[1]
Shukla, P. Futuristic protein engineering: Developments and avenues. Curr. Protein Pept. Sci., 2018, 19, 3-4.
[2]
Lutz, S.; Iamurri, S.M. Protein engineering: Past, present, and future. Methods Mol. Biol., 2018, 1685, 1-12.
[3]
Singh, R.K.; Lee, J.K.; Selvaraj, C.; Singh, R.; Li, J.; Kim, S.Y.; Kalia, V.C. Protein engineering approaches in the post-genomic era. Curr. Protein Pept. Sci., 2018, 19, 5-15.
[4]
Sinha, R.; Shukla, P. Current trends in protein engineering: Updates and progress. Curr. Protein Pept. Sci., 2019, 20, 398-407.
[5]
Lorch, M.S.; Collado, M.S.; Argüelles, M.H.; Rota, R.P.; Spinsanti, L.I.; Lozano, M.E.; Goñi, S.E. Production of recombinant NS1 protein and its possible use in encephalitic flavivirus differential diagnosis. Protein Expr. Purif., 2019, 153, 18-25.
[6]
Kureshi, R.; Bahri, M.; Spangler, J.B. Reprogramming immune proteins as therapeutics using molecular engineering. Curr. Opin. Chem. Eng., 2018, 19, 27-34.
[7]
Gupta, S.K.; Shukla, P. Microbial platform technology for recombinant antibody fragment production: A review. Crit. Rev. Microbiol., 2017, 43, 31-42.
[8]
Sinha, R.; Shukla, P. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept. Lett., 2019, 26, 79-87.
[9]
Dangi, A.K.; Sinha, R.; Dwivedi, S.; Gupta, S.K.; Shukla, P.S. Cell line techniques and gene editing tools for antibody production: A review. Front. Pharmacol., 2018, 9, 630.
[10]
Dubey, K.K.; Luke, G.A.; Knox, C.; Kumar, P.; Pletschke, B.I.; Singh, P.K.; Shukla, P. Vaccine and antibody production in plants: Developments and computational tools. Brief. Funct. Genomics, 2018, 17, 295-307.
[11]
Usmani, S.S.; Kumar, R.; Bhalla, S.; Kumar, V.; Raghava, G.P. In silico tools and databases for designing peptide-based vaccine and drugs. Adv. Protein Chem. Struct. Biol., 2018, 112, 221-263.
[12]
Farhadi, T.; Hashemian, S.M. Computer-aided design of amino acid-based therapeutics: A review. Drug Des. Devel. Ther., 2018, 12, 1239.
[13]
Burnside, D.; Schoenrock, A.; Moteshareie, H.; Hooshyar, M.; Basra, P.; Hajikarimlou, M.; Dick, K.; Barnes, B.; Kazmirchuk, T.; Jessulat, M.; Pitre, S.; Samanfar, B.; Babu, M.; Green, J.R.; Wong, A.; Dehne, F.; Biggar, K.K.; Golshani, A. In silico engineering of synthetic binding proteins from random
amino acid sequences. iScience, 2019, 11, 375-387
[14]
Kazmirchuk, T.; Dick, K.; Burnside, D.J.; Barnes, B.; Moteshareie, H.; Hajikarimlou, M.; Omidi, K.; Ahmed, D.; Low, A.; Lettl, C.; Hooshyar, M.; Schoenrock, A.; Pitre, S.; Babu, M.; Cassol, E.; Samanfar, B.; Wong, A.; Dehne, F.; Green, J.R.; Golshani, A. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput. Biol. Chem., 2017, 71, 180-187.
[15]
Dash, R.; Das, R.; Junaid, M.; Akash, M.F.; Islam, A.; Hosen, S.Z. In silico-based vaccine design against Ebola virus glycoprotein. Adv. Appl. Bioinforma. Chem., 2017, 10, 11-28.
[16]
Vashistha, R.; Chhabra, D.; Shukla, P. Integrated artificial intelligence approaches for disease diagnostics. Indian J. Microbiol., 2018, 58, 252-255.
[17]
Vashistha, R.; Dangi, A. K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic biosensors for cardiac health care: An artificial intelligence approach. 3 Biotech., 2018, 8, 358.
[18]
Spicer, C.D.; Jumeaux, C.; Gupta, B.; Stevens, M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chemical. Soc. Rev., 2018, 47, 3574-3620.
[19]
Kao, C.W.; Wu, P.T.; Liao, M.Y.; Chung, I.J.; Yang, K.C.; Tseng, W.Y.; Yu, J. Magnetic nanoparticles conjugated with peptides derived from monocyte chemoattractant protein-1 as a tool for targeting atherosclerosis. Pharmaceutics, 2018, 10, 62.
[20]
Altunbek, M.; Keleştemur, S.; Baran, G.; Çulha, M. Role of modification route for zinc oxide nanoparticles on protein structure and their effects on glioblastoma cells. Int. J. Biol. Macromol., 2018, 118, 271-278.
[21]
Singh, B.N.; Singh, B.R.; Gupta, V.K.; Kharwar, R.N.; Pecoraro, L. Coating with microbial hydrophobins: A novel approach to develop smart drug nanoparticles. Trends Biotechnol., 2018, 36, 1103-1106.
[22]
Jacob, J.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem., 2018, 9, 43-55.
[23]
Elzoghby, A.O.; Freag, M.S.; Elkhodairy, K.A. Biopolymeric nanoparticles for targeted drug delivery to brain tumors. In: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Kesharwani, P.; Gupta, U., Eds.; Elsevier, 2018; pp. 169-190.
[24]
Xu, B.; Zhang, W.; Chen, Y.; Xu, Y.; Wang, B.; Zong, L. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int. J. Biol. Macromol., 2018, 113, 534-542.
[25]
Xiong, J.; Han, S.; Ding, S.; He, J.; Zhang, H. Antibody-nanoparticle conjugate constructed with trastuzumab and nanoparticle albumin-bound paclitaxel for targeted therapy of human epidermal growth factor receptor 2-positive gastric cancer. Oncol. Rep., 2018, 39, 1396-1404.
[26]
Diaz, D.; Care, A.; Sunna, A. Bioengineering strategies for protein-based nanoparticles. Genes, 2018, 9, 370.
[27]
Lagassé, H.D.; Alexaki, A.; Simhadri, V.L.; Katagiri, N.H.; Jankowski, W.; Sauna, Z.E.; Kimchi-Sarfaty, C. Recent advances in (therapeutic protein) drug development. F1000 Res., 2017, 6, 113.
[28]
Gupta, S.K.; Shukla, P. Glycosylation control technologies for recombinant therapeutic proteins. Appl. Microbiol. Biotechnol., 2018, 102, 10457-10468.
[29]
Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci., 2016, 7, 2492-2500.
[30]
Sambataro, F.; Pennuto, M. Post-translational modifications and protein quality control in motor neuron and polyglutamine diseases. Front. Mol. Neurosci., 2017, 10, 82.
[31]
Cao, Y.; Li, D.; Fu, Y.; Bai, Q.; Chen, Y.; Bai, X.; Zhang, J. Rational design and efficacy of a multi-epitope recombinant protein vaccine against foot-and-mouth disease virus serotype A in pigs. Antiviral Res., 2017, 140, 133-141.
[32]
Alberts, B.M.; Sacre, S.M.; Bush, P.G.; Mullen, L.M. Engineering of TIMP-3 as a LAP-fusion protein for targeting to sites of inflammation. J. Cell. Mol. Med., 2019, 23, 1617-1621.
[33]
Nishiyama, K. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation. Chem. Phys. Lett., 2017, 682, 26-29.
[34]
Neek, M.; Kim, T.I.; Wang, S.W. Protein-based nanoparticles in cancer vaccine development. Nanomedicine, 2019, 15, 164-174.
[35]
Delplace, V.; Ortin-Martinez, A.; Tsai, E.L.S.; Amin, A.N.; Wallace, V.; Shoichet, M.S. Controlled release strategy designed for intravitreal protein delivery to the retina. J. Control. Release, 2019, 293, 10-20.
[36]
Gu, H.; Liao, Y.; Zhang, J.; Wang, Y.; Liu, Z.; Cheng, P.; Wang, X.; Zou, Q.; Gu, J. Rational design and evaluation of an artificial Escherichia coli K1 protein vaccine candidate based on the structure of OmpA. Front. Cell. Infect. Microbiol., 2018, 8, 172.
[37]
Dubey, K.K.; Luke, G.A.; Knox, C.; Kumar, P.; Pletschke, B.I.; Singh, P.K.; Shukla, P. Vaccine and antibody production in plants: Developments and computational tools. Brief. Funct. Genomics, 2018, 17, 295-307.