Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Design and Molecular Docking Studies of Some 2,3 Di-Substituted Quinazolin-4-One Analogues Against Staphylococcus aureus UDG

Author(s): Amrute B. Bhavesh*, Amrutkar D. Rakesh and Tambe R. Santosh

Volume 16, Issue 4, 2020

Page: [402 - 406] Pages: 5

DOI: 10.2174/1573409915666190916100437

Price: $65

Abstract

Background: In this present investigation, some 2, 3 disubstituted-quinazolin-4-one derivatives are designed and docked against chain A and chain B of (3WDF) receptor.

Methods: The heterocyclic fused rings quinazolinone have drawn a great attention owing to their expanded applications in the field of pharmaceutical chemistry. The diverse range of molecules with quinazoline/quinazolinone moieties have been reported to exhibit a broad spectrum of biological activities.

Results: The results designate that the quinazolinone ring forms hydrophobic and hydrogen bond contacts with ASN 127 A, ALA 126 A, and SER 83 B, SER 183 B amino acid residue.

Conclusion: Molecular docking is safe and straightforward to use tool which facilitates in investigating, interpreting, enplaning and identification of molecular properties using 3D structures.

Keywords: Docking, dock score, conformer, protein, ligand, quinazolinone.

Graphical Abstract

[1]
Amrutkar, R.D. Microwave assisted synthesis and molecular docking studies of 3-aryl-2-alkylquinazolin-4-one derivatives. J. Comput.Methods in Mol. Des., 2018, 8(3), 1-9.
[2]
Sunil, V. Synthesis and anxiolytic activity of N-alkyl/aryl-2-[2-methyl-4-quinazolin-3-yl] acetamide derivatives. J. Pharm. Res., 2011, 4(8), 2619-2621.
[3]
Patil, J.P. Microwave assisted synthesis of quinazolinone using different bases, Microwave assisted synthesis of quinazolinone using different bases J. Pharm. Sci. Res., 2009, 1(3), 52-54.
[4]
Ashish, K. Quinazolinone: an overview, International Research. J. Pharm. (Cairo), 2011, 22-28.
[5]
Ranawat, M.S. Synthesis and Pharmacological Evaluation of 3-alkyl/aryl–2- methylquinazolin-4 one Derivatives Int. J. Drug Des. Dis., 2011, 2, 452-457.
[6]
Padia, J.K. Second Generation “Peptoid” CCK-B Receptor Antagonists: Identification and Development of N-(Adamantyloxycar-bonyl)-α-methyl-(R)-tryptophan Derivative (CI-1015) with an Improved Pharmacokinetic Profile. J. Med. Chem., 1998, 41, 1042.
[http://dx.doi.org/10.1021/jm970373j] [PMID: 9544204]
[7]
Sucheta, G.; Dharmendra, M.; Ranjit, S.; Pal, D.K. Synthesis of some novel 4, 6-disubstituted derivatives and evaluation of their antimicrobial activity. IJPCBS, 2012, 2(1), 97-103.
[8]
Mohamed, M.A.; Hala, M.G.; Nahed, F.A. Ghaffar.; Sabah, S.M. Biological evaluation and molecular docking of substituted quinazolinones as antimicrobial agents. Aust. J. Basic Appl. Sci., 2013, 7(2), 263-274.
[9]
Break, L.M.; Mosselhi, M.A.N. Synthesis, structure and antimicrobial activity of new 3- and 2- arylmethyl and arylacyl-3h[1,2,4]triazino[3,2-b]-quinazoline-2,6(1h)diones as expected as dna fluorphores. Res. J. Chem. Sci., 2012, 2(5), 23-28.
[10]
Chao, Q.; Deng, L.; Shih, H.; Leoni, L.M.; Genini, D.; Carson, D.A.; Cottam, H.B. Substituted isoquinolines and quinazolines as potential antiinflammatory agents. Synthesis and biological evaluation of inhibitors of tumor necrosis factor alpha. J. Med. Chem., 1999, 42(19), 3860-3873.
[http://dx.doi.org/10.1021/jm9805900] [PMID: 10508435]
[11]
Paal, B. Ges 3-aryl- quinazoline- 4-ones. Ber Dtsch Chem., 1889, 22, 2683.
[http://dx.doi.org/10.1002/cber.188902202167]
[12]
Jiang, J.B.; Hesson, D.P.; Dusak, B.A.; Dexter, D.L.; Kang, G.J.; Hamel, E. Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J. Med. Chem., 1990, 33(6), 1721-1728.
[http://dx.doi.org/10.1021/jm00168a029] [PMID: 2088342]
[13]
Padia, J.K. Second Generation “Peptoid” CCK-B Receptor Antagonists: Identification and Development of N-(Adamantyloxycarbonyl)-α-methyl-(R)-tryptophan Derivative (CI-1015) with an ImprovedPharmacokinetic Profile. J. Med. Chem., 1998, 41, 1042.
[http://dx.doi.org/10.1021/jm970373j] [PMID: 9544204]
[14]
Samia, M.E.S.; Samir, A.R.; Hanaa, M.S. New isoquinolone alkaloids from the leaves of cassia siamea. Prog. Chem. Org. Nat. Prod., 1984, 47(4), 708-710.
[15]
Arnold, B. The Alkaloids, Chemistry and Pharmacology, 1st ed; New York Academic Press, 1986, p. 29.
[16]
Alagarsamy, V. Synthesis and Pharmacological investigation of some novel 2, 3-disubstituted quinazolin- 4(3H)-ones as analgesic and anti-inflammatory agents. J. Pharm. Pharmacol., 2003, 58, 4-8.
[17]
Bhalla, M.; Srivastava, V.K.; Bhalla, T.N.; Shanker, K. Anti-inflammatory and analgesic activity of indolyl quinazolones and their congeners. Arzneimittelforschung, 1993, 43(5), 595-600.
[PMID: 8329006]
[18]
Zappalà, M.; Grasso, S.; Micale, N.; Zuccalà, G.; Menniti, F.S.; Ferreri, G.; De Sarro, G.; De Micheli, C. 1-aryl-6,7-methylenedioxy-3H-quinazolin-4-ones as anticonvulsant agents. Bioorg. Med. Chem. Lett., 2003, 13(24), 4427-4430.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.032] [PMID: 14643339]
[19]
Chao, Q.; Deng, L.; Shih, H.; Leoni, L.M.; Genini, D.; Carson, D.A.; Cottam, H.B. Substituted isoquinolines and quinazolines as potential antiinflammatory agents. Synthesis and biological evaluation of inhibitors of tumor necrosis factor alpha. J. Med. Chem., 1999, 42(19), 3860-3873.
[http://dx.doi.org/10.1021/jm9805900] [PMID: 10508435]
[20]
Alagarsamy, V.; Muthukumar, V.; Pavalarani, N.; Vasanthanathan, P.; Revathi, R. Synthesis, analgesic and anti-inflammatory activities of some novel 2,3-disubstituted quinazolin-4(3H)-ones. Biol. Pharm. Bull., 2003, 26(4), 557-559.
[http://dx.doi.org/10.1248/bpb.26.557] [PMID: 12673044]
[21]
Yoo, C.L.; Fettinger, J.C.; Kurth, M.J. Stannous chloride in alcohol: a one-pot conversion of 2-nitro-N-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones. J. Org. Chem., 2005, 70(17), 6941-6943.
[http://dx.doi.org/10.1021/jo050450f] [PMID: 16095321]
[22]
Kamal, A. A new approach for the solid-phase synthesis of pyrrolo[2,1- c][1,4]benzodiazepines involving reductive cleavage. Tetrahedron Lett., 2004, 45, 6517.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.112]
[23]
Alexandre, F.R. Microwaves in Organic Synthesis. Tetrahedron, 2003, 59, 1413.
[http://dx.doi.org/10.1016/S0040-4020(03)00053-X]
[24]
Shimizu, M. Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice. Chem. Pharm. Bull. (Tokyo), 2002, 50, 426.
[http://dx.doi.org/10.1248/cpb.50.426] [PMID: 11911214]
[25]
Stevenson, T.M. An efficient construction of quinazolin-4(3H)-ones under microwave irradiation. J. Org. Chem., 1986, 51, 616.
[http://dx.doi.org/10.1021/jo00355a009]
[26]
Connolly, T.J. An eco-efficient pilot plant scale synthesis of two 5-substituted-6,7-dimethoxy-1-Hquinazoline-2,4-diones. Green Chem., 2005, 7, 586.
[http://dx.doi.org/10.1039/b504305k]
[27]
Schwinn, D. Multistep Parallel Synthesis of Quinazoline 2,4-diones by a Fluorous Biphasic Conceptwithout per fluorinated Solvents. Helv. Chim. Acta, 2003, 86, 188-195.
[http://dx.doi.org/10.1002/hlca.200390010]
[28]
Shao, H. An efficient construction of quinazolin-4(3H)-ones under microwave irradiation. Tetrahedron Lett., 1998, 39, 7235.
[http://dx.doi.org/10.1016/S0040-4039(98)01595-0]
[29]
Gordeev, M.F. Solid supported synthesis of hydroxamic acids. Tetrahedron Lett., 1997, 38, 1729.
[http://dx.doi.org/10.1016/S0040-4039(97)00182-2]
[30]
Buckman, B.O. Solid-phase synthesis of phenolic steroids: Towards combinatorial libraries of estradiol derivatives. Tetrahedron Lett., 1996, 37, 4439.
[http://dx.doi.org/10.1016/0040-4039(96)00878-7]
[31]
Gouilleux, L. A novel, chemically robust, amine releasing linker. Tetrahedron Lett., 1996, 37, 7031.
[http://dx.doi.org/10.1016/0040-4039(96)01541-9]
[32]
Larsen, S.D.; Connell, M.A.; Cudahy, M.M.; Evans, B.R.; May, P.D.; Meglasson, M.D.; O’Sullivan, T.J.; Schostarez, H.J.; Sih, J.C.; Stevens, F.C.; Tanis, S.P.; Tegley, C.M.; Tucker, J.A.; Vaillancourt, V.A.; Vidmar, T.J.; Watt, W.; Yu, J.H. Synthesis and biological activity of analogues of the antidiabetic/antiobesity agent 3-guanidinopropionic acid: discovery of a novel aminoguanidinoacetic acid antidiabetic agent. J. Med. Chem., 2001, 44(8), 1217-1230.
[http://dx.doi.org/10.1021/jm000095f] [PMID: 11312922]
[33]
Klemm, L.H.; Weakley, T.J.R.; Gilbertson, R.D. Redetermination at 113 K of 2,2-tetramethylene-1,2-dihydroquinazolin-4(3H)-. One. J. Heterocycl. Chem., 1998, 35, 1269.
[http://dx.doi.org/10.1002/jhet.5570350605]
[34]
Niementowski, V. Niementowski reaction: microwave induced and conventional synthesis of quinazolinone and 3-methyl-1H-5-pyrazolone and their antimicrobial activity. J. Prakt. Chem., 1895, 51, 564.
[35]
Li, F; Feng, Y; Meng, Q An efficient construction of quinazolin- 4(3H)-ones u.nder microwave Irradiation Arkivoc; , 2007, pp. 40-50.
[36]
Santagati, N.A.; Bousquet, E.; Spadaro, A.; Ronsisvalle, G. 4-quinazolinones: synthesis and reduction of prostaglandin E2 production. Farmaco, 1999, 54(11-12), 780-784.
[http://dx.doi.org/10.1016/S0014-827X(99)00102-0] [PMID: 10668179]
[37]
Khosropour, A.R.; Mohammadpoor, I.; Ghorbankhani, H. Bi (TFA)3–[nbp] FeCl4: a new efficient and reusable promoter system for the synthesis of 4(3H)-quinazolinone derivatives. Tetrahedron Lett., 2006, 47, 3561-3564.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.079]
[38]
Jain, A.N. Scoring functions for protein-ligand docking. Curr. Protein Pept. Sci., 2006, 7(5), 407-420.
[http://dx.doi.org/10.2174/138920306778559395] [PMID: 17073693]
[39]
Taylor, R.D.; Jewsbury, P.J.; Essex, J.W. A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des., 2002, 16(3), 151-166.
[http://dx.doi.org/10.1023/A:1020155510718] [PMID: 12363215]
[40]
Glide., 2017, version 4.5 Schrodinger; LLC, New York, 2017.
[41]
Protein Preparation Wizard; Schrodinger; LLC, New York, 2017.
[42]
Maestro-v8.0, 2017, Molecular Modeling Interface; Schrodinger, LLC, 2017.
[43]
LigPrep-v2.1, 2017, Molecular Modeling Interface; Schrodinger, LLC, 2017.
[44]
Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N. Equation of State Calculations by fast computingmachines. Eur. J. Chem. Phys., 1953, 21, 1087-1092.
[http://dx.doi.org/10.1063/1.1699114]
[45]
Wang, HC,; Hsu, KC,; Yang, JM,; Wu, ML,; Ko, TP,; Lin, SR,; Wang, AH, Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res., 2014, 42(2), 1354-1364.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy