Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Review Article

Lanthanide Doped Complexes and Organometallic Clusters: Design Strategies and their Applications in Biology and Photonics

Author(s): Gangadharan A. Kumar*

Volume 9, Issue 3, 2019

Page: [166 - 217] Pages: 52

DOI: 10.2174/1877946809666190919100324

Abstract

In this review, we discuss the rational design of a new class of lanthanide-doped organometallic nanostructured materials called `molecular minerals`. Molecular minerals are nanostructured materials with a ceramic core made from chalcogenide groups and other heavy metals. Part of the central core atoms is replaced by suitable lanthanide atoms to impart fluorescent spectral properties. The ceramic core is surrounded by various types of organic networks thus making the structure partly ceramic and organic. The central core has superior optical properties and the surrounding organic ligand makes it easy to dissolve several kinds of organic solvents and fluoropolymers to make several kinds of active and passive photonic devices. This chapter starts with elaborate design strategies of lanthanidebased near-infrared emitting materials followed by the experimental results of selected near-infrared emitting lanthanide clusters. Finally, their potential applications in telecommunication, light-emitting diodes and medical imaging are discussed.

Keywords: Judd-Ofelt theory, lanthanides, light-emitting diode, medical imaging, multiphonon relaxation, spectroscopy.

Graphical Abstract

[1]
Gschneider, K.A.; Eyring, L.R. Handbook on the Physics and Chemistry of Rare Earths; North-Holland Company: Amsterdam, 1978, Vol. 1, .
[2]
Carnall, W.T.; Gschneider, K.A., Jr; Eyring, L. Handbook on the Physics and Chemistry of Rare Earths; North-Holland Company: Amsterdam, 1979, Vol. 3, p. 171.
[3]
Faulkner, S.; Pope, A.S.J.; Burton-Pye, B.P. Lanthanide complexes for luminescence imaging applications. Appl. Spectrosc. Rev., 2005, 40, 1-31.
[http://dx.doi.org/10.1081/ASR-200038308]
[4]
Mizukami, S.; Yanamoto, T.; Yoshimura, A.; Wantanabe, S.; Kikuchi, K. Lanthanide complexes for luminescence imaging applications. Angew. Chem. Int. Ed., 2011, 50, 8750-8752.
[http://dx.doi.org/10.1002/anie.201103775]
[5]
Hebbink, G.A.; Klink, S.I.; Alink, P.G.; Van Veggel, F.C. Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes. Inorg. Chim. Acta, 2001, 317, 114-120.
[http://dx.doi.org/10.1016/S0020-1693(01)00344-9]
[6]
Oude Wolbers, M.P.; Fvan Veggel, C.J.M.; Snellink-Ruel, B.H.M.; Hofstraat, J.W.; Geurts, F.A.J.; Reinhoudt, D.N. Photophysical studies of m-terphenyl-sensitized visible and near-infrared emission from organic 1:1 lanthanide ion complexes in methanol solutions. J. Chem. Soc. Perkin Trans., 1998, 2, 2141-2150.
[http://dx.doi.org/10.1039/a802584c]
[7]
Qian, D.J.; Nakahara, H.; Fukuda, K.; Yang, K.Z. Emission behavior of lanthanoid complexes in mono- layer assemblies. Langmuir, 1995, 11, 4491-4494.
[http://dx.doi.org/10.1021/la00011a051]
[8]
Ludwig, R.; Matsumoto, H.; Takeshita, M.; Ueda, K.; Shinkai, S. Study on monolayers of metal complexes of calixarenes and their luminescence properties. Supramol. Chem., 1995, 4, 319-327.
[http://dx.doi.org/10.1080/10610279508028943]
[9]
Pesce, A.J.; Rosen, C.G.; Pasby, T.L. Fluorescence Spectroscopy; Marcel Dekkar: NY, 1971.
[10]
Kumar, G.A. Ph. D thesis. Mahatma Gandhi University: Kottayam, 1998
[11]
Szabo, A. Laser-induced fluorescence-line narrowing in ruby. Phys. Rev. Lett., 1970, 25, 924-926.
[12]
Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev., 1962, 127, 750-761.
[http://dx.doi.org/10.1103/PhysRev.127.750]
[13]
Ofelt, G.S. Intensities of crystal spectra of rare‐earth ions. J. Chem. Phys., 1962, 37, 511-520.
[http://dx.doi.org/10.1063/1.1701366]
[14]
Forster, T. Intermolecular Energy Migration and Fluorescence Ann. Phys. (Leipzig), 1948, 2, 55-75.
[http://dx.doi.org/10.1002/andp.19484370105]
[15]
Dexter, D.L. A theory of sensitized luminescence in solid. J. Chem. Phys., 1953, 21, 836-850.
[http://dx.doi.org/10.1063/1.1699044]
[16]
Inokutti, M.; Hirayama, F. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys., 1965, 43, 1978-1989.
[http://dx.doi.org/10.1063/1.1697063]
[17]
Mita, Y.; Togashi, M.; Yamamoto, H. Energy transfer processes in rare-earth-ion-doped materials. J. Lumin., 2000, 87, 1026-1028.
[http://dx.doi.org/10.1016/S0022-2313(99)00518-9]
[18]
Kaminskii, A. A Laser Crystals, their physics and Properties; Springer Verlag: Berlin, 1981.
[19]
Jacquier, B. Rare Earth Doped Fiber Lasers and Amplifiers; Marcel Dekker, Inc: NY, 1993.
[20]
Kumar, G.A.; Riman, R.E.; Kaminskii, A.A.; Praveena, R.; Jayasankar, C.K.; Bae, I.K.; Chae, S.C.; Jang, Y.N. Optical properties of single crystal Nd3+-doped Bi4Ge3O12: Laser transitions at room and low temperature. Phys. Rev. B Condens. Matter Mater. Phys., 2006, 74(1), 014306-014317.
[http://dx.doi.org/10.1103/PhysRevB.74.014306]
[21]
Brown, D.C. High Peak Power Nd Glass Laser Systems; Springer Verlag: Berlin, 1981.
[http://dx.doi.org/10.1007/978-3-540-38508-0]
[22]
Kumar, G.A.; Unnikrishnan, N.V. Evaluation of spectral parameters of Nd3+ ion in Borate glasses Part. I. Slater-Condon, Spin-orbit interaction and Racah parameters. Phys. Chem. Glasses, 1998, 39, 188-191.
[23]
Kushida, T.T.; Marcos, H.M.; Geusic, J.E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet. Phys. Rev., 1968, 167, 289-296.
[http://dx.doi.org/10.1103/PhysRev.167.289]
[24]
Kaminskii, A.A.; Hommerich, U.; Temple, D.; Seo, J.T.; Ueda, K.I.; Bagayev, S.; Pavlyulk, A. Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping. Jpn. J. Appl. Phys., 2000, 39, L208-L210.
[http://dx.doi.org/10.1143/JJAP.39.L208]
[25]
Kiel, F.W. Chloroquine suicide. JAMA, 1964, 190(4), 398-400.
[26]
Riseberg, L.A.; Moos, H. Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals. Phys. Rev., 1968, 174, 429-438.
[http://dx.doi.org/10.1103/PhysRev.174.429]
[27]
Weber, M.J. Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate. Phys. Rev. B, 1973, 8, 54-64.
[http://dx.doi.org/10.1103/PhysRevB.8.54]
[28]
Siebrand, W. Radiationless transitions in polyatomic molecules. I. calculation of Franck-Condon factors. J. Chem. Phys., 1967, 46, 440-447.
[http://dx.doi.org/10.1063/1.1840685]
[29]
Heller, A. A high gain room temperature liquid laser: Trivalent Nd in selenium oxychloride. Appl. Phys. Lett., 1966, 9, 106.
[http://dx.doi.org/10.1063/1.1754664]
[30]
Heller.A. Formation of hot OH bonds in the radiationless relaxations of excited rare earth ions in aqueous solutions. J. Am. Chem. Soc., 1966, 88, 2058-2059.
[http://dx.doi.org/10.1021/ja00961a046]
[31]
Hasegawa.; Wada, Y.; Yanagida, S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J. Photochem. Photobiol. Chem., 2004, 5, 183-202.
[http://dx.doi.org/10.1016/j.jphotochemrev.2004.10.003]
[32]
Hasegawa, Y.; Murakosh, K.; Wada, Y.; Yanagida, S.; Kim, J.; Nakashima, N.; Yamanaka, Y. Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent. Chem. Phys. Lett., 1996, 248, 8-12.
[http://dx.doi.org/10.1016/0009-2614(95)01279-6]
[33]
Kornienko, A.; Emge, T.J.; Kumar, G.A.; Riman, R.E.; Brennan, J.G. Lanthanide clusters with internal Ln ions: highly emissive molecules with solid-state cores. J. Am. Chem. Soc., 2005, 127(10), 3501-3505.
[http://dx.doi.org/10.1021/ja043655z] [PMID: 15755171]
[34]
Campbell, J.H.; Suratwala, T.I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J. Non-Cryst. Solids, 2000, 263, 318-334.
[http://dx.doi.org/10.1016/S0022-3093(99)00645-6]
[35]
Lupei, V.; Lupei, A.; Boulon, G. The effects of sensitisation on the activator emission in laser crystals. J. Lumin., 1997, 72-74, 948-950.
[http://dx.doi.org/10.1016/S0022-2313(96)00301-8]
[36]
Hegarty, J.; Huber, D.L.; Yen, W.M. Fluorescence quenching by cross relaxation in LaF3:Pr3+. Phys. Rev. B Condens. Matter, 1982, 25, 5638-5645.
[http://dx.doi.org/10.1103/PhysRevB.25.5638]
[37]
Luria, E.; Rotman, S.R.; Mares, J.A.; Boulon, G.; Brenier, A.; Lou, L. Energy transfer between Cr3+ and Nd3+ in Cr, Nd:YAP. J. Lumin., 1997, 72-74, 951-953.
[http://dx.doi.org/10.1016/S0022-2313(96)00302-X]
[38]
Barbosa-García, O.; McFarlane, R.A.; Birnbaum, M.; Díaz-Torres, L.A. Neodymium to erbium nonradiative energy transfer and fast initial fluorescence decay of the 4F3/2 state of neodymium in garnet crystals. J. Opt. Soc. Am. B, 1997, 14, 2731-2734.
[http://dx.doi.org/10.1364/JOSAB.14.002731]
[39]
Lupei, V.; Lupei, A. Emission dynamics of the 4F3/2 level of Nd3+ in YAG at low pump intensities. Phys. Rev. B Condens. Matter Mater. Phys., 2000, 61, 8087-8098.
[http://dx.doi.org/10.1103/PhysRevB.61.8087]
[40]
Lupei, V.; Lupei, A.; Georgescu, S.; Ionescu, C. Energy transfer between Nd3+ ions in YAG. Opt. Commun., 1986, 60, 59-63.
[http://dx.doi.org/10.1016/0030-4018(86)90117-3]
[41]
Vásquez, S.O. Crystal model for energy transfer process in organized media-higher order electric multipolar interactions. Phys. Rev. B Condens. Matter Mater. Phys., 1999, 60, 8575-8585.
[http://dx.doi.org/10.1103/PhysRevB.60.8575]
[42]
Ostrumov, V.; Tensen, T.; Meyn, J.P.; Huber, G.; Noginov, M.A. Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals. J. Opt. Soc. Am. B, 1998, 15, 1052-1060.
[http://dx.doi.org/10.1364/JOSAB.15.001052]
[43]
Braud, A.; Girard, S.; Doualan, J.L.; Moncorge, R. Spectroscopy and fluorescence dynamics of (Tm3+,Tb3+) and (Tm3+,Eu3+) doped LiYF4 single crystals for 1.5μm laser operation. IEEE J. Q. E, 1998, 34, 2246-2255.
[44]
Dowell, L.J. Los Alamos National Laboratory reports LA-11873-MS, 1990.
[45]
Tanimoto, O. Effects of diffusion on energy transfer by resonance. J. Phys. Soc. Japan., 1967, 22, 779-784.
[http://dx.doi.org/10.1143/JPSJ.22.779]
[46]
Burshtein, A.I. Hoping mechanism of energy transfer. Sov. Phys. JETP, 1972, 35, 882-885.
[47]
Huber, D.L. Laser Spectroscopy of Solids; Yen, W.M; Selzer, P.W., Ed.; Springer-Verlag: New York, 1981, p. 83.
[http://dx.doi.org/10.1007/3540167099_3]
[48]
Dibartolo, B. Energy Transfer Processes in Condensed Matter; Springer Science & Business Media, 2012.
[49]
Huber, D.L. Fluorescence in the presence of traps. Phys. Rev. B Condens. Matter, 1979, 20, 2307-2314.
[http://dx.doi.org/10.1103/PhysRevB.20.2307]
[50]
Voron’Ko, Y.K.; Mamedov, T.G.; Osiko, V.V.; Prokhorov, A.M.; Sakun, V.P.; Shcherbakov, I.A. Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations. Sov. Phys. JETP, 1976, 44, 251-261.
[51]
Di Bartolo, B. Energy Transfer Processes in Condensed Matter Di Bartolo, B., Ed.; Plenum Press: New York, 1984, p. 103.
[http://dx.doi.org/10.1007/978-1-4613-2407-2_2]
[52]
Barbosa-Garcia, O.; Struck, C.W. Monte Carlo treatment of the nonradiative energy transfer process for nonrandom placements of dopants in solids. J. Chem. Phys., 1994, 100, 4554-4568.
[http://dx.doi.org/10.1063/1.466287]
[53]
Vásquez, S.O. Energy transfer processes in organized media. I. A crystal model for cubic sites. J. Chem. Phys., 1996, 104, 7652-7657.
[http://dx.doi.org/10.1063/1.471480]
[54]
Vega-Durán, J.T.; Díaz-Torres, L.A.; Meneses-Nava, M.A.; Mosiño, J.F. Exact solution to the general non-radiative energy transfer master equations in crystalline materials. J. Lumin., 2000, 91, 233-241.
[http://dx.doi.org/10.1016/S0022-2313(00)00207-6]
[55]
Díaz-Torres, L.A.; Barbosa-García, O.; Struck, C.W.; McFarlane, R.A. Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations. J. Lumin., 1998, 78, 69-86.
[http://dx.doi.org/10.1016/S0022-2313(97)00276-7]
[56]
Hahn, T., Ed.; International Tables for Crystallography; D. Reidel Publishing Co.: Dordrecht, Boston, 1983.
[57]
Fernandez, J.; Iparraguirre, I.; Balda, R.; Azkargorta, J.; Voda, M.; Fernandez-Navarro, J.M. Laser action and upconversion of Nd3+ in lead–niobium–germanate bulk glass. Opt. Mater., 2004, 25, 185-191.
[http://dx.doi.org/10.1016/S0925-3467(03)00268-4]
[58]
Kumar, G.A.; De la Rosa Cruz, E.; Ueda, K. Martinez. A.; Barbosa Garcia, O. Enhancement of optical properties of Nd3+ doped fluorophosphate glasses by alkali and alkaline earth metal co-doping. Opt. Mater., 2003, 22, 201-213.
[http://dx.doi.org/10.1016/S0925-3467(02)00245-8]
[59]
Demtroder, W. Laser Spectroscopy: Basic Concepts and Instrumentation; Springer Verlag: NY, 1988.
[60]
Hebbink, G.A.; Reinboudt, D.N. Van Veggel, F.C.J.M.; Increased luminescent lifetimes of Ln3+ complexes emitting in the near‐infrared as a result of deuteration. Eur. J. Org. Chem., 2001, 6, 4101-4106.
[61]
Hasegawa, Y.; Ohkubo, T.; Sogabe, K.; Kawamura, Y.; Wada, Y.; Nakashima, N.; Yanagida, S. Luminescence of novel neodymium sulfonylaminate complexes in organic media. Angew. Chem. Int. Ed. Engl., 2000, 39(2), 357-360.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000117)39:2<357:AID-ANIE357>3.0.CO;2-M] [PMID: 10649408]
[62]
Kumar, G.A.; Riman, R.E.; Diaz Torres, L.A.; Banerjee, S.; Romanelli, M.D.; Emge, T.J.; Brennan, J.G. Near-infrared optical characteristics of chalcogenide-bound Nd3+ molecules and clusters. Chem. Mater., 2007, 19, 2937-2946.
[http://dx.doi.org/10.1021/cm052643p]
[63]
Banerjee, S.; Kumar, G.A.; Riman, R.E.; Emge, T.J.; Brennan, J.G. Oxoclusters of the lanthanides begin to resemble solid-state materials at very small cluster sizes: Structure and NIR emission from Nd(III). J. Am. Chem. Soc., 2007, 129(18), 5926-5931.
[http://dx.doi.org/10.1021/ja069000a] [PMID: 17439214]
[64]
Iwamura, M.; Hasegawa, Y.; Wada, Y.; Murakoshi, K.; Nakshaima, N.; Yamanaka, T.; Yanagida, S.J. Luminescence of Nd3+ complexes with some asymmetric ligands in organic solutions. Lumin., 1998, 79, 29-38.
[http://dx.doi.org/10.1016/S0022-2313(98)00018-0]
[65]
Sun, L.N.; Zhang, H.J.; Meng, Q.G.; Liu, F.Y.; Fu, L.S.; Peng, C.Y.; Yu, J.B.; Zheng, G.L.; Wang, S.B. Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln= Nd, Yb) and their possible laser application. J. Phys. Chem. B, 2005, 109(13), 6174-6182.
[66]
Jorgenson, C.K. Modern Aspects of Ligand Filed Theory; North Holland: Amsterdam, 1971.
[67]
Wolbers, M.P.; Van Veggel, F.C.; Hofstraat, J.W.; Geurts, F.A.; Reinhoudt, D.N. Luminescence properties of m-terphenyl-based Eu3+ and Nd3+ complexes: Visible and near-infrared emission. J. Chem. Soc. Perkin Trans., 1997, 1997(11), 2275-2282.
[68]
Wolbers, M.P.O.; Van Veggel, F.C.J.M.; Snellink-Ruel, B.H.M.; Hofstraat, J.W.; Geurts, F.A.J.; Reinhoudt, D.N.J. Photophysical studies of m-terphenyl-sensitized visible and near-infrared emission from organic 1:1 lanthanide ion complexes in methanol solutions. Chem. Soc. Perkin Trans., 1998, 1998(10), 2141-2150.
[69]
Klink, S.I.; Hebbink, G.A.; Grave, L.; Van Veggel, F.C.J.M.; Reinhoudt, D.N.; Slooff, L.H.; Polman, A.; Hofstraat, J.W. Sensitized near-infrared luminescence from polydentate triphenylene-functionalized Nd3+,Yb3+,and Er3+ complexes. J. Appl. Phys., 1999, 86, 1181-1185.
[http://dx.doi.org/10.1063/1.370867]
[70]
Tolstoi, M.N.; Lyubimov, E.I.; Batyaev, I.M. Spectroscopic properties of Nd3+ luminescent centers in SnCl4-PoCl3. Opt. Spect-USSR, 1970, 28(4), 389-394.
[71]
Yasuchika Hasegawa. Takashi Ohkubo.; Kensaku Sogabe.; Yuichiro Kawamura.; Yuji Wada.; Nobuaki Nakashima.; Shozo Yanagida. Luminescence of Novel Neodymium Sulfonylaminate Complexes in Organic Media. Angew. Chem. Int. Ed., 2000, 39(2), 357-360.
[72]
Wada, Y.; Okubo, T.; Ryo, M.; Nakazawa, T.; Hasegawa, Y.; Yanagida, S. High efficiency near-IR emission of Nd (III) based on low-vibrational environment in cages of nanosized zeolites. J. Am. Chem. Soc., 2000, 122(35), 8583-8584.
[http://dx.doi.org/10.1021/ja0020557]
[73]
Sudo, S. Optical Fiber Amplifiers-Materials, Devices, and Applications; Artech House Inc.: Norwood, MA, 1997.
[74]
Shen, S.; Jha, A.; Zhang, E.; Wilson, S.J. Compositional effects and spectroscopy of rare earths (Er3+, Tm3+, and Nd3+) in tellurite glasses. C. R. Chim., 2002, 5, 921-938.
[http://dx.doi.org/10.1016/S1631-0748(02)01451-0]
[75]
Kaminski, A.A. Crystalline Lasers-Physical Processes and Operating Scheme; CRC Press: NY, 1996.
[76]
Fan, T.Y.; Kokta, M.R. End pumped Nd:LaF3 and Nd: LaMg Al11O9 lasers. IEEE Quantum Electron., 1989, 25, 1845.
[77]
Berg, D.J.; Burns, C.J.; Andersen, R.A.; Zalkin, A.; Berg, A.D.J.; Burns, C.J. Electron-transfer reactions of divalent ytterbium metallocenes. Synthesis of the series [(Me5C5)2Yb]2[.mu.-E] (E = oxygen, sulfur, selenium, or tellurium) and crystal structure of [(Me5C5)2Yb]2. Organometallics, 1989, 8, 1865-1870. [.mu.-Se].
[http://dx.doi.org/10.1021/om00110a006]
[78]
G.A., Kumar; R.E., Riman; John, G. Brennan, NIR emission from molecules and clusters with lanthanide-chalcogen bonds. Coord. Chem. Rev., 2014, 273-74, 111-124.
[79]
Kumar, G.A.; Riman, R.E.; Diaz Torres, L.A.; Barbosa Garcia, O.; Banerjee, S.; Kornienko, A.; Brennan, J.G. Chalcogenide-bound erbium complexes: Paradigm molecules for infrared fluorescence emission. Chem. Mater., 2005, 17, 5130-5135.
[http://dx.doi.org/10.1021/cm050770f]
[80]
Kumar, G.A.; Riman, R.; Snitzer, E.; Ballato, J. Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification. J. Appl. Phys., 2004, 95(1), 40-47.
[http://dx.doi.org/10.1063/1.1629772]
[81]
Banerjee, S.; Kumar, G.A.; Emge, T.J.; Riman, R.E.; Brennan, J.G. Thiolate-bound thulium compounds: Synthesis, structure, and NIR emission. Chem. Mater., 2008, 20(13), 4367-4373.
[http://dx.doi.org/10.1021/cm800627f]
[82]
Alexey, V.T.; Carpenter, A.V.; Gorokhovsky, A.A.; Alfano, R.R.; Chu, T.Y.; Okamoto, Y. Optical spectroscopy of Tm3+ in organic matrices for hole-burning storage applications. Proc. SPIE, 1998, 165, 3468.
[83]
Kaizaki, S.; Shirotani, D.; Tsukahara, Y.; Nakata, H. First observation of NIR 4f–4f luminescence through the energy transfer from the SOMO π* doublet in nitronyl nitroxide radical Lanthanide(III) complexes. Eur. J. Inorg. Chem., 2005, 1, 3503-3505.
[http://dx.doi.org/10.1002/ejic.200500061]
[84]
Zang, F.X.; Hong, Z.R.; Li, W.L.; Li, M.T.; Sun, X.Y. 1.4μm band electroluminescence from organic light-emitting diodes based on thulium complexes. Appl. Phys. Lett., 2004, 84, 2679.
[http://dx.doi.org/10.1063/1.1695098]
[85]
Yang, Z.; Luo, L.; Chen, W. The 1.23 and emissions from in chalcogenide glasses. J. Appl. Phys., 2006, 076107, 99.
[86]
Truong, V.G.; Jurdyc, A.M.; Jacquier, B.; Ham, B.S.; Quang, A.Q.L.; Leperson, J.; Nazabal, V.; Adam, J.L. Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd-Ofelt approach. J. Opt. Soc. Am. B, 2006, 23, 2588-2596.
[http://dx.doi.org/10.1364/JOSAB.23.002588]
[87]
Petrov, V.; Valle, F.J.; Galan, M.; Viera, G. Broadly tunable laser operation near 2μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2. J. Opt. Soc. Am. B, 2006, 23, 2494-2502.
[http://dx.doi.org/10.1364/JOSAB.23.002494]
[88]
Balda, R.; Lacha, L.M.; Fernandez, J.M.; Fernandez-Navarro, J.M. Concentration quenching of the 1470-nm emission in Tm3+-doped lead-niobium-germanate glasses. Proc. SPIE, 2005, 5723, 55.
[89]
Kumar, G.A.; Riman, R.; Banerjee, S.; Kornienko, A.; Brennan, J.G.; Chen, S.; Smith, D.; Ballato, J. Infrared fluorescence and optical gain characteristics of chalcogenide-bound erbium cluster-fluoropolymer nanocomposites. Appl. Phys. Lett., 2006, 88 091902
[http://dx.doi.org/10.1063/1.2170433]
[90]
Kobayashi, T.; Nakatsuka, S.; Iwafuji, T.; Kuriki, K.; Imai, N.; Nakamoto, T.; Claude, C.D.; Sasaki, K.; Koike, Y.; Okamoto, Y. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers. Appl. Phys. Lett., 1997, 71, 2421.
[http://dx.doi.org/10.1063/1.120080]
[91]
Nykolak, G.; Haner, M.; Becker, P.C.; Schmulovich, J.; Wong, Y.H. Concentration-dependent 4I13/2 lifetimes in Er3+-doped fibers and Er3+-doped planar waveguides. IEEE Photonics Technol. Lett., 1993, 5, 1014.
[http://dx.doi.org/10.1109/68.257176]
[92]
Kumar, G.A.; Chen, C.W.; Riman, R.E. Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals. Appl. Phys. Lett., 2007, 90 093123
[http://dx.doi.org/10.1063/1.2392284]
[93]
Khreis, O.M.; Gillin, W.P.; Somerton, M.; Curry, R.J. 980 nm electroluminescence from ytterbium tris (8-hydroxyquinoline). Org. Electron., 2001, 2(1), 45-51.
[http://dx.doi.org/10.1016/S1566-1199(00)00014-8]
[94]
Kido, J.; Okamoto, Y. Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev., 2002, 102(6), 2357-2368.
[http://dx.doi.org/10.1021/cr010448y] [PMID: 12059271]
[95]
Adachi, C.; Baldo, M.A.; Forrest, S.R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys., 2000, 87, 8049.
[http://dx.doi.org/10.1063/1.373496]
[96]
Eckert, H.G. Radioimmunoassay technique. Angew. Chem., 1976, 88, 565-574.
[http://dx.doi.org/10.1002/ange.19760881704]
[97]
Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Res., 2000, 30(1), 545-610.
[98]
Tijssen, P. Practice and Theory of Enzyme Immunoassay; Elsevier: Amsterdam, 1985.
[99]
Gould, B.J.; Marks, V. Non-isotopic Immunoassay; Ngo, T.T., Ed.; Plenum: New York, 1988, pp. 3-26.
[http://dx.doi.org/10.1007/978-1-4684-5466-6_1]
[100]
Koller, E. Fluorescent labels for use in biology and biomedicine. Appl. Fluoresc. Technol., 1989, 1, 1-8.
[101]
Smith, L.M.; Sanders, J.Z.; Kaiser, R.J.; Hughes, P.; Dodd, C.; Connell, C.R.; Heiner, C.; Kent, S.B.H.; Hood, L.E. Fluorescence detection in automated DNA sequence analysis. Nature, 1986, 321(6071), 674-679.
[http://dx.doi.org/10.1038/321674a0] [PMID: 3713851]
[102]
Beck, S.; Köster, H. Applications of dioxetane chemiluminescent probes to molecular biology. Anal. Chem., 1990, 62(21), 2258-2270.
[http://dx.doi.org/10.1021/ac00220a003] [PMID: 2127164]
[103]
Mayer, A.; Neuenhofer, S. Luminescent labels-more than just an alternative to radioisotopes? Angew. Chem. Int. Ed. Engl., 1994, 33, 1044-1072.
[http://dx.doi.org/10.1002/anie.199410441]
[104]
Mathis, G. Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem., 1993, 39(9), 1953-1959.
[PMID: 8375081]
[105]
Li, M.; Selvin, P.R. Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconjug. Chem., 1997, 8(2), 127-132.
[http://dx.doi.org/10.1021/bc960085m] [PMID: 9095352]
[106]
Soini, A.E.; Kuusisto, A.; Meltola, N.J.; Soini, E.; Seveus, L. A new technique for multiparameter imaging microscopy: Use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel-to-channel crosstalk. Microsc. Res. Tech., 2003, 62(5), 396-407.
[http://dx.doi.org/10.1002/jemt.10389] [PMID: 14601145]
[107]
Sjöroos, M.; Ilonen, J.; Reijonen, H.; Lövgren, T. Time-resolved fluorometry based sandwich hybridisation assay for HLA-DQA1 typing. Dis. Markers, 1998, 14(1), 9-19.
[http://dx.doi.org/10.1155/1998/350145] [PMID: 9706458]
[108]
Watanabe, K.; Arakawa, H.; Maeda, M. Simultaneous Detection of Two Verotox in Genes Using Dual‐Label Time‐Resolved Fluorescence Immunoassay With Duplex PCR Luminescence, 2002.
[109]
Samiotaki, M.; Kwiatkowski, M.; Ylitalo, N.; Landegren, U. Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal. Biochem., 1997, 253(2), 156-161.
[http://dx.doi.org/10.1006/abio.1997.2387] [PMID: 9367497]
[110]
Hemmilä, I.; Laitala, V. Progress in lanthanides as luminescent probes. J. Fluoresc., 2005, 15(4), 529-542.
[http://dx.doi.org/10.1007/s10895-005-2826-6] [PMID: 16167211]
[111]
Rosen, D.L.; Sharpless, C.; McGown, L.B. Bacterial endospore detection using photoluminescence from terbium dipicolinate. Rev. Anal. Chem., 1999, 18, 1-21.
[http://dx.doi.org/10.1515/REVAC.1999.18.1-2.1]

© 2024 Bentham Science Publishers | Privacy Policy