P.; Fakharian, M. Synthesis of 1, 2, 3-triazolylmethoxyphenyl [1, 2, 4] triazolo [1, 2-a] indazoletrione derivatives by combining click and multicomponent reactions. Synthesis, 2016, 48(10), 1518-1524.
[http://dx.doi.org/10.1055/s-0035-1561392]
[17]
Sheibani, H.; Seifi, M.; Bazgir, A. Three-component synthesis of pyrimidine and pyrimidinone derivatives in the presence of high-surface-area MgO, a highly effective heterogeneous base catalyst. Synth. Commun., 2009, 39(6), 1055-1064.
[http://dx.doi.org/10.1080/00397910802474982]
[18]
Bebernitz, G.R.; Argentieri, G.; Battle, B.; Brennan, C.; Balkan, B.; Burkey, B.F.; Eckhardt, M.; Gao, J.; Kapa, P.; Strohschein, R.J.; Schuster, H.F.; Wilson, M.; Xu, D.D. The effect of 1,3-diaryl-[1H]-pyrazole-4-acetamides on glucose utilization in ob/ob mice. J. Med. Chem., 2001, 44(16), 2601-2611.
[http://dx.doi.org/10.1021/jm010032c] [PMID: 11472214]
[19]
Eid, A.I.; Kira, M.A.; Fahmy, H.H. Synthesis of new pyrazolones as potent anti-inflammatory agents. J. Pharm. Belg., 1978, 33(5), 303-311.
[PMID: 745029]
[20]
Park, H-J.; Lee, K.; Park, S-J.; Ahn, B.; Lee, J-C.; Cho, H.; Lee, K-I. Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 2005, 15(13), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.082] [PMID: 15922597]
[21]
De, P.; Baltas, M.; Lamoral-Theys, D.; Bruyère, C.; Kiss, R.; Bedos-Belval, F.; Saffon, N. Synthesis and anticancer activity evaluation of 2(4-alkoxyphenyl)cyclopropyl hydrazides and triazolo phthalazines. Bioorg. Med. Chem., 2010, 18(7), 2537-2548.
[http://dx.doi.org/10.1016/j.bmc.2010.02.041] [PMID: 20303278]
[22]
Mohammadi Ziarani, G.; Hofsseini Nasab, N.; Lashgari, N. Synthesis of heterocyclic scaffolds through 6-aminouracil-involved multicomponent reactions. RSC Advances, 2016, 6(45), 38827-38848.
[http://dx.doi.org/10.1039/C6RA02834A]
[23]
Mohammadi Ziarani, G.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Advances, 2018, 8(22), 12069-12103.
[http://dx.doi.org/10.1039/C7RA13321A]
[24]
Mohammadi Ziarani, G.; Aleali, F.; Lashgari, N. Recent applications of barbituric acid in multicomponent reactions. RSC Advances, 2016, 6(56), 50895-50922.
[http://dx.doi.org/10.1039/C6RA09874F]
[25]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral 3,3-disubstituted oxindoles using isatin as starting material. Tetrahedron Asymmetry, 2015, 26(10), 517-541.
[http://dx.doi.org/10.1016/j.tetasy.2015.04.011]
[26]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[27]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
[28]
Nair, V.; Rajesh, C.; Vinod, A.U.; Bindu, S.; Sreekanth, A.R.; Mathen, J.S.; Balagopal, L. Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc. Chem. Res., 2003, 36(12), 899-907.
[http://dx.doi.org/10.1021/ar020258p] [PMID: 14674781]
[29]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[30]
Ugi, I.; Dömling, A.; Hörl, W. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18(3), 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[31]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[32]
Seyyedhamzeh, M.; Shaabani, S.; Sangachin, M.H.; Shaabani, A. Guanidinium-based sulfonic acid as a new Brønsted acid organocatalyst in organic synthesis in water. Res. Chem. Intermed., 2016, 42, 2845-2855.
[33]
Reddy, B.S.; Umadevi, N.; Narasimhulu, G.; Yadav, J. Iron (III)-catalyzed Highly Efficient, One-pot Synthesis of Triazolo [1, 2-a] indazoletriones and Spirotriazolo [1, 2-a] indazoletetraones. Chem. Lett., 2013, 42(8), 927-929.
[http://dx.doi.org/10.1246/cl.130164]
[34]
Chandam, D.R.; Mulik, A.G.; Patil, P.P.; Jagdale, S.D.; Patil, D.R.; Deshmukh, M.B. (-)-Camphor-10-sulfonic acid catalyzed atom efficient and green synthesis of triazolo [1, 2-a] indazole-triones and spiro triazolo [1, 2-a] indazole-tetraones. Res. Chem. Intermed., 2015, 41(2), 761-771.
[http://dx.doi.org/10.1007/s11164-013-1226-9]
[35]
Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly efficient synthesis of triazolo [1, 2-a] indazole-triones and novel spiro triazolo [1, 2-a] indazole-tetraones under solvent-free conditions. Tetrahedron, 2011, 67(2), 390-400.
[http://dx.doi.org/10.1016/j.tet.2010.11.029]
[36]
Tavakoli, H.R.; Moosavi, S.M.; Bazgir, A. ZrOCl2. 8H2O as an efficient catalyst for the three-component synthesis of triazoloindazoles and indazolophthalazines. J. Korean Chem. Soc., 2013, 57(4), 472-475.
[http://dx.doi.org/10.5012/jkcs.2013.57.4.472]
[37]
Verma, D.; Sharma, V.; Okram, G.S.; Jain, S. Ultrasound-assisted high-yield multicomponent synthesis of triazolo [1, 2-a] indazole-triones using silica-coated ZnO nanoparticles as a heterogeneous catalyst. Green Chem., 2017, 19(24), 5885-5899.
[http://dx.doi.org/10.1039/C7GC03279J]
[38]
Zare, A.; Masihpour, F. Novel ionic liquid N, N-diethyl-N-sulfoethanaminium hydrogen sulfate: Design, characterization, and application as a highly efficient catalyst for the production of triazolo [1, 2-a] indazole-triones and 2 H-indazolo [2, 1-b] phthalazine-triones. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1160-1165.
[http://dx.doi.org/10.1080/10426507.2016.1149853]
[39]
Sadeghzadeh, S.M. A multicomponent reaction on a ‘free’KCC-1 catalyst at room temperature under solvent-free conditions by visible light. RSC Advances, 2016, 6(59), 54236-54240.
[http://dx.doi.org/10.1039/C6RA11480F]
[40]
Shekouhy, M.; Sarvestani, A.M.; Khajeh, S.; Khalafi-Nezhad, A. Glycerol: a more benign and biodegradable promoting medium for catalyst-free one-pot multi-component synthesis of triazolo [1, 2-a] indazole-triones. RSC Advances, 2015, 5(78), 63705-63710.
[http://dx.doi.org/10.1039/C5RA13805A]
[41]
Anaraki-Ardakani, H. NaHSO4-SiO2 Promted solvent-free synthesis of triazolo [1,2-a]indazole-triones. Int. J. New Chem., 2014, 1(3), 108-114.
[42]
Veisi, H.; Sedrpoushan, A.; Faraji, A.R.; Heydari, M.; Hemmati, S.; Fatahi, B. A mesoporous SBA-15 silica catalyst functionalized with phenylsulfonic acid groups (SBA-15-Ph-SO3H) as a novel hydrophobic nanoreactor solid acid catalyst for a one-pot three-component synthesis of 2H-indazolo [2, 1-b] phthalazine-triones and triazolo [1, 2-a] indazole-triones. RSC Advances, 2015, 5(84), 68523-68530.
[http://dx.doi.org/10.1039/C5RA04949K]
[43]
Sadeghzadeh, S.M. Quinuclidine Stabilized on FeNi3 Nanoparticles as Catalysts for Efficient, Green, and One‐Pot Synthesis of Triazolo [1, 2‐a] indazole‐triones. ChemPlusChem, 2014, 79(2), 278-283.
[http://dx.doi.org/10.1002/cplu.201300341]
[44]
Khazaei, A.; Zolfigol, M.A.; Faal Rastegar, T.; Chehardoli, G.; Mallakpour, S. Melamine trisulfonic acid (MTSA) as an efficient catalyst for the synthesis of triazolo [1, 2-a] indazole-triones and some 2H-indazolo [2, 1-b] phthalazine-triones. Iran. J. Catal., 2013, 3(4), 211-220.
[45]
Bazgir, A.; Seyyedhamzeh, M.; Yasaei, Z.; Mirzaei, P. A novel three-component method for the synthesis of triazolo [1, 2-a] indazole-triones. Tetrahedron Lett., 2007, 48(50), 8790-8794.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.084]
[46]
Shaterian, H.R.; Azizi, K. Mild basic ionic liquids as catalyst for the multi-component synthesis of 7-amino-1, 3-dioxo-1, 2, 3, 5-tetrahydropyrazolo [1, 2-a][1, 2, 4] triazole and 6, 6-dimethyl-2-phenyl-9-aryl-6, 7-dihydro-[1, 2, 4] triazolo [1, 2-a] indazole-1, 3, 8 (2H, 5H, 9H)-trione derivatives. J. Mol. Liq., 2013, 183, 8-13.
[http://dx.doi.org/10.1016/j.molliq.2013.04.005]
[47]
Azarifar, D.; Nejat-Yami, R.; Akrami, Z.; Sameri, F.; Samadi, S. Tetrakis (acetonitrile) copper (I) Hexafluorophosphate as an Efficient Catalyst for the Synthesis of Triazolo [1, 2-a] indazole-1, 3, 8-trione and 2Hindazolo [2, 1-b] phthalazine-trione Derivatives. Lett. Org. Chem., 2012, 9(2), 128-132.
[http://dx.doi.org/10.2174/157017812800221807]
[48]
Hassankhani, A.; Mosaddegh, E.; Ebrahimipour, S.Y. Tungstosilicic acid as an efficient catalyst for the one-pot multicomponent synthesis of triazolo [1, 2-a] indazole-1, 3, 8-trione derivatives under solvent-free conditions. Arab. J. Chem., 2016, 9, S936-S939.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.003]
[49]
Chari, M.A.; Karthikeyan, G.; Pandurangan, A.; Naidu, T.S.; Sathyaseelan, B.; Zaidi, S.J.; Vinu, A. Synthesis of triazolo indazolones using 3D mesoporous aluminosilicate catalyst with nanocage structure. Tetrahedron Lett., 2010, 51(19), 2629-2632.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.021]
[50]
Masihpour, F.; Zare, A.; Merajoddin, M.; Hasaninejad, A. A highly effectual for the production of triazolo[1,2-A]indazole-triones and 2H-indazolo[2,1-B]phthalazine-triones using 1,3-disulfonic acid imidazole hydrogen sulfate as a dual functional catalyst. Bioorg. Med. Chem. Lett., 2019, 54(1), 23-29.
[51]
Meena, K.; Khurana, J.M.; Malik, A. One‐Pot Synthesis of Hydroxy Pyrazolo [1, 2‐a][1, 2, 4] triazoles and Their Dehydration Using Recyclable Ionic Liquids as Reaction Media. J. Heterocycl. Chem., 2018, 55(1), 83-90.
[http://dx.doi.org/10.1002/jhet.3006]
[52]
Khandan-Barani, K.; Dodangeh, M.; Kangani, M.; Maghsoodlou, M-T. An Efficient Approach for the Synthesis of Pyrazolo [1, 2-a][1, 2, 4] Triazole-1, 3-Diones Using an Electrochemical Cell. Orient. J. Chem., 2016, 32(2), 1255-1260.
[http://dx.doi.org/10.13005/ojc/320252]
[53]
Anaraki-Ardakani, H.; Heidari-Rakati, T. Zirconium oxide nanoparticles as an efficient catalyst for three-component synthesis of pyrazolo [1, 2-a][1, 2, 4] triazole-1, 3-diones derivatives. Orient. J. Chem., 2016, 32(3), 1625-1629.
[http://dx.doi.org/10.13005/ojc/320339]
[54]
Naeimi, H.; Rashid, Z.; Zarnani, A-H.; Ghahremanzadeh, R. Nanocrystalline magnesium oxide: An efficient promoter and heterogeneous nano catalyst for the one-pot synthesis of pyrazolotriazoles in the green medium. J. Nanopart. Res., 2014, 16(5), 2416.
[http://dx.doi.org/10.1007/s11051-014-2416-0]
[55]
Azarifar, D.; Nejat‐Yami, R.; Zolfigol, M.A. 1, 4‐Diazabicyclo [2.2. 2] octane‐catalyzed one‐pot synthesis of pyrazolo [1, 2‐a][1, 2, 4] triazole‐1, 3‐diones under ultrasound acceleration. J. Heterocycl. Chem., 2013, 50(6), 1386-1390.
[http://dx.doi.org/10.1002/jhet.1706]
[56]
Shaterian, H.R.; Moradi, F. Preparation of 7-amino-1, 3-dioxo-1, 2, 3, 5-tetrahydropyrazolo [1, 2-a][1, 2, 4] triazole using magnetic Fe3O4 nanoparticles coated by (3-aminopropyl)-triethoxysilane as a catalyst. Res. Chem. Intermed., 2015, 41(1), 223-229.
[http://dx.doi.org/10.1007/s11164-013-1184-2]
[57]
Azarifar, D.; Yami, R.N. Ultrasonic-assisted one-pot synthesis of pyrazolo [1, 2-a][1, 2, 4] triazole-1, 3-diones. Heterocycles, 2010, 81(9), 2063-2073.
[http://dx.doi.org/10.3987/COM-10-11959]
[58]
Saluja, P.; Khurana, J.M.; Sharma, C.; Aneja, K.R. An Efficient and Convenient Approach for the Synthesis of Novel Pyrazolo [1, 2-a] triazole-triones and Evaluation of their Antimicrobial Activities. Aust. J. Chem., 2014, 67(6), 867-874.
[http://dx.doi.org/10.1071/CH13586]
[59]
Sajadikhah, S.; Maghsoodlou, T.M.; Hazeri, N.; Habibi-Khorassani, S. One-pot three-component reaction for synthesis of highly substituted pyrazolo [1, 2-a][1, 2, 4] triazole derivatives. Lett. Org. Chem., 2011, 8(10), 743-748.
[http://dx.doi.org/10.2174/157017811799304188]
[60]
Kiriazis, A.; Rüffer, T.; Jäntti, S.; Lang, H.; Yli-Kauhaluoma, J. Stereoselective aza Diels-Alder reaction on solid phase: A facile synthesis of hexahydrocinnoline derivatives. J. Comb. Chem., 2007, 9(2), 263-266.
[http://dx.doi.org/10.1021/cc060125l] [PMID: 17348732]
[61]
Adib, M.; Sayahi, M.H.; Mahmoodi, N.; Bijanzadeh, H.R. One-pot three-component synthesis of highly functionalized 2, 3-dihydro-1, 3-dioxo-1H, 5H-pyrazolo [1, 2-a][1, 2, 4] triazoles. Helv. Chim. Acta, 2006, 89(6), 1176-1180.
[http://dx.doi.org/10.1002/hlca.200690115]
[62]
Rezaei, S.J.T.; Bide, Y.; Nabid, M.R. An efficient ultrasound-promoted one-pot synthesis of spiroacenaphthylene pyrazolotriazole and pyrazolophthalazine derivatives. Tetrahedron Lett., 2012, 53(38), 5123-5126.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.049]
[63]
Shaabani, A.; Keshipour, S.; Aghaei, M.; Khodabandeh, M.H.; Zahedi, M. Synthesis of a new class of highly functionalized phosphorus ylides containing heterocyclic compounds. Chin. J. Chem., 2012, 30(8), 1893-1900.
[http://dx.doi.org/10.1002/cjoc.201200199]
[64]
Mohebat, R.; Moghaddam, M.I.; Motlagh, R.A.; Hassanabadi, A.; Kalami-Yazdi, M. Stereoselective synthesis of dialkyl 2-(dialkoxyphosphoryl)-3-(3, 5-dioxo-4-phenyl-[1, 2, 4] triazolidin-1-yl) succinates. J. Chem. Res., 2011, 35(10), 564.
[http://dx.doi.org/10.3184/174751911X13162731136181]
[65]
Soltanzadeh, Z.; Imanzadeh, G.; Noroozi-Pesyan, N.; Şahin, E.; Hooshmand, H. Unexpected formation of 5-alkylidene derivatives of hydantoin from the Michael addition of 4-phenylurazole to fumaric esters. Tetrahedron, 2016, 72(14), 1736-1741.
[http://dx.doi.org/10.1016/j.tet.2016.02.024]
[66]
Fernández-Herrera, M.A.; Zavala-Oseguera, C.; Cabellos, J.L.; Sandoval-Ramírez, J.; Domingo, L.R.; Merino, G. Understanding the high reactivity of triazolinediones in Diels-Alder reactions. A DFT study. J. Mol. Model., 2014, 20(4), 2207.
[http://dx.doi.org/10.1007/s00894-014-2207-7] [PMID: 24691533]
[67]
Rahimi, A.; Habibi, D.; Rostami, A.; Ali Zolfigol, M.; Mallakpour, S. Laccase-catalyzed, aerobic oxidative coupling of 4-substituted urazoles with sodium arylsulfinates: Green and mild procedure for the synthesis of arylsulfonyl triazolidinediones. Tetrahedron Lett., 2018, 59(4), 383-387.
[http://dx.doi.org/10.1016/j.tetlet.2017.12.048]
[68]
Chai, W.; Chang, Y.; Buynak, J. An efficient and general urazole synthesis. Tetrahedron Lett., 2012, 53(27), 3514-3517.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.131]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy